
Distribution-preserving data
augmentation
Nurdan Ayse Saran1, Murat Saran1 and Fatih Nar2

1 Department of Computer Engineering, Cankaya University, Ankara, Turkey
2 Department of Computer Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey

ABSTRACT
In the last decade, deep learning has been applied in a wide range of problems with
tremendous success. This success mainly comes from large data availability,
increased computational power, and theoretical improvements in the training phase.
As the dataset grows, the real world is better represented, making it possible to
develop a model that can generalize. However, creating a labeled dataset is expensive,
time-consuming, and sometimes not likely in some domains if not challenging.
Therefore, researchers proposed data augmentation methods to increase dataset size
and variety by creating variations of the existing data. For image data, variations
can be obtained by applying color or spatial transformations, only one or a
combination. Such color transformations perform some linear or nonlinear
operations in the entire image or in the patches to create variations of the original
image. The current color-based augmentation methods are usually based on
image processing methods that apply color transformations such as equalizing,
solarizing, and posterizing. Nevertheless, these color-based data augmentation
methods do not guarantee to create plausible variations of the image. This paper
proposes a novel distribution-preserving data augmentation method that creates
plausible image variations by shifting pixel colors to another point in the image color
distribution. We achieved this by defining a regularized density decreasing direction
to create paths from the original pixels’ color to the distribution tails. The proposed
method provides superior performance compared to existing data augmentation
methods which is shown using a transfer learning scenario on the UC Merced Land-
use, Intel Image Classification, and Oxford-IIIT Pet datasets for classification and
segmentation tasks.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Data
Science
Keywords Machine learning, Deep learning, Data augmentation, Color-based augmentation,
Transfer learning

INTRODUCTION
Since the first study conducted by Krizhevsky, Sutskever & Hinton (2012) in the ImageNet
competition in 2012, deep learning (DL) has been highly successful in image recognition
problems. Today convolutional neural networks (CNN) are well-understood tools for
image classification as a heavily employed DL approach. CNN’s main strength comes from
its ability to extract features automatically from regularly structured data such as speech
signals, images, or medical volumes (Georgiou et al., 2020), or even unstructured data
such as point clouds (Charles et al., 2017). However, training a DL network with high

How to cite this article Saran NA, Saran M, Nar F. 2021. Distribution-preserving data augmentation. PeerJ Comput. Sci. 7:e571
DOI 10.7717/peerj-cs.571

Submitted 10 February 2021
Accepted 10 May 2021
Published 27 May 2021

Corresponding author
Nurdan Ayse Saran,
buz@cankaya.edu.tr

Academic editor
Sebastian Ventura

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.571

Copyright
2021 Saran et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.571
mailto:buz@�cankaya.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.571
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


accuracy and generalization capability requires a large dataset representing the real world.
Thus, the performance of deep learning algorithms relies heavily on the variety and the
size of the available training data. Unfortunately, it may be challenging to obtain a
sufficiently large amount of labeled samples (Wang et al., 2020; Kemker, Salvaggio &
Kanan, 2018). In some cases, gathering the data is complicated or even hardly possible.
Therefore, training DL becomes challenging due to insufficient training data or uneven
class balance within the datasets (Huang & Du, 2005).

One way to deal with an insufficient training data problem is using so-called data
augmentation techniques to enlarge the training data by adding artificial variations of
it (Simard, Steinkraus & Platt, 2003). Such an enlarged training dataset can be even
further extended by adding synthetically generated data (Wong et al., 2019). Data
augmentation can be applied directly to the features, or it can be applied to the data source,
which will be used to extract the features (Volpi et al., 2018), e.g., CNN can extract features
from the enlarged image dataset (Shorten & Khoshgoftaar, 2019). The most challenging
work is to improve the generalization ability of the trained model to avoid overfitting.
If correctly done, data augmentation techniques can improve the performance and
generalization ability of the trained model. Therefore, due to their success, data
augmentation techniques are used in many studies that employs machine learning
(Ali et al., 2020; Islam, Wijewickrema & O’Leary, 2019; Zheng et al., 2019).

Data augmentation strategies can be divided into three groups as color transformations,
geometric transformations, and techniques using neural networks. Methods using color
transformations manipulate the pixels’ spectral values by doing operations such as
changing the contrast, brightness, color or injecting noise (Takahashi, Matsubara &
Uehara, 2020), or applying some filtering techniques (Zhu, He & Zheng, 2020). As a
color-based approach, Zhong et al. (2020) proposed a random erasing technique that either
randomly puts a filled rectangle or puts a random-sized mask into a random position.
Methods using geometric transformations are manipulating pixel positions by doing
operations such as scaling, rotation, flipping, or cropping (Shorten & Khoshgoftaar, 2019).
In particular, methods based on geometric transformation should be selected according to
the target dataset. For example, in CIFAR-10, horizontal flipping is an efficient data
enlargement method, but it can corrupt data due to different symmetries in the MNIST
dataset (Cubuk et al., 2018). Similarly, as in face recognition samples, if there is a dataset
where each face is centered in the frame, geometric transformations give outstanding
results (Xia et al., 2017). Otherwise, one should ensure he/she does not alter the label of the
image while using these augmentation variants. Moreover, the possibility of distancing
the training data from the test data should also be considered (Shorten & Khoshgoftaar,
2019). As with geometric transformations, some color transformations can also distort
important color information, changing the image label (Shorten & Khoshgoftaar, 2019).
Augmentation methods can also be combined to increase the variety in the resulting
augmented images (Cubuk et al., 2018). With a careful setting, these color and geometric
transformations help generate a new dataset covering the span of image variations
(Howard, 2013). As recent approaches, Mun et al. (2017), and Perez & Wang (2017)
proposed to generate synthetic images which retain similar features to the original images

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 2/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


samples using various types of Generative Adversarial Networks (GAN). However, Chen
et al. (2020) observed that the cost of training is time-consuming while the variability of
data produced is often limited. Data augmentation methods can produce good results
with different parameters in different types of problems. Even a single augmentation
method is employed, the best parameters should be determined. For a combination of
augmentation methods, determining which data augmentation methods to use and their
execution order in addition to their optimal parameters is challenging. Thereby, in
Cubuk et al. (2018), the auto augmentation method was proposed that searches many
augmentation algorithms to find the highest validation accuracy automatically.

In Fig. 1A, an image that contains a blue lake and sky and green trees is shown. Plausible
variations of this lake image with some red trees and color changes in clouds and lake
are presented in Figs. 1B–1C. Note that, there are differences in these two plausible images,
i.e., there are more red trees in the Fig. 1C compared to Fig. 1B. Although Fig. 1D is
also a plausible image, it contains a limited variation. These plausible images are more
probable to occur in the real world than the unplausible images given in Figs. 1E–1F.
The color distribution of the lake image is shown as 3D scatter plot and color channel
histograms in Fig. 2. As seen in Fig. 2, some colors frequently occur in an image, while
some are rare. For example, the blue lake (mode in distribution and its surroundings)
is always seen, but a lake that goes into purple (tails of the distribution) is rare. Mainly

(a) (b) (c)

(d) (e) (f)

Figure 1 Example plausible and unplausible images. (A) Original image. (B–C) Plausible images.
(D) Gamma corrected image. (E) Histogram equalized image. (F) Random erased image.

Full-size DOI: 10.7717/peerj-cs.571/fig-1

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 3/25

http://dx.doi.org/10.7717/peerj-cs.571/fig-1
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


images at the tail of the color distribution, in particular, are also infrequent, yet they
are plausible.

The majority of the data augmentation methods have been originated from image
processing and computer graphics domains. Methods specifically targeted to data-
augmentation are also proposed in the literature such as random erasing (Zhong et al.,
2020), Cutout (DeVries & Taylor, 2017), CutMix (DeVries & Taylor, 2017), MixUp
(Yun et al., 2019), and AugMix (Hendrycks et al., 2019). Although these methods are easy
to implement and fast, they do not have an inherent mechanism to create plausible
image variants. These color-based augmentation methods generally disturb the color
distribution of the given image, which leads to the creation of unnatural images, as seen in
Figs. 1E–1F. Differently, we propose a distribution-preserving data augmentation method
that creates plausible variations of the given image as seen in Figs. 1B–1C. Therefore,
this study aims to achieve diversity on the enlarged training data by creating augmented
images aligned with the image color data distribution. We were inspired by the mean-shift
process by Fukunaga & Hostetler (1975) and Comaniciu & Meer (2002) to obtain a
distribution-preserving data augmentation mechanism. The mean-shift process seeks the
local mode without estimating the global density, hence avoiding a computationally
intensive task. Unlike the mean-shift process, we get a path towards the tails in a density
decreasing manner in our method. In the original mean-shift, the data gets denser, and the
mean-shift path becomes smooth as it goes towards the distribution mode. However,
as we go in the opposite direction, the data becomes increasingly sparse, which can cause
the obtained path to act chaotically. We developed a regularized density decreasing
direction to create paths from colors of the original image pixels to the image data
distribution tails to prevent this. Then we shift the pixel colors to any point in the obtained
path so that modified pixel colors will be in alignment with the color distribution of the
original image. Thus, the proposed data augmentation method considers the color
distribution of the image to produce plausible images by changing colors in this way. Since
we shift the color in the augmented image, we also increase the training data diversity.
Source code of the proposed method is shared (https://github.com/msaran1923/dpda,
https://github.com/msaran1923/dpdalinusx) to facilitate reproducibility.

(a) (b)

0 50 100 150 200 250
Value

5000

10000

15000

Fr
eq
ue
nc
y

Figure 2 Color distribution for the image in Fig. 1A. (A) Color distribution as 3D scatter plot.
(B) Color channel histograms. Full-size DOI: 10.7717/peerj-cs.571/fig-2

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 4/25

https://github.com/msaran1923/dpda
https://github.com/msaran1923/dpdalinusx
http://dx.doi.org/10.7717/peerj-cs.571/fig-2
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


The remainder of the paper is organized as follows. First, ‘Materials & Methods’ briefly
explains the employed background materials and the proposed method, namely the
Density Preserving Data Augmentation (DPDA) method. Then, ‘Experiments & Results’
presents the proposed DPDA method’s performance with various qualitative and
quantitative experiments and comparison studies. Afterward, a discussion with some
remarks on possible future studies is given in ‘Discussion & Future Works’. Finally,
conclusions are stated in ‘Conclusions’.

MATERIALS & METHODS
To obtain a density decreasing path, we used the opposite of the mean-shift direction.
As we go in the density decreasing direction, the data becomes increasingly sparse, which
can cause the obtained path to act chaotically. We enforce the density decreasing path’s
smoothness by implementing a regularization on the reverse mean-shift direction to
prevent this. Such regularized density decreasing paths for 3 pixels are shown in Fig. 3 as
examples. The colors of these 3 pixels are chosen to be close to the tail of the distribution
to demonstrate the behavior of the density decreasing path generation. One can easily
see that paths are smooth even if they move to extremely sparse regions of the image color
distribution. Density decreasing path may contain varying numbers of points where
the distance between the consecutive points can also be different. We want to have the
same number of points, L, in each density decreasing path (L = 64). We also want to
equalize the distance between consecutive points in the density decreasing path. We
construct a refined density decreasing path while satisfying these two objectives using
cubic spline interpolation on the density decreasing path we found.

In Fig. 4, a process diagram of the proposed DPDA method is given. It has three main
steps: extraction of features, and creating density decreasing paths for once, and creating
augmented images. First, an Input Image is given to the DPDA method. Then Color
Features are extracted from the given image. Then Density Decreasing Paths are created
using the extracted Color Features. Finally, several Augmented Images are created. During
the creation of augmented images, Perlin Noise is created C times for a given input image
and fused with Density Decreasing Paths resulting in C augmented images.

(a) (b) (c)

Figure 3 Density decreasing paths for Fig. 1A. (A)–(C) Paths for 3 different data points.
Full-size DOI: 10.7717/peerj-cs.571/fig-3

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 5/25

http://dx.doi.org/10.7717/peerj-cs.571/fig-3
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


Extraction of features
DPDAmethod works with color images with three channels (red, green, and blue), namely
RGB image. For an input RGB image in size W × H there are n pixels where n = WH.
If we flatten the pixels of this RGB image, then our feature matrix X has a size of n × d
where d = 3. Although n features are sufficient, we further enriched the feature space
using the image pyramid approach (Adelson et al., 1984). During the image pyramid
generation, we halved the original image in width and height three times. This creates an
image pyramid with four levels where each level contains four times fewer pixels than the
higher level in the pyramid. We used Lanczos interpolation over 8 × 8 neighborhood
for the down-sampling operation (Turkowski, 1990). Using an image pyramid with four
levels increases the number of features in X by 32.8%. In Fig. 5A, there are structural
missing regions in feature space. This is due to quantization error since decimal parts of
colors are quantized in 8 bits RGB images. However, refined feature space in Fig. 5B is
denser, and the effect of image quantization errors is reduced, which demonstrates another
benefit of the employed image pyramid approach.

Creation of density decreasing paths
Let x be the color of a pixel in the image as a starting point of a path we aim to find. Then
probability density function (PDF) on the color feature space X constructed from the
image is given in Eq. (1).

Figure 4 DPDA process diagram. Full-size DOI: 10.7717/peerj-cs.571/fig-4

(a) (b)

Figure 5 Feature space of the image in Fig. 1A, without and with image pyramid. (A) Features from
only image. (B) Features from image pyramid. Full-size DOI: 10.7717/peerj-cs.571/fig-5

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 6/25

http://dx.doi.org/10.7717/peerj-cs.571/fig-4
http://dx.doi.org/10.7717/peerj-cs.571/fig-5
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


PðxÞ ¼ 1
n

Xn
j¼1

Kðx � xjÞ (1)

where K(.) is a kernel function and xj are data points in X where we used Epanechnikov
kernel.

We define a density decreasing path T ¼ fxð0Þ; xð1Þ; . . . ; xðiÞ; . . .g (Fig. 6) where x(i + 1) =
x(i) + s(i) for i ≥ 0. Here, x(0) is the starting point of the path and s(i) is a density
decreasing direction at point x(i). Also, x(i) is only defined in color space domain where
0 ≤ x(i)r , x

(i)
g , x

(i)
b ≤ 255.

Now, we can define the pdf for the point x(i + 1) as below:

Pðxðiþ1ÞÞ ¼ 1
n

Xn
j¼1

Kðxðiþ1Þ � xjÞ ¼ 1
n

Xn
j¼1

KðxðiÞ þ sðiÞ � xjÞ (2)

Since the points x(i) and xj are constant, we can rewrite above equations as below:

Pðxðiþ1ÞÞ ¼ PðxðiÞ þ sðiÞÞ ¼ 1
n

Xn
j¼1

KðsðiÞ � x̂jÞ where x̂j ¼ xj � xðiÞ (3)

So, x̂j points are centered to x(i) where x(i) is shifted to the origin; thus, s(i) becomes a
direction vector. Finally, we define a gradient descent direction as below that will lead to a
density decreasing path:

xðiþ1Þ ¼ xðiÞ � rJðxðiÞ þ sðiÞÞ (4)

where J(x(i) + s(i)) is the cost function to minimize which is defined as below:

JðxðiÞ þ sðiÞÞ ! PðxðiÞ þ sðiÞÞ subject to sðiÞ 2 �

� ¼ fksðiÞk � Slength and 1� h sðiÞ

Slength
; ŝðpriorÞi � Sangleg

with ŝðiÞ ¼ sðiÞ

Slength
and ŝðpriorÞ ¼ sði�1Þ

ksði�1Þk

(5)

In Eq. (5), Slength is the maximum length and Sangle is the maximum angle for the
direction vector s(i). Here, second constraint is only defined for i > 0 where ŝðpriorÞ is the
prior direction in unit length and considered as constant. Owing to Eq. (5), density
decreasing direction s(i) is regularized in length and orientation to avoid chaotic shifts in
sparse data regions.

Figure 6 Density decreasing path. Full-size DOI: 10.7717/peerj-cs.571/fig-6

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 7/25

http://dx.doi.org/10.7717/peerj-cs.571/fig-6
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


The gradient descent method is not practical to minimize cost functions with
constraints. In such cases, one can use the projected gradient descent (PGD) method,
which can minimize a cost function subject to a constraint where this constraint defines a
domain (Boyd & Vandenberghe, 2004). Although PGD works fine for cost functions with a
single constraint, we can still use it efficiently since our cost function’s length, and
orientation constraints only form a single domain, �. Therefore, we use PGD to obtain a
gradient descent path on the cost function J as defined in Eq. (6).

min
sðiÞ

PðxðiÞ þ sðiÞÞ subject to sðiÞ 2 �

xðiþ1Þ¼ P�ðxðiÞ � rPðxðiÞ þ sðiÞÞÞ
P�ðxnewÞ ¼ argmin

sðiÞ2�
kðxðiÞ þ sðiÞÞ � xnewk

(6)

After doing some algebraic manipulations one can see that s(i) equals to the opposite of
the mean-shift direction m(i) such that s(i) = −m(i). First, we will limit the number of
iterations in the PGD to L/2 since we aim to find a density decreasing path with a limited
number of points. Next, we will stop the PGD iteration if (a) the norm of mean-shift
direction is becoming smaller than a tolerance value (Ctolerance) or (b) next point x

(i + 1)

exiting from the image color space domain. Also, we set default value for Ctolerance as 10
−2d.

The final density decreasing path generation method is presented in Algorithm 1.
Calculation of the mean-shift direction m(i) at point x is as given as below:

mðiÞ ¼

P
xj2NðxÞ

Kðxj � xÞxj
P

xj2NðxÞ
Kðxj � xÞ � x (7)

Algorithm 1 Find Density Decreasing Path using PGD.

1: Inputs: x(0), h, IFLANN, L, Ctolerance

2: for i = 0 : L/2 do

3: m(i)
← calculateMeanShiftDirection (x(i), h, IFLANN)

4: if (||m(i)|| < Ctolerance) then

5: break ⊲ Converged, exits loop

6: end if

7: x(i+1) =PΩ(x
(i) − ∇P(x(i)+s(i))) ⊲ Move to new point with PGD

8: if (x(i+1) is out of domain) then

9: break ⊲ Converged, exits loop

10: end if

11: end for

12: T ← regularize ({x(0), x(1), . . . , x(i)}) ⊲ regularize to equidistant L points

13: Return T

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 8/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


where K(.) is the kernel function and xj are k nearest neighbours of x. We used FLANN
proposed by Muja & Lowe (2014) to have fast k nearest neighbor search operations for
efficiency. In this study, we used 256 as the default value of k. Note that, one need to put
value of x(i) into the point x in the Eq. (7) given in the Algorithm 1. However, kernel
functions require the selection of the bandwidth parameter h. Since each image’s
characteristic is different, we estimate bandwidth parameter h from the image to balance
differences between images as an approximation to median pair-wise distances to closest
points. First, we find the Euclid distances of each pixel with its 4 neighbors. Then, we
use Quick Select (Cormen et al., 2009) algorithm to find the median value of these distances
as our bandwidth h.

We used the PGD method, which first does a gradient descent step, then back-projection
of gradient descent result to the domain �. In Fig. 7, blue vectors are prior directions; green
vectors are new directions in the domain, and red vectors are new directions out of the
domain. Domain� is the region between dotted gray lines, determined by the constraints in
each gradient descent step.

Note that prior direction and new direction form a plane where its normal is the cross
product of these two vectors. Therefore, a rotation matrix can be formed, which aligns
this normal vector to the canonical z-axis where the prior direction and new direction
vectors transform onto xy-plane. Once prior and new directions are rotated, all the
back-projection operations can be done in 2D easily then back-projected direction can be
rotated back to the original space. We used the method proposed by Möller & Hughes
(1999) to construct a rotation matrix that aligns normal vector to z-axis as given in Eq. (8).

v ¼ f � t; u ¼ v
vk k

c ¼ f � t; r ¼ ð1� cÞ=ð1� c2Þ
!

cþ rv2x rvxvy � vz rvxvz þ vy
rvxvy þ vz cþ rv2y rvyvz � vx
rvxvz � vy rvyvz þ vx cþ rv2z

2
4

3
5 (8)

where f is plane normal calculated by cross product of prior direction and new direction,
and t is z-axis.

Creation of augmented images
Each pixel has its corresponding density decreasing path with L colors. 0th color (first path
node) has the largest color deviation from the original pixel color towards the tail of image

(a) (b) (c) (d) (e)

Figure 7 Example cases for directions and back-projections to domain. (A) s(1) ∈ �. (B) s(2) ∉ �. (C) P�(s(2)) ∈ �. (D) s(3) ∉ �. (E) P�(s(3)) ∈ �.
Full-size DOI: 10.7717/peerj-cs.571/fig-7

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 9/25

http://dx.doi.org/10.7717/peerj-cs.571/fig-7
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


color distribution. (L − 1)th color (last path node) equals to original image pixel color.
So, we can take a different node (color) from the corresponding path for each pixel of an
augmented image. Here all 0 indices will yield to augmented image with the most
perturbation, while L − 1 indices will yield to the original image. For each pixel, we can
randomly choose an index number between 0 and L − 1, which will lead to different
augmented images that allow the generation of any number of augmented images. However,
utterly random selection will result in unnatural results. Thus, we want to sample from path
nodes in a random but spatially smooth manner. We modified the Perlin noise generator,
which is proposed by Perlin (1985) to obtain a smooth but random index map as seen in
Fig. 8. Here, we choose parameter values randomly from a predefined range where
parameters are roughness (Nroughness), noise scale (Nscale), and noise center (Ncenter). Finally,
modified Perlin noise is generated using Cx,y = 0.5 (tanh(Nscale

� (Nx,y − Ncenter)) + 1)
where Nx,y = Perlin.generate(xNroughness, yNroughness, 1) is original Perlin noise generation
function.

EXPERIMENTS & RESULTS
We conducted qualitative and quantitative experiments using different datasets and DL
networks to evaluate the effectiveness of the proposed DPDA method. Training and
testing are carried out on a server running Ubuntu Linux with Intel i9 CPU (3.7 GHz),
128 GB RAM, Nvidia RTX 3070 GPU. Python using the Keras API and TensorFlow DL
libraries are utilized for training the models. This section describes the datasets and
experiments used to obtain qualitative and quantitative results.

Datasets
We used Pxfuel1 for qualitative experiments, and three different datasets for quantitative
experiments, namely the UC Merced Land-use Yang & Newsam (2010), the Intel Image

Figure 8 Effects of different Perlin noises (top row) on augmented images (bottom row). Full-size DOI: 10.7717/peerj-cs.571/fig-8

1 Pxfuel: https://www.pxfuel.com/ (Roy-
alty-free stock photos free & unlimited
download).

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 10/25

http://dx.doi.org/10.7717/peerj-cs.571/fig-8
https://www.pxfuel.com/
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


Classification (https://www.kaggle.com/puneet6060/intel-image-classification/), and the
Oxford-IIIT Pet datasets (Parkhi et al., 2012).

UC Merced Land-use dataset consists of satellite images of size 256 × 256 and 0.3-m
resolution that are open to the public. There are a total of 21 classes and 100 images in each
class (see Fig. 9).

The Intel Image Classification dataset contains about 25,000 images of size 150 × 150
pixels, classified under six categories (buildings, forest, glacier, mountain, sea, and street)
of natural scenery worldwide (see Fig. 10). The training set is around 17,000 images
and the test set is the rest.

(a) (b) (c) (d) (e) (f)

Figure 9 Example image classes from UCMerced land-use dataset. (A) Airplanes. (B) Parking lot. (C) Buildings. (D) River. (E) Forest.
(F) Agricultural. Full-size DOI: 10.7717/peerj-cs.571/fig-9

(a) (b) (c) (d) (e) (f)

Figure 10 Example image classes from Intel Classification dataset. (A) Forest. (B) Glacier. (C) Sea. (D) Mountain. (E) Street. (F) Buildings.
Full-size DOI: 10.7717/peerj-cs.571/fig-10

(a) (b) (c) (d)

Figure 11 Example images from Oxford IIIT Pet dataset. (A) Abyssinian. (B) Abyssinian trimap.
(C) Yorkshire terrier. (D) Yorkshire terrier trimap.

Full-size DOI: 10.7717/peerj-cs.571/fig-11

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 11/25

https://www.kaggle.com/puneet6060/intel-image-classification/
http://dx.doi.org/10.7717/peerj-cs.571/fig-9
http://dx.doi.org/10.7717/peerj-cs.571/fig-10
http://dx.doi.org/10.7717/peerj-cs.571/fig-11
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


The Oxford-IIIT Pet dataset includes 37 dog and cat classes with 25 dog and 12 cat
categories. There are approximately 200 images for each class with significant variations in
image size, exposure, and lighting. The total number of images in the dataset is just over
7,000. The dataset also includes labels as bounding boxes and segmentation masks as
trimaps. In trimap, absolute background is shown as white, absolute foreground is shown
as black, and mixed region is shown as gray (see Fig. 11).

Qualitative results
To demonstrate our data augmentation results qualitatively, we first downloaded sample
images from Pxfuel, which provides high-quality royalty-free stock photos. Note that
augmented images’ brightness is slightly increased to emphasize the difference between
original images and augmented images.

In Fig. 12, augmentation results are shown for man, forest, food, car, and urban images.
In the first row, in the augmented male image, the male’s skin color becomes lighter,
and the eye color shifts to green. Also, there are some color changes in the background and
t-shirt of the man. In the second row, the augmented forest image contains red trees,
although there are no red trees in the original image. Here, red trees occur in the
augmented image because the original image’s color distribution contains colors towards
the red tones in the distribution’s tail. In the third row, in the augmented image, each olive
type’s colors in the original image are changed differently while the background is not
changed. In the fourth row, the old car’s rust tones in the original image are changed
naturally in the augmented image. In the fifth row, the trees and the building roof’s colors
become greener with slight color changes in the buildings and the road in the augmented
urban image.

DPDA results shown in Fig. 12 are all plausible image augmentations. In all these visible
results, some image pixel colors are shifted to the tail of the image’s color data distribution.
Thus, the image is transformed into a less occurring version of itself. This is quite
useful to increase data variability of the training dataset since the proposed data
augmentation approach generates fewer occurring images, and thus original dataset is
enriched. Therefore, the over-fitting problem is reduced while increasing the training
accuracy. Since the image color data guides data augmentation, the algorithm does not
require different parameter selections for different images, i.e., images with different
content, resolution, or camera characteristics. Accordingly, default DPDA parameters are
used for the data augmentations in Fig. 12 (as qualitative experiments) and also for all the
quantitative experiments.

Quantitative results
Training a DL network from scratch requires a considerable amount of data and
computational power. Therefore, researchers and practitioners with limited data and
computational resources prefer to reuse existing DL architectures, which are trained with
millions of data and using server farms. This reuse methodology employs a transfer
learning approach where a well-proven DL model is fine-tuned with a new dataset (Shao,
Zhu & Li, 2015). Pre-training a DL network with transfer learning yields successful results,

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 12/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


The original (left) and augmented (right) man image

The original (left) and augmented (right) urban image

The original (left) and augmented (right) food image

The original (left) and augmented (right) car image

The original (left) and augmented (right) urban image

Figure 12 Plausible image augmentations. Full-size DOI: 10.7717/peerj-cs.571/fig-12

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 13/25

http://dx.doi.org/10.7717/peerj-cs.571/fig-12
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


even with a small train dataset. However, transfer learning provides excellent results if
the data and pre-trained model are on a similar domain (Yosinski et al., 2014). A model
pre-trained with the Imagenet dataset gives better outcomes for the datasets in the same
domain, such as CIFAR-10 or Caltech-101. On the other hand, if the model is tuned
using a small amount of training data that is not in a similar domain, the performance
benefits of transferring features decrease. So, data augmentation helps increase dataset size
and variety to remedy such problems (Shao, Zhu & Li, 2015).

Note that our aim is not to give an extensive study of the architecture of CNNs as done
by Szegedy et al. (2015), or He et al. (2016) but to briefly use them for evaluating the
performance of the proposed DPDA method in transfer learning settings. Resnet50 (He
et al., 2016) and DenseNet201 (Huang, Liu & Weinberger, 2016) network weights trained
on the ImageNet are used as starting weights in the classification task since they are widely
used in the current studies (Khan et al., 2020). Then the models are fine-tuned during
training (Vrbančič& Podgorelec, 2020) since initial layers of CNNs preserve more abstract,
generic features. We just copy the weights in convolutional layers rather than the entire
network, excluding fully connected layers. MobileNetV2 (Sandler et al., 2018) network
weights trained on the ImageNet are used as starting weights in segmentation task as a base
model and trained with CNN architecture based on U-Net (Silburt et al., 2019). For all
the experiments, we used an Stochastic Gradient Descent (SGD) solver with a momentum
of 0.9. Weights are initialized from a Gaussian distributionNðl;rÞ for μ = 0 and σ = 10−2.
We found 20 epochs and a batch size of 32 typically sufficient for convergence.

The following methodology was utilized to create train and validation sets for all
datasets used in this study. First, we randomly selected 20 images from each class as a
validation set and used the same validation set in all tests. Then, we created different
train sets in various sizes (N = 20, 30, 40, 50, 60, 70, 80) to investigate the effect of
training dataset size on classification performance using the data augmentation
approaches. For segmentation tests, we only used the train set size of 80. To avoid sample
imbalance in the training datasets, we randomly selected the training datasets in equal
numbers from each class. We evaluated the final classification performance of each
dataset with the average accuracy over 10 runs. We increased the original training dataset
size 5-fold, utilizing random erase (RE), flip image (FI), gamma correction (GC),
histogram equalization combined with gamma correction (HE+GC), the proposed
DPDA method, and the DPDA method combined with the flip image (DPDA+FI)
separately. We implemented color-based augmentation methods as done in CLoDSA
(Casado-Garca et al., 2019) library.

Performance analysis
This section presents a performance comparison study using transfer learning with
three different DL architectures, namely DenseNet, ResNet, and MobileNetV2. These
architectures are trained using transfer learning on original and augmented versions of
three datasets. In the experiments, DPDA, DPDA+FI, FI, RE, GC, HE+GC methods are
used for the augmentation of images. Baseline performances are obtained by training on
the original datasets using the transfer learning approach. Augmentation performances for

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 14/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


classification on UC Merced Land-use, Intel Image Classification, and Oxford-IIIT Pet
datasets and for segmentation on Oxford-IIIT Pet dataset compared to the baseline
performances are presented. For Tables 1–7, the the performance values in bold represent
the best performance in its row.

UC merced land-use dataset
First, we compare the performance increase obtained with various data augmentation
methods and DPDA on the UCMerced Land-use dataset using DenseNet201 architecture.
As seen in Table 1, average accuracy improvement ranges from 1.51% to 4.43%.
All data augmentation methods provide performance increase compared to baseline
performance for all the train set sizes. However, the DPDA method and the DPDA
combined with the flip image consistently provide the best performances in every test. The
results also show that data augmentation in data sets with fewer elements contributes more
to accuracy. For example, the highest accuracy increase is 6.98% in the training set
consisting of 20 images per class, which is obtained with DPDA+FI augmentation.

Table 2 Data augmentation accuracy comparisons (%) in different sizes of datasets (N) using
ResNet50 on UC Merced Land-use Dataset.

N Baseline DPDA+FI DPDA RE FI HE+GC GC

20 74.76 83.25 82.86 80.87 80.71 79.84 79.52

30 80.07 86.67 86.11 83.33 82.78 82.38 81.90

40 82.62 89.05 88.99 85.95 85.55 84.68 84.12

50 83.81 88.97 88.29 86.32 86.19 86.97 85.95

60 85.00 90.48 90.32 87.62 87.93 87.85 87.69

70 86.66 91.27 91.19 89.87 89.46 88.96 88.57

80 87.62 91.74 91.67 90.47 90.31 90.18 89.21

Average 82.93 88.78 88.49 86.35 86.13 85.84 85.28

Increase 5.84 5.56 3.41 3.20 2.90 2.35

Note:
Performance values in bold represent the best performance in its row.

Table 1 Data augmentation accuracy comparisons (%) in different sizes of datasets (N) using
DenseNet201 on UC Merced Land-use dataset.

N Baseline DPDA+FI DPDA RE FI HE+GC GC

20 76.35 83.33 82.86 80.23 80.74 79.52 78.96

30 82.46 88.25 88.09 86.00 85.55 84.52 84.76

40 84.12 88.33 88.25 86.19 86.11 86.51 85.56

50 86.27 90.16 90.00 88.41 88.57 87.62 87.93

60 87.61 91.34 91.43 89.92 89.60 89.76 88.65

70 89.28 92.62 92.54 91.19 90.71 90.24 90.16

80 89.60 92.70 92.54 90.95 90.72 90.16 90.24

Average 85.10 89.53 89.39 87.56 87.43 86.90 86.61

Increase 4.43 4.29 2.46 2.33 1.81 1.51

Note:
Performance values in bold represent the best performance in its row.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 15/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


Next, we compared the performance increase with various data augmentation methods,
including the DPDA, using ResNet50 architecture. As seen in Table 2, average accuracy
improvement ranges from 2.35% to 5.84%. All data augmentation methods provide
performance increase compared to baseline performance for all the train set sizes.
However, the DPDA method itself and in combination with the flip image method,
consistently provide the best performances in every single test. The results also show that
data augmentation in data sets with fewer elements contributes more to accuracy. For
example, the highest accuracy increase is 8.49% in the training set consisting of 20 images
per class, which is obtained with DPDA+FI augmentation.

Intel image classification dataset
Like the UC Merced Land-use dataset, first, we compare the performance increase
obtained with various data augmentation methods, including DPDA, on the Intel Image
Classification dataset using DenseNet201 architecture. As seen in Table 3, average
accuracy improvement ranges from 2.25% to 4.94%. All data augmentation methods

Table 3 Data augmentation accuracy comparisons (%) in different sizes of datasets (N) using
DenseNet201 on Intel Image Classification Dataset.

N Baseline DPDA RE DPDA+FI GC HE+GC FI

20 82.00 88.89 87.83 89.17 87.00 87.50 86.33

30 83.33 90.56 89.16 89.34 89.50 88.33 88.00

40 86.50 90.00 88.50 89.50 88.33 88.61 86.83

50 86.66 91.39 90.16 89.67 90.00 89.16 90.33

60 88.69 92.50 91.83 90.00 90.83 90.83 90.16

70 88.92 93.33 91.50 90.83 90.83 91.00 90.17

80 90.16 94.16 92.50 92.50 90.50 90.50 90.17

Average 86.61 91.55 90.21 90.14 89.57 89.42 88.86

Increase 4.94 3.60 3.54 2.96 2.81 2.25

Note:
Performance values in bold represent the best performance in its row.

Table 4 Data augmentation accuracy comparisons (%) in different sizes of datasets (N) using
ResNet50 on Intel Image Classification Dataset.

N Baseline DPDA RE DPDA+FI FI GC HE+GC

20 79.67 86.94 85.33 86.57 83.83 84.22 84.61

30 82.50 88.96 87.50 86.67 86.16 86.44 85.83

40 84.67 90.28 88.67 89.17 88.66 87.50 86.66

50 86.83 90.83 89.67 89.17 88.66 88.33 88.22

60 88.16 91.39 90.00 89.87 89.67 88.33 89.16

70 88.94 92.78 92.00 90.00 90.83 90.00 89.33

80 89.33 92.50 92.00 90.83 90.33 88.67 89.00

Average 85.73 90.53 89.31 88.90 88.31 87.64 87.54

Increase 4.80 3.58 3.17 2.58 1.91 1.82

Note:
Performance values in bold represent the best performance in its row.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 16/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


provide performance increase compared to baseline performance for all the train set sizes.
However, the DPDA method provides the best performances in every single test. The
results also reveal that data augmentation in data sets with fewer elements contributes
more to accuracy. For instance, the highest accuracy increase is 7.23% in the training set
consisting of 30 images per class, which is obtained with DPDA augmentation.

Next, we compare the performance increase with various data augmentation methods,
including the DPDA, using ResNet50 architecture. As seen in Table 4, average accuracy
improvement ranges from 1.82% to 4.80%. Every data augmentation methods provide a
performance increase compared to baseline performance for all the train set sizes.
However, the DPDA method provides the best performances in every single test. The
results also indicate that data augmentation in data sets with fewer elements contributes
more to accuracy. For instance, the highest accuracy increase is 7.27% in the training set
consisting of 20 images per class, which is obtained with DPDA augmentation. This result
is also in compliance with the DenseNet comparison study.

Table 5 Data augmentation accuracy comparisons (%) in different sizes of datasets (N) using
DenseNet201 on Oxford-IIIT Pet Dataset.

N Baseline DPDA DPDA+FI HE+GC FI GC RE

20 81.67 87.89 88.35 86.91 87.43 88.27 86.32

30 85.26 90.95 89.05 89.91 89.21 88.78 88.13

40 87.65 90.14 90.27 89.67 89.62 88.83 89.10

50 88.36 91.13 90.94 90.54 90.67 90.67 90.62

60 89.85 92.24 92.27 91.21 91.62 91.54 91.81

70 90.73 92.43 92.51 92.19 92.12 92.51 92.29

80 90.79 93.10 94.02 93.27 92.91 92.83 92.56

Average 87.78 91.13 91.06 90.53 90.51 90.49 90.12

Increase 3.34 3.27 2.75 2.73 2.71 2.34

Note:
Performance values in bold represent the best performance in its row.

Table 6 Data augmentation accuracy comparisons (%) in different sizes of datasets (N) using
ResNet50 on Oxford-IIIT Pet Dataset.

N Baseline DPDA+FI DPDA RE FI GC HE+GC

20 67.74 80.40 79.05 77.08 78.27 72.94 72.51

30 75.46 82.83 82.48 82.27 81.08 81.40 79.78

40 78.51 85.54 84.70 82.75 82.70 82.91 82.99

50 80.72 86.62 86.48 84.64 85.67 84.29 84.16

60 84.01 86.70 88.73 87.54 85.81 86.75 85.43

70 84.91 90.08 90.00 89.94 88.24 88.40 86.57

80 85.85 89.32 89.34 88.83 89.00 88.51 87.00

Average 79.60 85.93 85.83 84.72 84.40 83.60 82.63

Increase 6.33 6.23 5.12 4.80 4.00 3.03

Note:
Performance values in bold represent the best performance in its row.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 17/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


Oxford-IIIT pet dataset
First, we compare the performance increase with various data augmentation methods,
including DPDA, on the Oxford-IIIT Pet dataset using DenseNet201 architecture. As seen
in Table 5, average accuracy improvement ranges from 2.34% to 3.34%. All data
augmentation methods provide performance increase compared to baseline performance
for all the train set sizes while DPDA being superior. The results also reveal that data
augmentation in data sets with fewer elements contributes more to accuracy. For example,
the highest accuracy increase is 6.68% in the training set consisting of 20 images per class,
which is obtained with DPDA+FI augmentation.

Next, we compare the performance increase with various data augmentation methods,
including the DPDA, using ResNet50 architecture. As seen in Table 6, average accuracy
improvement ranges from 3.03% to 6.33%. Every data augmentation methods provide
a performance increase compared to baseline performance for all the train set sizes.
However, the DPDA+FI method provides the best performances in every single test. The
results also show that data augmentation in data sets with fewer elements contributes more
to accuracy. For instance, the highest accuracy increase is 12.66% in the training set
consisting of 20 images per class, which is again obtained with DPDA+FI augmentation.

We used the U-Net architecture on top of the MobileNetV2 architecture for the
Oxford-IIIT Pet Dataset segmentation experiments. DPDA provides by far the best
performance in these experiments (see Table 7). The accuracy improvement obtained with
DPDA is 8.49%. The second highest accuracy improvement achieved with the FI
augmentation is 0.81%, which is much less than the DPDA accuracy improvement. On the
other hand, every data augmentation method does not provide a performance increase
compared to baseline performance. For instance, the GC decreases the accuracy by
−2.20%.

The above results indicate that models trained with the augmented UC Merced Land-
use, Intel Image Classification, Oxford-IIIT Pet datasets, with the DPDA method,
significantly improve classification performance. Besides, DPDA also provides superior
performance in an image segmentation task. Thus, we can infer that the proposed DPDA
method can improve DL performance for different datasets, different DL architectures
(ResNet, DenseNet, and MobileNetV2), and different image analysis tasks.

Execution time analysis
There are n pixels in an image. During the execution of DPDA, for each pixel, we find a
path with a length of up to L/2. For each point in a path, the nearest neighbor search

Table 7 Segmentation performance comparisons using MobileNetV2+U-Net on Oxford-IIIT Pet
Dataset.

Baseline DPDA DPDA+FI FI RE HE+GC GC

Average Accuracy 80.82 89.31 82.48 81.64 80.59 80.44 78.63

Accuracy Increase 8.49 1.66 0.81 0.13 −0.38 −2.20

Note:
Performance values in bold represent the best performance in its row.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 18/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


using FLANNmethod (Muja & Lowe, 2014) is done to retrieve k neighbor points. Our data
is 3 channel so dimension d is 3. For each image, the FLANN tree is constructed for
once where tree construction has a computational complexity of OðndKIðlogn=logKÞÞ,
where I is a maximum number of iterations, and K is the branching factor. We used exact
search in FLANN, which leads to OðMdðlogn=logKÞÞ for single nearest neighbor search
where M is a maximum number of points to examine. However, we need to do a separate
neighbor search for L/2 times for n pixels, which leads to nL/2 neighbor search operations.
Thus, computational complexity of the all neighbour search operations is
OðnLMdðlogn=logKÞÞ. Therefore, computational complexity of the DPDA is
OðndðKI þ LMÞðlogn=logKÞÞ including tree construction and neighbor search operations.

The average execution time for 10 augmentations of DPDA, RE, GC, and FI methods
concerning image size (# of pixels) is shown in Fig. 13. Although FLANN provides
efficient nearest neighbor search operations, as shown in Fig. 13, the execution times of the
DPDA method are longer compared to RE, GC, and FI methods. Fortunately, in DL
training, images are generally in small sizes, i.e. 435 × 387 for Oxford dataset, 250 × 250 for
UCMerced dataset, and 150 × 150 for Intel dataset (see Fig. 13).

DISCUSSION & FUTURE WORKS
The proposed DPDA method employs a distribution preserving approach to create
plausible variants of a given image, as shown in qualitative and quantitative results. These
augmented images enrich the training dataset so that the over-fitting problem is reduced
while higher training accuracies are obtained. Obtained augmentation performance is
demonstrated on UC Merced Land-use, Intel Image Classification, and Oxford-IIIT Pet
datasets for classification and segmentation tasks. These experiments show the superiority
of the proposed DPDA method compared to commonly used data augmentation methods
such as image flipping, histogram equalization, gamma correction, and random erasing.
We also combined our DPDA method with a geometric data augmentation method (flip),
and in most cases, the performance of DPDA is slightly increased. This shows that the
DPDA method can be combined with other data augmentation methods to increase

Figure 13 Execution time (in log-scale) with respect to image size (# of pixels, n).
Full-size DOI: 10.7717/peerj-cs.571/fig-13

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 19/25

http://dx.doi.org/10.7717/peerj-cs.571/fig-13
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


performance further. Therefore, it is evident that DPDA is a good candidate for data
augmentation tasks in different scenarios. This is consistent with the research outcomes in
the literature where various data augmentation methods provide performance improvement
in numerous machine learning tasks and datasets (Shorten & Khoshgoftaar (2019)).
Although the proposedmethod provides outstanding data augmentation capabilities, there is
still room for further improvements. These improvements can be divided into three groups:
computational efficiency improvements, augmentation performance improvements
(reflecting on DL training), and usage dissemination improvements.

Data augmentation methods are generally fast, while the DPDA method is not as fast as
its competitors. The main reason for this speed bottleneck is the computational burden
of neighbor search, which is also the reason for the slowness of mean-shift-based clustering
or filtering methods. This bottleneck can be alleviated by changing FLANN with a faster or
a specifically designed neighbor search method. Additional speed-ups can be obtained
using CPU and GPU parallelization techniques since an image contains lots of pixels, and
finding density decreasing path for each pixel is independent of other pixels that can be
done in parallel. Since using GPU is a common approach for DL training, GPU parallelized
DPDA method will not cause extra hardware procurement on its user.

Performance of the DPDA method can be increased using spatial regularization,
i.e., using graph-cut, dealing with blocking artifacts due to JPEG compression. Similar
images can be retrieved, and their color data can be added to the image color data to be
augmented, which may increase the quality and variety of the color data distribution
especially if the image size is small. DPDA uses Perlin noise to create different
augmentations from a single density decreasing path per pixel. However, Perlin noise is
spatially smooth approach but still a purely random one. Instead, an image can be
segmented into background and foreground objects then randomization can be done in an
object-wise manner.

DPDA code can be extended to multispectral and hyperspectral images, which have 4 or
more channels. Additionally, DPDA is not limited to the augmentation of images and
can be easily adapted to augment any training data since it already works in a feature space.
This is quite useful for training traditional machine learning methods that generally
work on data with already extracted features. Furthermore, DPDA can be ported to Python
for easy integration with current Python-based DL frameworks.

As a future study, in addition to various performance improvements and support for
augmentation in feature space, we plan to improve computational efficiency using special
techniques and data structures with a parallelized implementation in Python.

CONCLUSIONS
In this paper, a novel distribution-preserving data augmentation (DPDA) method that
creates plausible variations of the given image is presented. There is no study using a
distribution-preserving approach that creates plausible image variations to the best of our
knowledge. The proposed method employs density decreasing direction to create paths

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 20/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


from colors of the original pixels to the tails of the image data distribution. We achieved
this by regularizing the opposite of the mean-shift direction with length and orientation
constraints. Finally, we developed efficient mechanisms to obtain these density decreasing
paths, fused with Perlin noise results to create as many augmented images as desired.

The proposed method’s performance is presented in a transfer learning scenario using
three different DL architectures: DenseNet, ResNet, and MobileNetV2. These DL
architectures are trained with millions of color images, where we used transfer learning to
adapt these models to different problem domains. We tested the DPDA for classification
on the UC Merced Land-use, Intel Image Classification, and Oxford-IIIT Pet datasets
and image segmentation on the Oxford-IIIT Pet dataset. Note that, DenseNet, ResNet, and
MobileNetV2 are trained with side-view commodity camera images, namely ImageNet.
On the other hand, the UC Merced land-use dataset is obtained from nadir as over-head
imagery (that can be acquired using airborne and spaceborne platforms). Also, the
resolution and camera characteristics of the ImageNet dataset are pretty different from the
resolution and camera characteristics of the UC Merced Land-use dataset. Nevertheless,
transfer learning able to cope with this challenging adaptation. However, the UC Merced
land-use dataset’s size is small, limiting the applied transfer learning schema’s adaptation
performance. This is a common scenario since companies or institutions develop
pre-trained models with large datasets and substantial computational resources. Despite
this, researchers who use these pre-trained models with transfer learning to adapt
them to their problem domain generally have small datasets and scarce computational
resources. In this study, the transfer learning performance is further increased using
data augmentation methods such as the proposed DPDA, image flipping, histogram
equalization, gamma correction, and random erasing. On the other hand, for image
classification and segmentation tasks, the proposed DPDA method consistently shows
superior performance compared to commonly used data augmentation methods on
different datasets and different training sizes using three different DL architectures.
Therefore, we concluded that the proposed DPDA method provides successful data
augmentation performance.

Although the proposed method provides superior data augmentation capabilities,
there is still room for further improvements. However, we did not implement these
improvements since we want to present our novel density-preserving data augmentation
idea’s baseline performance in its simplest form. Nevertheless, possible improvements
and future studies are shared in the ‘Discussion & Future Works’ section. Among these
possible future studies, improving the computational efficiency of the proposed DPDA is
the most important one since high computational complexity seems to be the most
significant disadvantage of the proposed method. As a final remark, although we presented
our DPDA method as an image augmentation study, it is not limited to images and can
work for all kinds of the dataset with already extracted features since it works in feature
space. This is an excellent property of the proposed DPDA method since most image data
augmentation methods are only limited to the image domain.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 21/25

http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Nurdan Ayse Saran conceived and designed the experiments, analyzed the data,
performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.

� Murat Saran conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Fatih Nar conceived and designed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Windows (Visual Studio) project repository is available at GitHub:
https://github.com/msaran1923/dpda.
The Linux project repository is available at GitHub:
https://github.com/msaran1923/dpda-linux.
The UC Merced Land Use Dataset is available at: http://weegee.vision.ucmerced.edu/

datasets/landuse.html.
The Intel Image Classification is available at Kaggle: https://www.kaggle.com/

puneet6060/intel-image-classification.
The Oxford-IIIT Pet Dataset is available at: https://www.robots.ox.ac.uk/~vgg/data/

pets/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.571#supplemental-information.

REFERENCES
Adelson EH, Anderson CH, Bergen JR, Burt PJ, Ogden JM. 1984. Pyramid methods in image

processing. RCA Engineer 29(6):33–41.

Ali A-R, Li J, Yang G, O’Shea SJ. 2020. A machine learning approach to automatic detection of
irregularity in skin lesion border using dermoscopic images. PeerJ Computer Science 6(22):e268
DOI 10.7717/peerj-cs.268.

Boyd S, Vandenberghe L. 2004. Convex optimization. Cambridge: Cambridge University Press.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 22/25

https://github.com/msaran1923/dpda
https://github.com/msaran1923/dpda-linux
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
https://www.kaggle.com/puneet6060/intel-image-classification
https://www.kaggle.com/puneet6060/intel-image-classification
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://www.robots.ox.ac.uk/~vgg/data/pets/
http://dx.doi.org/10.7717/peerj-cs.571#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.571#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.268
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


Casado-Garca Á, Domnguez C, Garca-Domnguez M, Heras J, Inés A, Mata E, Pascual V. 2019.
CLoDSA: a tool for augmentation in classification, localization, detection, semantic
segmentation and instance segmentation tasks. BMC Bioinformatics 20(1):1–14
DOI 10.1186/s12859-018-2565-8.

Charles RQ, Su H, Kaichun M, Guibas LJ. 2017. Pointnet: deep learning on point sets for 3D
classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Piscataway: IEEE, 77–85.

Chen F, Wang N, Tang J, Liang D, Feng H. 2020. Self-supervised data augmentation for person
re-identification. Neurocomputing 415(1):48–59 DOI 10.1016/j.neucom.2020.07.087.

Comaniciu D, Meer P. 2002. Mean shift: a robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(5):603–619
DOI 10.1109/34.1000236.

Cormen TH, Leiserson CE, Rivest RL, Stein C. 2009. Introduction to algorithms. Third Edition.
Cambridge: The MIT Press.

Cubuk ED, Zoph B, Mané D, Vasudevan V, Le QV. 2018. AutoAugment: learning augmentation
strategies from data. arXiv. Available at https://arxiv.org/abs/1805.09501.

DeVries T, Taylor GW. 2017. Improved regularization of convolutional neural networks with
cutout. arXiv. Available at https://arxiv.org/abs/1708.04552.

Fukunaga K, Hostetler L. 1975. The estimation of the gradient of a density function, with
applications in pattern recognition. IEEE Transactions on Information Theory 21(1):32–40
DOI 10.1109/TIT.1975.1055330.

Georgiou T, Liu Y, ChenW, Lew M. 2020. A survey of traditional and deep learning-based feature
descriptors for high dimensional data in computer vision. International Journal of Multimedia
Information Retrieval 9(3):135–170 DOI 10.1007/s13735-019-00183-w.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770–778.

Hendrycks D, Mu N, Cubuk ED, Zoph B, Gilmer J, Lakshminarayanan B. 2019. Augmix: a
simple data processing method to improve robustness and uncertainty. arXiv. Available at
https://arxiv.org/abs/1912.02781.

Howard AG. 2013. Some improvements on deep convolutional neural network based image
classification. arXiv. Available at https://arxiv.org/abs/1312.5402.

Huang G, Liu Z, Weinberger KQ. 2016. Densely connected convolutional networks. CoRR. arXiv.
Available at https://arxiv.org/abs/1608.06993.

Islam KT, Wijewickrema S, O’Leary S. 2019. A rotation and translation invariant method for 3D
organ image classification using deep convolutional neural networks. PeerJ Computer Science
2019(3):e181 DOI 10.7717/peerj-cs.181.

Kemker R, Salvaggio C, Kanan C. 2018. Algorithms for semantic segmentation of multispectral
remote sensing imagery using deep learning. ISPRS Journal of Photogrammetry and Remote
Sensing 145(1–2):60–77 DOI 10.1016/j.isprsjprs.2018.04.014.

Khan A, Sohail A, Zahoora U, Qureshi AS. 2020. A survey of the recent architectures of deep
convolutional neural networks. Artificial Intelligence Review 53(8):5455–5516
DOI 10.1007/s10462-020-09825-6.

Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional
neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, eds. Advances in Neural
Information Processing Systems. Vol. 25. Brooklyn: Curran Associates, Inc, 1097–1105.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 23/25

http://dx.doi.org/10.1186/s12859-018-2565-8
http://dx.doi.org/10.1016/j.neucom.2020.07.087
http://dx.doi.org/10.1109/34.1000236
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1708.04552
http://dx.doi.org/10.1109/TIT.1975.1055330
http://dx.doi.org/10.1007/s13735-019-00183-w
https://arxiv.org/abs/1912.02781
https://arxiv.org/abs/1312.5402
https://arxiv.org/abs/1608.06993
http://dx.doi.org/10.7717/peerj-cs.181
http://dx.doi.org/10.1016/j.isprsjprs.2018.04.014
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.7717/peerj-cs.571
https://peerj.com/computer-science/


Möller T, Hughes JF. 1999. Efficiently building a matrix to rotate one vector to another. Journal of
Graphics Tools 4(4):1–4.

Muja M, Lowe DG. 2014. Scalable nearest neighbor algorithms for high dimensional data. IEEE
Transactions on Pattern Analysis and Machine Intelligence 36(11):2227–2240
DOI 10.1109/TPAMI.2014.2321376.

Mun S, Park S, Han DK, Ko H. 2017.Generative adversarial network based acoustic scene training
set augmentation and selection using SVM hyper-plane. In: Proceedings of the DCASE. 93–97.

Parkhi OM, Vedaldi A, Zisserman A, Jawahar CV. 2012. Cats and dogs. In: IEEE Conference on
Computer Vision and Pattern Recognition. Piscataway: IEEE.

Perez L, Wang J. 2017. The effectiveness of data augmentation in image classification using deep
learning. arXiv. Available at https://arxiv.org/abs/1712.04621.

Perlin K. 1985. An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer
Graphics and Interactive Techniques. New York: Association for Computing Machinery,
287–296.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. 2018. Mobilenetv2: inverted residuals
and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 4510–4520.

Shao L, Zhu F, Li X. 2015. Transfer learning for visual categorization: a survey. IEEE Transactions
on Neural Networks and Learning Systems 26(5):1019–1034
DOI 10.1109/TNNLS.2014.2330900.

Shorten C, Khoshgoftaar TM. 2019. A survey on image data augmentation for deep learning.
Journal of Big Data 6(1):1106 DOI 10.1186/s40537-019-0197-0.

Silburt A, Ali-Dib M, Zhu C, Jackson A, Valencia D, Kissin Y, Tamayo D, Menou K. 2019.
Lunar crater identification via deep learning. Icarus 317(6):27–38
DOI 10.1016/j.icarus.2018.06.022.

Simard PY, Steinkraus D, Platt JC. 2003. Best practices for convolutional neural networks applied
to visual document analysis. In: Proceedings of the Seventh International Conference on
Document Analysis and Recognition, 2003. 958–963.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich
A. 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. Piscataway: IEEE, 1–9.

Takahashi R, Matsubara T, Uehara K. 2020. Data augmentation using random image cropping
and patching for deep CNNs. IEEE Transactions on Circuits and Systems for Video Technology
30(9):2917–2931 DOI 10.1109/TCSVT.2019.2935128.

Turkowski K. 1990. Filters for common resampling tasks. Cambridge: Academic Press Professional
Inc., 147–165.

Volpi R, Morerio P, Savarese S, Murino V. 2018. Adversarial feature augmentation for
unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. Piscataway: IEEE, 5495–5504.

Vrbančič G, Podgorelec V. 2020. Transfer learning with adaptive fine-tuning. IEEE Access
8:196197–196211 DOI 10.1109/ACCESS.2020.3034343.

Wang S, Chen W, Xie SM, Azzari G, Lobell DB. 2020. Weakly supervised deep learning for
segmentation of remote sensing imagery. Remote Sensing 12(2):207 DOI 10.3390/rs12020207.

Wong MZ, Kunii K, Baylis M, Ong WH, Kroupa P, Koller S. 2019. Synthetic dataset generation
for object-to-model deep learning in industrial applications. PeerJ Computer Science 5(9):e222
DOI 10.7717/peerj-cs.222.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 24/25

http://dx.doi.org/10.1109/TPAMI.2014.2321376
https://arxiv.org/abs/1712.04621
http://dx.doi.org/10.1109/TNNLS.2014.2330900
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1016/j.icarus.2018.06.022
http://dx.doi.org/10.1109/TCSVT.2019.2935128
http://dx.doi.org/10.1109/ACCESS.2020.3034343
http://dx.doi.org/10.3390/rs12020207
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.571


Xia GS, Hu J, Hu F, Shi B, Bai X, Zhong Y, Zhang L, Lu X. 2017. AID: a benchmark data set for
performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and
Remote Sensing 55(7):3965–3981 DOI 10.1109/TGRS.2017.2685945.

Yang Y, Newsam S. 2010. Bag-of-visual-words and spatial extensions for land-use classification.
In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems—GIS ’10. New York: ACM Press, 270.

Huang Y-M, Du S-X. 2005. Weighted support vector machine for classification with uneven
training class sizes. 2005 International Conference on Machine Learning and Cybernetics 7:4365–
4369.

Yosinski J, Clune J, Bengio Y, Lipson H. 2014. How transferable are features in deep neural
networks? Advances in Neural Information Processing Systems 4(January):3320–3328.

Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y. 2019. Cutmix: regularization strategy to train strong
classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. Piscataway: IEEE, 6023–6032.

Zheng S, Rahmat RWO, Khalid F, Nasharuddin NA. 2019. 3D texture-based face recognition
system using fine-tuned deep residual networks. PeerJ Computer Science 5(6):e236
DOI 10.7717/peerj-cs.236.

Zhong Z, Zheng L, Kang G, Li S, Yang Y. 2020. Random erasing data augmentation. In: AAAI.
13001–13008.

Zhu F, He M, Zheng Z. 2020. Data augmentation using improved cDCGAN for plant vigor rating.
Computers and Electronics in Agriculture 175:105603.

Saran et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.571 25/25

http://dx.doi.org/10.1109/TGRS.2017.2685945
http://dx.doi.org/10.7717/peerj-cs.236
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.571

	Distribution-preserving data augmentation
	Introduction
	Materials & methods
	Experiments & results
	Discussion & future works
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


