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ABSTRACT 

 

 

 

THE SCATTERING PROCESS OF CYLINDRICAL WAVES BY A CONVEX 

HYPERBOLIC REFLECTOR 

 

 

 

ÇELİK, Süleyman Burak 

M.Sc., Department of Electronic and Communication  

Supervisor: Prof. Dr. Yusuf Ziya UMUL 

 

September 2015, 69 pages 

 

In this thesis, the scattered fields by a perfectly conducting convex hyperbolic reflector 

were investigated by using the methods of modified theory of physical optics and 

physical optics. Furthermore, the geometrical optics and edge diffracted fields were 

evaluated by the stationary phase method and the edge point technique, respectively. 

The uniform diffracted field expressions were obtained by the method of the uniform 

theory of diffraction. Moreover, the results of modified theory of physical optics and 

physical optics were plotted and compared numerically. The results of geometrical 

optics and uniform diffracted fields were also plotted and analyzed numerically.  

 

Keywords: Convex Hyperbolic Reflector, Modified Theory of Physical Optics, 

Physical Optics, Reflected and Transmitted Fields, Edge Diffraction, Uniform 

Diffracted Fields. 
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ÖZ 

 

 

 

SİLİNDİRİK DALGALARIN DISBÜKEY HİPERBOLİK BİR 

YANSITICIDAN SAÇILMASI 

 

 

 

ÇELİK, Süleyman Burak 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Prof. Dr. Yusuf Ziya UMUL 

 

Eylül 2015, 69 sayfa 

 

Bu tezde, mükemmel iletken dışbükey hiperbolik bir yansıtıcıdan saçılan alanlar, 

fiziksel optiğin değiştirilmiş teorisi ve fiziksel optik teorisi yöntemleri kullanılarak 

incelenmiştir. Bununla birlikte, geometrik optik ve köşe kırınım alanları durağan faz 

yöntemi ve köşe noktası tekniği ile hesaplanmıştır. Düzgün kırınımlı alan ifadeleri 

kırınımın düzgün teorisi yöntemi ile elde edilmiştir. Dahası, fiziksel optiğin 

değiştirilmiş teorisi ile fiziksel optiğin sonuçları çizdirilmiş ve sayısal olarak 

karşılaştırılmıştır. Geometrik optik ve düzgün kırınım alanlarının sonuçları da bununla 

birlikte çizdirilmiş ve sayısal olarak analiz edilmiştir. 

 

Anahtar Kelimeler: Dışbükey Hiperbolik Yansıtıcı, Fiziksel Optiğin Değiştirilmiş 

Teorisi, Fiziksel Optik, Yansıyan ve Taşınan Alanlar, Köşe Kırınımı, Düzgün 

Kırınımlı Alanlar. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Objectives 

 

In this thesis, the scattered fields are investigated through a convex hyperbolic reflector 

using methods of modified theory of physical optics and physical optics. The 

geometrical optics and edge diffracted fields are evaluated by the stationary phase 

method and the edge point technique. Besides, the uniform diffracted field expressions 

are obtained using the method of uniform theory of diffraction. The results of modified 

theory of physical optics and the physical optics are plotted and compared numerically. 

Moreover, the results of  geometrical optics and uniform diffracted fields are also 

plotted and analyzed numerically. The reflector is used as a Perfectly Electric 

Conductor (PEC) surface for these purposes. 

 

1.2 Background 

 

The reflector antenna is conceptually one of the simplest antenna prototypes which 

mostly consist of a primary radiator or feed to distribute electromagnetic energy and a 

curved reflecting surface to collimate this energy over a larger aperture [1]. These 

types of antennas can be used for some applications such as radar, radioastronomy and 

microwave communication systems. A large variety of such antennas exist out of the 

simple parabolic reflector to Cassegrain and dual reflectors. Reflector antennas have 

been primarily used in several types of communication systems such as satellite 

communications and networks, deep-space exploration and electronics defense over 

the last years [2]. There are several types of reflectors that can be mainly named as 

parabolic reflector, hyperbolic reflector and elliptical reflector. These reflectors are 

used in dual-reflector systems which consist of one main reflector and one 
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subreflector. While the parabolic reflector is used as the main reflector, the hyperbolic 

and elliptical reflectors are used as subreflectors. Whereas the combination of a 

parabolic reflector and an elliptical reflector is named as Gregorian system, the 

combination of a parabolic reflector and a hyperbolic reflector is named as Cassegrain 

system.  The hyperbolic reflector is used in the Cassegrain system [3]. Cassegrain 

systems are originally used in optical telescopes and widely used in the radio frequency 

field since they have numerous mechanical and electrical advantages [4]. In this thesis, 

the hyperboloid part of the Cassegrain system is studied and the scattering process is 

investigated by some methods that are going to be introduced in the next chapter. 

There are several studies conducted on the hyperbolic reflector. Especially, the 

Cassegrain system has been investigated by many researchers. Determination of the 

radiation pattern of a focus-fed offset hyperbolic reflector using the Uniform 

geometrical Theory of Diffraction (UTD) and the Uniform Asymptotic Theory of 

diffraction (UAT) was investigated by Şafak [5]. A large dual-reflector (Cassegrain) 

antenna system, typically used as a ground station antenna in the space communication 

link was researched by Farahat, Mittra, Carrio´n and Sanchez [6]. Elkamchowhi1, 

Elkamchowhi2, El-Khamy [7] conducted an analysis on cylindrical hyperbolic 

reflector through the Method of Moments. The monostatic Radar Cross Section (RCS) 

behavior of the parabolic and hyperbolic reflectors was investigated by ˘Skokic´, 

Martini and Maci [8]. Fomel and Kazinnik [9] suggested a new form of the stacking 

surface, derived from the analytical solution for reflection traveltime from a hyperbolic 

reflector. A transient analysis of a hyperbolic reflector antenna based on a mathematic 

continuation of surface curvatures of an ellipsoidal reflector was performed by Chou 

and Tuan [10]. A type of feed-reflector system for large Cassegrain antennas of radio 

astronomy and deep-space communication applications was investigated by Mousavi, 

Shafai, Veidt and Dewdney [11]. Xiao, Yang, Liu, Xu, Xiong [12] analyzed the loss 

of the secondary mirror of Cassegrain antenna via Gaussian theory. Due to severe 

energy loss caused by the secondary mirror of Cassegrain antenna, an optimum 

structure design of the transmitting energy of Cassegrain optical system was improved 

by Ma, Yang, Wang, Jiang, Yu, Huang and Ke [13]. By detailed analysis on Cassegrain 

optical antenna with inclined optical axis, the receiving antenna power and the curve 

of power attenuation for different deflection angles were obtained by Chen, Yang, 
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Wangi, Wangii and Huang [14]. Haeger and Lee compared shaped and nonshaped 

small Cassegrain Antennas [15]. A simple ray tracing based on the synthesis technique 

for designing a dual shaped hyperbolic reflector feed system was described by Hakli', 

Ala-Laurinaho', Koskinen', Saily', Lonnqvist', Mallat', Tuovinen and Raisanen' [16]. 

The design of a dichroic subreflector for a dual-frequency reflector antenna was 

defined by Agrawal and Imbriale [17]. Using the first order equations, Galindo, 

Imbriale and Mittra [18] conducted the synthesis of single and dual offset shaped 

reflector antennas. The formulation of the Physical Optics (PO) integral from a 

hyperbolic subreflector illuminated by a focal feeder was obtained by Pippi, Caruso, 

Sabbadini and Maci [19]. A configuration of dual reflector antenna for radar 

applications in X band was presented by Armogida, Pagana, Stringhetti and Volpi [20]. 

The case of hyperbolic defocus due to its analytic form was modeled by Tyo, Farr and 

Lawry [21]. The design of dichroic mirror for space applications was presented by 

Bozzi, Formaggi and Perregrini [22]. A shaping method for offset dual reflector 

antennas was presented by Kim and Lee [23]. Jiang, Li, Zhou and Luo developed high-

precision reflector panels [24]. A novel two dimensional circular lens for beam 

steering applications using hyperbolic reflector was presented by Mirkamali and 

Laurin [25].  A type of two-dimensional circular lens with the hyperbolic reflector 

based on Gaussian optics was designed by Mirkamali, Laurin, Siaka and Deban [26].  

  

1.3 Scheme of the Thesis 

 

This thesis includes six chapters. These chapters are mainly based on the scattering 

process through a hyperbolic reflector using the methods of the modified theory of 

physical optics and the physical optics. The geometrical optics fields, the edge point 

diffraction and the uniform diffracted fields can be found in this study with all their 

numerical analysis.  

Chapter 1 is the introduction part that gives the information about reflectors, the history 

of hyperbolic reflector and objectives of this thesis. 

Chapter 2 offers information about the methods of physical optics and modified theory 

of physical optics. 

The hyperbola geometry is studied in Chapter 3. 
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In Chapter 4, the scattering by the convex hyperbolic reflector is investigated based 

mainly on the method of the modified theory of physical optics. The geometrical optics 

and edge diffracted fields are obtained. The uniform diffracted field expressions are 

also evaluated in this chapter.  

The results of all field expressions obtained in Chapter 4 are analyzed numerically in 

Chapter 5. 

Chapter 6, which is the final chapter of this thesis includes the part conclusions.  
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CHAPTER 2 

 

METHODS 

 

2.1 Electromagnetic Scattering 

 

The general total field expression can be written as  

 t i su u u    (2.1) 

where iu  and su  are the incident field and the scattered field, respectively. The aim is 

to obtain the scattered field. It can be obtained by solving the Helmholtz equation for 

simple geometries. If the geometry is not simple, the scattered field can be obtained 

using of High Frequency (HF) asymptotic techniques which can be divided into two 

basic categories being ray based techniques and current based techniques. The 

Geometrical Optics (GO) [27], GTD [28] and UTD [29] can be given as the examples 

for ray based techniques. The theory of PO [30], the physical theory of diffraction 

(PTD) [31] and the Modified Theory of Physical Optics (MTPO) [32] are the examples 

for current based techniques. The high frequency asymptotic condition is satisfied 

when 1k  where k  is the wave number and   is the distance between the source 

and observation point.  

This study mainly depends on MTPO since it gives more reliable solution than PO 

does owing to its axioms. However, PO is also taken into consideration in order to 

compare the results of MTPO and PO in the part of numerical analysis.  

The time factor exp( )j t  is assumed and suppressed throughout this thesis where j

is 1 ,   is the angular frequency and t  is time.  
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2.2 Physical Optics (PO) 

 

Physical optics which was firstly introduced by Macdonald in 1912 [30] is a current 

based technique that depends on the integration of the induced surface current density. 

The induced surface current density is defined on the illuminated side of the scattering 

object. The surface current density of the shadowed part of the object is defined as 

zero. 

Since 1950s, PO has been extensively used in many areas. It is mainly used as a tool 

for the estimation of scattering by military vehicles such as tanks, airplanes, ships, 

spacecraft, weapons, missiles and in the design of microwave antennas [33]. 

Despite the fact that PO is an important approach to find the scattered fields, it has a 

problem to find exact edge diffracted fields [34]. The reason of the problem is based 

on the shadowed part of the object. In this part of the object, since its surface current 

density is accepted as zero, the wedge diffraction problem cannot exactly be solved by 

the PO approach. Some alternative ways have been developed in order to make a 

correction for this deficiency in PO. For instance, Ufimtsev introduced a way in the 

physical theory of diffraction [31]. Ufimtsev proposed the addition of a second current 

component, named as the non-uniform or fringe current so that the correct diffracted 

field expressions can be obtained [35]. James also suggested a correction factor 

multiplied by the PO diffraction field instead of summing [36]. However, they need 

some exact coefficients for some canonical problems. As a result, these alternative 

ways could not be the exact cure of PO. In order to correct this deficiency, the modified 

theory of physical optics (MTPO) was suggested by Umul in 2004 [32].  

 

2.3 Modified Theory of Physical Optics (MTPO) 

 

MTPO which was partly mentioned in previous topic is the theory fixing the 

deficiencies in PO. It can be obviously seen in Ref. [32] that MTPO integral gives the 

total field that agrees with the exact solution and it gives more reliable result than 

classical PO integral. Since MTPO is useful to obtain the exact fields for several 

surfaces, it was applied to several geometries such as parabolic impedance surface [37] 

and impedance half plane problem [38]. Umul has defined three axioms for this 
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method. First, the scatterer is taken into consideration with its aperture part. Second 

axiom is the reflection angle that is taken as a function of the scatterer surface and 

aperture part coordinates. Third one is a new unit vector that divides the angle between 

the reflected and incident rays into two equal parts.  

 

In PO, only information can be obtained is about reflected and reflected diffracted 

fields. However, in MTPO, information can be obtained also about incident and 

incident diffracted fields since both the scattering object surface and the aperture part 

of the scatterer are considered together.  

 

 

 

 

 

 

 

 

 

Figure 1 Reflection geometry at point Q  of the scatterer 

 

Figure 1 shows the reflection geometry at point Q  where   and   are the angles of 

incidence and reflection, respectively. The incident and reflected rays can also be seen 

here. n  and t  are the normal and tangential vectors of the scatterer, respectively. 1n  

is the modified normal vector of the scatterer surface which can be expressed as 

    1 cos sinn m t m n       (2.2) 

where m  and h  can be written as 

 
2 2

m
  

    (2.3) 

and 

 
2

h
 

   (2.4) 
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according to the geometry in Fig. 1. Briefly, the other difference between PO and 

MTPO comes from writing the density of the surface currents. For a PEC scatterer, 

densities of surface currents of PO and MTPO can be defined as 

 2PO iJ n H    (2.5) 

and 

 
1MTPO tJ n H    (2.6) 

where 
iH  and 

tH  are the incident and total magnetic fields, respectively. It can be 

seen that the total field is considered as twice of the incident field for the surface 

current density of PO. However, the total field is considered with the modified normal 

vector in MTPO. The modified unit vector is used for both scatterer surface and 

aperture part. The detailed information about MTPO and its axioms can be obtained in 

Ref. [32].   

In this thesis, the surface current density of the hyperbolic reflector will be written in 

terms of the modified theory of physical optics as in Eq. (2.6). In addition, Eq. (2.5) 

will also be considered in order to compare PO with MTPO numerically.  
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CHAPTER 3 

 

EXACT EXPRESSION OF THE HYPERBOLA GEOMETRY 

 

3.1 Hyperbola 

 

With the purpose of evaluating the scattered fields from the hyperbola, its 

mathematical expression should first be determined on the coordinate system. A 

hyperbola has two pieces and two focal points. The pieces refer to the surfaces. In this 

study, one focal point and the convex part of surface are chosen. An electric line source 

is set on the focal point in order to illuminate the surface.  

 

 

 

 

 

 

           

 

 

 

 

Figure 2 General notation of the hyperbola geometry on the coordinate system 

 

Figure 2 shows the general notation of the hyperbola geometry on x y  coordinate 

system where 1F  and 2F  are the focal points of the pieces of the hyperbola. a  and c

are the distance from the center to a piece of the hyperbola and the distance from the 

center to one focal point, respectively. The equation of the hyperbola can be written as 
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2 2

2 2
1

x y

a b
    (3.1) 

where b  is equal to 2 2c a .  

 

 

 

  

  

 

  

  

   

   

Figure 3 Shifted geometry of the hyperbola 

 

Figure 3 shows the hyperbola geometry where the focal point 1F  was shifted to the 

center of the coordinate system in order to obtain   values which represent the paths 

from the center to the surfaces that travel on the surfaces when the angle   changes. 

There can be seen two values of   in Fig. 3. One of them is related with one surface 

of the hyperbola, the other one is related to the other surface of the hyperbola. This 

means that one of the values of   travels on the left surface of the hyperbola and the 

other value of   travels on the right piece of the hyperbola. Since the convex part of 

the hyperbola is the right surface of the hyperbola, the value of   that travels on the 

right surface of the hyperbola will be determined as the exact   for this study. The 

value of   can be obtained by solving Eq. (3.1) in terms of cylindrical coordinates 

and it is used in MTPO integral. 

 

3.2 Determination of the Exact ρ From the Hyperbola Geometry 

 

When Eq. (3.1) is solved in terms of cylindrical coordinates, there will be two   

values. According to Fig. 3, x  can be written as  
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 cosx c     (3.2) 

where c  refers to the focal point 1F  that is brought to the center of the coordinate 

system by shifting to right as the distance c . The parameter y  can be written as  

 sin .y     (3.3) 

The variable c  can also be defined as  

 c ea   (3.4) 

where e  is the eccentricity which is dimensionless number and it is always greater 

than one. Eq. (3.1) can be rearranged as 

 
2 2 2 2 2 2.b x a y a b    (3.5) 

Then, equivalents of x  and y  defined in Eq. (3.2) and Eq. (3.3), Eq. (3.5) using the 

cylindrical coordinate can be expressed as 

  2 2 2 2 2 2 2 2 2 2cos 2 cos sinb ea e a a a b           (3.6) 

where 
2b  can be obtained as 

 
2 2 2( ) .b ea a    (3.7) 

Finally, the parameter b  can be obtained as  

 2 1.b a e    (3.8) 

By using Eq. (3.7), Eq. (3.6) can be redefined as 

     2 2 2 2 2 2 2 2 2 2 2 21 cos 2 cos sin 1 ,a e ea e a a a a e             (3.9) 

which can be expanded as 

2 2 2 3 4 2 2 2 2 2cos 2 cos cos 2 cose e a e a ea e a              

 2 2 2 2 2sine a a       (3.10) 

Since the aim is to find the variable  , Eq. (3.10) can be rearranged in terms of the 

variable  . The quadratic equation for   can be expressed as 

    2 2 2 3 4 2 2 2 2cos 1 2 cos 2 cos 2 0.e ae e a e a a e a             (3.11)

The roots of the polynomial equation in Eq. (3.11) can be defined as 

 
 

 

2

1,2 2 2

2 cos 1

2 cos 1

ae e

e






  



  (3.12) 
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where   is called as the discriminant of the polynomial equation. The square root of 

  can be expressed as 

      
2 2

2 2 2 2 22 cos 1 4 cos 1 1 .ae e e a e       
  

  (3.13) 

Finally it can be found as 

  22 1 .a e     (3.14) 

Then the values of   can be shown as 

 
  

 

2

1,2 2 2

2 cos 1 cos 1
.

2 cos 1

ae e e

e

 




 



  (3.15)

Due to the existence of the term  cos 1e    in Eq. (3.15), it can be clearly seen that 

there will be two different   values. One of them is related with the left surface of the 

hyperbola, the other one is related with the right surface of the hyperbola. For the term

 cos 1e   , 1  can be defined as 

 
 2

1

1
.

cos 1

a e

e








  (3.16) 

For the second term  cos 1e   , 2  can be expressed as 

 
 2

2

1
.

cos 1

a e

e








  (3.17) 

It can be seen from Eq. (3.16) and Eq. (3.17) that 1  and 2  change when the 

parameters ,a e  and  0,2   change.  

  

 

 

 

 

 

 

 

 

Figure 4 Values of   in terms of the hyperbola parameters ,e a  at 0   
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Figure 4 shows two   values in terms of the parameters e (eccentricity) and a  (the 

distance from the center of the hyperbola to one surface) which are respectively equal 

to the distances of  ea a  and  ea a  when   is equal to zero. These distances are 

individually related with either 1  or 2  given in Eq. (3.16) and Eq. (3.17) . The most 

important point is the determination of the exact   The determination can be made 

by giving the numeric values for  , a  and e  in 1  and 2 . When  , a  and e  are 

selected as the numeric values of 0,2  and 3 , respectively, distances of  ea a  and 

 ea a  can be evaluated as  

 4ea a    (3.18) 

and 

 8ea a    (3.19) 

respectively. By using the same numeric values, 1  and 2  in Eq. (3.16) and Eq. (3.17) 

are obtained as 

 1 8    (3.20) 

and 

 2 4    (3.21) 

respectively. Considering Eq. (3.18), Eq. (3.19), Eq. (3.20) and Eq. (3.21), it can be 

seen that 1  and the distance  ea a  are equal to each other as well as 2  and the 

distance  ea a  are equal to each other. As a result, since the distance  ea a  is 

related with the convex (right) surface of the hyperbola, 1  can be determined as the 

exact  which can be expressed as 

 
 2 1

.
cos 1

a e

e








  (3.22) 

The exact   can also be determined by plotting 1  and 2  respectively in Eq. (3.16) 

and Eq. (3.17).  
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Figure 5 Polar graph of the surface equation 2   

Figure 5 shows the graph of 2  in Eq. (3.17) where the hyperbola is placed at

,
3 3

 


 
  
 

. It can be seen from Fig. 5 that 2  gives the concave (left) surface of the 

hyperbola. It can also be observed from Fig. 5 that the result in Eq. (3.21) can be 

verified by considering 0   where the graph passes from 4  that is the same result 

in Eq. (3.21).        

 

 

 

 

 

 

 

 

 

Figure 6 Polar graph of the surface equation 1  

 

Figure 6 shows the graph of 1  in Eq. (3.16) where the hyperbola is placed at

,
7 7

 


 
  
 

. It can be seen from Fig. 6 that 1  gives the convex (right) surface of the 

hyperbola. It can also be observed from Fig. 6 that the result in Eq. (3.20) can be 
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verified by considering 0   where the graph passes from 8  that is the same result in 

Eq. (3.20). As a result, by giving the numeric values and plotting the polar graphs, the 

exact   was determined as the result in Eq. (3.22).        
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CHAPTER 4 

 

SCATTERING THROUGH THE HYPERBOLIC REFLECTOR 

 

4.1 Geometry 

 

The definition of the parameters on the geometry of a scatterer has a great importance 

for scattering problems. The integrals of MTPO and PO are constructed in terms of 

these parameters on the geometry. The evaluations of the fields of geometrical optics, 

nonuniform edge diffraction and uniform diffraction also depend on the scatterer 

geometry. 

 

 

 

  

  

 

 

 

 

 

 

 

Figure 7 Basic geometry at the reflection point of the hyperbolic reflector 

  

Figure 7 shows the basic geometry at point Q  of the hyperbolic reflector. There are 

several parameters in Fig. 7 which are essential to define the scattering integral. From 

the prime parameters, '  is the path from the origin to the reflector surface and '  is 

the angle between x  axis and the path ' , respectively. The prime expression comes 
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from the logic in antenna problems. It defines the position of the antenna element 

according to the origin (source).   and   being the cylindrical coordinate parameters 

define the position of the observation point  P  according to the origin (source). R  is 

named as the ray path which is the distance between the observation point  P  and 

the antenna element.   and   are the angles of incidence and reflection, respectively. 

  is the angle between   and R . n  is the normal vector.  

     

4.2 Definition of the Scattering Integral 

 

In the previous chapter, the exact   was evaluated. It is important both for the 

definition of the geometry and the definition of the unit vector of the system. Since   

is the path from source to antenna, it should be defined in terms of the prime 

parameters. As a result, Eq. (3.22) will turn into its new form that can be defined as 

 
 2

'

'

1
.

cos 1

a e

e








  (4.1) 

The definition of unit vector  n  can be given by 

 
f

n
f





  (4.2) 

where f  is zero equality of Eq. (4.1) that can be written as 

    2 ' '1 cos 1 .f a e e       (4.3) 

f , which is named as the gradient of f  is the derivative of f  according to related 

coordinate system. f  is also the magnitude of f . f  can be generalized as 

 
' ' '

' ' '

1 1 1
z

z

f f f
f e e e

h h h z
 

 
 

  
   

  
  (4.4) 

where  'h


 'h


 and 'z
h  are the metrics of the cylindrical coordinate system. The metric 

of a coordinate system can be found by 

 i

dr
h

di
   (4.5) 
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where i  and r  are any component of a coordinate system and the sum of any 

coordinate system vectors, respectively. Since the metrics related with length 

component are always equal to 1 , 'h


 and 'z
h  are equal to 1 . The metric 'h


, which is 

the metric of angle component can be found as 

 '

'.h


   (4.6) 

After the evaluation of 'h


, f  can be defined as 

  ' '1 cos sin .f e e e e        (4.7) 

f  can also be obtained as 

 2 '1 2 cos .f e e       (4.8) 

Finally, the unit vector n  can be obtained as 

 
' '

2 ' 2 '

1 cos sin
.

1 2 cos 1 2 cos

e e
n e e

e e e e
 

 

 


 

   
  (4.9) 

The hyperbolic reflector is fed by an electrical line source. The electrical field of the 

source can be given as 

 0

jk

i z

e
E e E

k







   (4.10) 

where k  being the wave number has the equation of 

 k
c


   (4.11) 

where   and c  are the angular frequency and the light velocity respectively. 0E  can 

be defined as  

 0 04
0

2 2

j I
E e

 


   (4.12) 

where 0I  and 0  are the current of the source and permeability of the free space, 

respectively. The incident magnetic field can also be found by the Maxwell-Faraday 

equation which can be given as 

 
0

1
.i iH E

j
     (4.13) 

By using Eq. (4.13), 
iH  can be expressed as 
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0

0

1
0 0

0 0

z

i

jk

e e e

H
j

e
E

k

 





  






 


  (4.14) 

where it can be seen that the result only comes from the second column of the 

determinant, so 
iH  can be defined as 

 0

1 2 3 2
0 2

jk jk

i

E jke e
H e

j k k

 


  

  
  

 
  (4.15) 

where the second term having 3 2  can be neglected due to its small contribution to 

the field. As a result, 
iH  can be obtained as 

 0

0

jk

i

E e
H e

Z k








   (4.16) 

where 0Z  is the impedance of the free space that can be written as 

 0
0

0

Z



   (4.17) 

where 0  and 0  refers to permeability and permittivity of the free space.     

In this step, the magnetic vector potential A  will be written since it is the transition 

expression for the electric and magnetic fields. The magnetic vector potential can be 

written as 

 
1

'0

14

jkR

MTPO

s

e
A J dS

R







    (4.18) 

where 1R  and 
MTPOJ  are the ray path from the surface to observation point and the 

surface current density that can be respectively given as 

      
2 2

2 ' ' ' '

1 2 cosR z z            (4.19) 

and 

 1MTPO t
s

J n H    (4.20) 
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where 1n  and 
tH  are the modified unit vector and the total magnetic field, 

respectively. The term 
1

1

jkR
e

R



 is named as Green function. 
'dS  can be given by 

 
'

' ' ' ,dS d dz
ne


   (4.21) 

which can also be defined as 

 
' 2 '

' ' '

'

1 2 cos
.

1 cos

e e
dS d dz

e

 




 



  (4.22) 

The magnetic vector potential has a relation with the electric and magnetic fields. The 

relation between the electric field and the magnetic vector potential can be shown as 

 .E j A    (4.23) 

The connection between the magnetic field and the magnetic vector potential can also 

be shown as 

 
0

1
.H A


    (4.24) 

Then the magnetic vector potential as in Ref. [37] can be given by 

  
'

0 1

0

'
' '0 0

0 1' '

,
4

jkRjk

z

z

E e e
A e f d dz

Z R nek

 

 

 
  

 

 

 

     (4.25) 

where the term  ,f   , which comes from the new unit vector expression as in Ref. 

[37] can be expressed as 

  , sin sin .
2 2

f
   

 
    

    
   

  (4.26) 

For this study, since the parameters   and   are used as the complement of  
2


 , this 

expression can be redefined as 

  , cos sin .
2 2

f
   

 
    

    
   

  (4.27) 

 The part 
'z  of the integral can be eliminated as in Ref. [32]. The term 1R  can be 

defined as  

  
2

2 '

1 .R R z z     (4.28) 
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The 
'z  part of the integral in Eq. (4.25) can be eliminated by using the variable change 

of  ' sinhz z R    where R  is equal to    
2

2 ' ' '2 cos        . The 
'z  part 

in Eq. (4.25) can be simplified as 

    2cosh

0

jk

c

e d H kR
j

 
    (4.29) 

where the Hankel function can be expressed as 

    2 4
0

2
.

jkR
j e

H kR e
kR







   (4.30) 

Then the scattering integral of MTPO as in Ref. [37] can be written as 

  
'

0

'
0

'4
'

0 0
'

,
2

j
jk jk jkR

s z z

e ke e e
E e E e E f d

nek kRk


 

 


  

  

  



     (4.31) 

 

4.3 Asymptotic Evaluation of the Scattering Integral 

 

In this section, the scattering integral in Eq. (4.31) will be asymptotically evaluated 

using the method of stationary phase and the edge point technique. Firstly, the method 

of the stationary phase will be introduced. It can be applied to the general integral form 

that can be given by 

    '' '

b
jkg

a

I f e d


 


    (4.32) 

where ' ,  'f   and  'g   are the variables of the integral being the amplitude 

function of the integral and the phase function of the integral, respectively. There are 

also a  and b  which are the upper and lower limits of the integral. The application of 

the method begins with the definition of the phase function because the method 

depends on the expansion of the first three terms of Taylor series. There will be the 

stationary phase point which is named as s . It can be found by the evaluation of the 

first derivative of the phase function. The general form of the phase function can be 

given as 

  ' 'g R     (4.33) 

where R  is the ray path that can be defined as 



22 

 

  'cos cos .R          (4.34) 

The phase function can be redefined as 

    ' ' 'cos cos ,g             (4.35) 

which can be rearranged as 

    ' 'cos 1 cos .g              (4.36) 

In this step, the first derivative of the phase function will be evaluated. It can be written 

as 

 
'

' ' '
,

dg d dR

d d d



  
    (4.37) 

which can be redefined as 

  
'

'

' ' '
cos cos .

dg d d

d d d


    

  
        (4.38) 

 The first derivative of R  can be expressed as 

     
'

'

' ' ' '
sin cos cos

dR d d d

d d d d

 
      

   
        (4.39) 

where   can be expressed as 

 '        (4.40) 

The first derivative of   can be defined as 

 
' ' '

1 .
d d d

d d d

  

  
     (4.41) 

After that, the first derivative of the phase function can be redefined as 

  
' '

'

' ' ' ' ' '
sin cos sin( ) .

dg d d d d d

d d d d d d

    
      

     

 
       

 
  (4.42) 

In order to simplify Eq. (4.42), the sine rule can be written as 

 
 

'

.
sin sin

 

  



  (4.43) 

By using Eq. (4.43), the first derivative of the phase function can be obtained as 

     
'

' '
1 cos sin

dg d

d d


    

 
       (4.44) 

where 
'

'

d

d




 can be defined as 
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' '

'

' '

sin
,

cos 1

d e

d e

 


 



  (4.45) 

which can be written in Eq. (4.44). Then the first derivative of the phase function can 

be expressed as 

    
'

' '

' '
sin sin sin .

cos 1

dg
e e

d e


      

 
     
 

  (4.46) 

The stationary phase points which are named as s  points that makes the first derivative 

of the phase function equal to zero. In order to find them, some applications will be 

applied to the first derivative of the phase function. First of all, the relation among ' ,  

  and    should be expressed. By using the geometry given in Fig. 7, the relation 

between '  and   can be given by    

  . cos ,n e      (4.47) 

which can be expressed as 

 
' ' '

2 ' 2 ' 2 '

1 cos sin 1 cos
. .

1 2 cos 1 2 cos 1 2 cos

e e e
e e e

e e e e e e
  

  

  

  
  
       

  (4.48) 

As a result, the relation between '  and  can be obtained as 

 
'

2 '

cos 1
cos .

1 2 cos

e

e e









 
  (4.49) 

 

   

 

 

 

 

 

Figure 8 Representation of the cosine of   on the right angled triangle 

 

Figure 8 shows the cosine of   on the right angled triangle by which the sine or 

tangent of   can be obtained. The Pythagorean relation for the other side s  can be 

written as 
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    
22

' 2 2 'cos 1 1 2 cose s e e        (4.50) 

where s  can be found as 

 'sin .s e    (4.51) 

After this evaluation, the sine of   can be written as  

 
'

2 '

sin
sin .

1 2 cos

e

e e







 
  (4.52) 

The tangent of   can also be written as 

 
'

'

sin
tan .

cos 1

e

e








  (4.53) 

Eq. (4.53) can be used in the first derivative of the phase function in order to find the 

stationary phase points. The first derivative of the phase function can be arranged as 

    
'

'

' '

sin
1 cos sin ,

cos 1

dg e

d e


    

 

 
        

  (4.54) 

which includes the term of the tangent of   found in Eq. (4.53) by which Eq. (4.54) 

can be rearranged as 

     '

'
tan 1 cos sin .

dg

d
     


         (4.55) 

Just as the stationary phase point of '  is named as s , the stationary phase points of 

  and   are named as s  and s , respectively. In this step, the stationary phase 

values of s  will be found. Eq. (4.55) can be written as 

    '

'

sin
1 cos sin ,

cos

dg

d


    

 

 
       

 
  (4.56) 

which can also be redefined as 

 
'

'
cos sin cos cos sin .

cos 2 2 2

dg

d

      
 
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         
       

      
  (4.57) 

Finally, the first derivative of the phase function can be arranged as 

 
'

'
cos sin .

cos 2 2

dg

d

    

 

    
    

   
  (4.58) 

In this stage, the stationary phase points of the scattering integral can be found by 

equating the first derivative of the phase function to zero. Equating to zero is satisfied 
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when the terms of sin
2

  
 
 

 and cos
2

  
 
 

 are separately equal to zero. Initially, 

the sine term will be investigated. It can be written as 

 sin 0.
2

  
 

 
  (4.59) 

In order to satisfy equating to zero, the sine term inside should be equal to zero due to 

the basic sine function property. It can be given by  

 0.
2

 
   (4.60) 

As a result, the first stationary phase value of   can be found as 

 s s    (4.61) 

Then the second stationary phase value of   can be found by using the cosine term. 

It can be written as 

 cos 0.
2

  
 

 
  (4.62) 

In order to satisfy equating to zero, the cosine term inside should be equal to 

 2 1 ,
2

n n


   due to the basic cosine function property. It can be given by 

  2 1 .
2 2

n
   

    (4.63) 

For 0n  , it can be given by 

 .
2 2

  
   (4.64) 

Finally, the second stationary phase value of   can be found as 

 s s      (4.65) 
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Figure 9 Stationary phase geometry of the reflected and transmitted rays 

 

Figure 9 shows the stationary phase geometry of the reflected and transmitted rays. It 

can be seen from the Fig. 9 that the values of s  in Eq. (4.61) and Eq. (4.65) are related 

with the reflected and transmitted scattered waves, respectively. 

After the evaluations of the stationary phase points, the next step is the evaluation of 

the second derivative of the phase function since the method of stationary phase uses 

the first three terms of Taylor series which include the second derivative. The general 

Taylor series representation can be expressed as  

 

   
 '

0 !

n
n

s

s

n

g

n


 





   (4.66) 

where the first three terms can be defined as 
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 

     
 
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s s s s

s s
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   
     



        (4.67) 

Thus, the phase function can be approximated as 

         
   

 
2

21' ' '

2

s

s s s

g
g g g


            (4.68) 

where the first derivative gives the result of zero since s  points are found by equating 

the first derivative of the phase function to zero. Thus, the term of the first derivative 

in Eq. (4.68) will normally be eliminated. As a result, the phase function can be 

simplified as  
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    
   

 
2

2
' ' .

2

s

s s

g
g g


        (4.69) 

In this stage, the second derivative of the phase function will be found. It can be 

obtained by taking the derivative of the first derivative of the phase function. The 

second derivative can be given by 

 

 

2

2 ' ''
.

d g d dg

d dd  

 
  

 
  (4.70) 

In order to easily evaluate the second derivative, the first derivative of the phase 

function in Eq. (4.58) can be rearranged as 

 
'

'

sin sin
.

cos

dg

d

 
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 
  (4.71) 

The second derivative of the phase function can be defined as 

 

2 '

2 ''

sin sin
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d g d
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  

 
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 
 
 

  (4.72) 

In this step, the part of general scattering integral of MTPO which is named as E  

represents the parts of reflected and transmitted fields. It can be written as 

'
0

'
0

'4
'

0
'
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2 cos2

j
jk jkR

z

ke e e
E e E d
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 



  
    

 
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'
0

'
0

'
'

'
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jk jkRe e
d

kRk
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  




 



 
  

  
   (4.73) 

which can also be defined as 

  
4

0 1 2
2

j

z

ke
E e E M M




     (4.74) 

where 1M  and 2M  are related with the integrals of the fields of reflected and 

transmitted, respectively. 1M  can be defined as 
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'
0
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0

'
'

1
'

cos ,
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jk jkRe e
M d
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 
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

 
  

 
   (4.75) 

which is related with the reflected field. The first s  value in Eq. (4.61) will be used 

in this integral. 2M  can also be defined as 

 

'
0
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0

'
'

2
'

sin ,
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jk jkRe e
M d

kRk

 

 
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 



 
  

 
   (4.76) 

which is related with the transmitted field. The second s  value in Eq. (4.65) will be 

used in this integral. The integrals of 1M  and 2M  will be asymptotically evaluated.  

The general representation of the stationary phase equivalents of the amplitude and 

phase function can be expressed as 

    '

sf f    (4.77) 

and 
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s s
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respectively. s  is related with the values of s  which are equal to s  and s   for 

the reflected and transmitted fields, respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Reflection geometry at the stationary phase point 
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Figure 10 shows the reflection geometry at point Q . There are the reflection 

parameters of 0l  and l  which are related with  '

s   and  sR  , respectively. Firstly, 

the reflected GO field will be evaluated from 1M . The amplitude and phase functions 

of 1M  can be written as 

  ' '

'

cos
1 12

cos
f

kRk

 

 
 

 
 
    (4.79) 

and 

  ' 'g R     (4.80) 

respectively. For the reflection stationary phase point s  value which is equal to s , 

the amplitude function can be expressed as 

  
 

   

'

'
.

s

s

s s

f
k kR

 


  
   (4.81) 

By using the reflection parameters, the amplitude function can be written as 

   0

0

.s

l
f

kl kl
    (4.82) 

When s  is inserted, the second derivative term of the phase function in Taylor 

expansion can be reduced as 
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02 ' '' cos s

ld g d d
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d dd
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    (4.83) 

where the first derivative of   should be evaluated. The derivative of Eq. (4.43) can 

be written as 

 
'

'
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  (4.84) 

where 
'

d

d




 was found in Eq. (4.41) by which Eq. (4.85) can be redefined as 

   
'

'

' ' ' ' '
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    
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  (4.85) 

which can be rearranged as 
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where  ' cos cos         is equal to R  which was found in Eq. (4.34) and  

'

'

d

d




 can be written as  
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
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
   (4.87) 

By using Eq. (4.34) and Eq. (4.87), Eq. (4.86) can be redefined as 
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  (4.88) 

which can be written as 
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which can also be redefined as 
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which can be arranged as 
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Finally, the first derivative of   can be defined as 
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After this evaluation, the second derivative of the phase function for the reflection can 

be rewritten as 
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The phase function for the reflection can be written as 
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where the first derivative of   can be found by using Eq. (4.58). It can be evaluated 

as 
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In this stage, in order to complete the asymptotic evaluation of the integral, the error 

function can be used. The error function can be expressed as 
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   (4.96) 

where the power of the exponential function and the phase function in Eq. (4.96) will 

be equated to each other. The aim is to find 'd  which can be found by the equation 

of 
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which can be redefined as 
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where the term  '

s   can be expressed as 

  '

0 0'

1 1

2

s

l
y

j k d
l l l

d

 




 

 

  (4.99) 

where the term 
1

j
 can be defined as 
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Finally, 'd  can be evaluated as 
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After the evaluation of 
'd , the result of 1M  can be rearranged as 
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where the error function is equal to 2 . As a result, 1M  can be found as 
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After the evaluation of 1M  , the next step is to find the transmitted GO field from 2.M

Similar steps in the evaluation of 1M  can be applied to 2M . The difference is the 

stationary phase point s  which is equal to s  for the transmission. The amplitude 

function can be written as 
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where  '

s    and  sR   can be represented in terms of transmission parameters of 

s  and sR , respectively. Thus, the amplitude function can be rewritten as 
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   (4.105) 

When s  is inserted, the second derivative term of the phase function in Taylor 

expansion can be reduced as 
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where 
'

d

d




 found in Eq. (4.92) can also be used in Eq. (4.106). Then, the second 

derivative of the phase function can be rewritten as 
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The phase function for the transmission can be written as 
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In order to complete the asymptotic evaluation of the integral, the error function can 

also be used as in 1M . The power of exponential function in Eq. (4.96) and the phase 
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function in Eq. (4.108) will be equated to each other. The aim is to find 'd  which can 

be found by the equation of 
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which can be redefined as 
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where the term  '

s   can be expressed as 
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Finally, 'd can be evaluated as 
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After the evaluation of 'd , the result of 2M  can be rearranged as 
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where the error function is equal to 2 . As a result, 2M  can be found as 
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After the asymptotic evaluations of 1M  and 2M , the total GO result of E  can be 

evaluated as 
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The total asymptotic result of the scattering integral of MTPO can be written as 
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which includes the incident field given in Eq. (4.10), the reflected GO field and 

transmitted GO field. The result of the method of stationary phase for the reflected GO 

field can be written as 
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which can also be expressed by the divergence coefficient as 
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where the divergence coefficent that affects the amplitude level of the reflected fields 

can be defined as 
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The result of the method of stationary phase for the transmitted GO field can also be 

written as 
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Since the hyperbolic reflector is placed at  0 0,    , the transmitted fields occur in 

the outer of the reflector at    0 0,           . Thus, the transmitted GO 

field can be redefined as 
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where U  is the unit step function. It can also be seen that s sR   is equal to   for the 

outer of the reflector. This also agrees with the incident field.   
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4.4 Edge Diffracted Waves 

 

In this part, the nonuniform and uniform edge diffracted fields will be evaluated. The 

nonuniform edge diffracted fields will be evaluated for the transmitted and reflected 

scattered waves by using the edge point technique. The uniform diffracted fields will 

be evaluated by using the method of the uniform theory of diffraction (UTD), 

introduced in [29], [38]. 

 

4.4.1 Nonuniform Diffracted Fields 

 

The edge point technique can be applied to a general diffraction integral D  that can 

be defined as 
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where  f y  and  g y  are the amplitude and phase functions of the diffraction 

integral, respectively. K  is the large parameter. Since the multiplying and dividing by 

a same term cannot affect the equation, Eq. (4.122) can be redefined as 
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where the amplitude function was multiplied and divided by the first derivative of the 

phase function. In Eq. (4.123), the rule of the integration by parts can be applied as 

  
 

 
   

 
         

 

 
'

2' '
'

1 1
n

jKg m jKg n jKg y

m

f m f n f y g x f y g x
D e e e dy

jK g m g n jK g y

  
  

   
      

   (4.124) 

where the rigth part of the Eq. (4.125) can be neglected for the large values of K . 

Consequently, the general equation of the edge point technique can be obtained as 
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Figure 11 Edge diffraction geometry of the hyperbolic reflector 

 

Figure 11 shows the edge diffraction geometry of the hyperbolic reflector where 0  is 

the edge boundary angle of the reflector since the reflector is placed between the angles 

of  0 0,  . e  and e  are the edge angles of incidence and reflection, respectively. 

0el  and el  are the edge diffraction parameters which are related with  '

0   and  0 ,R   

respectively. After the evaluation of the general equation of the edge point technique, 

the edge diffracted fields can be evaluated. The edge diffraction will be represented by 

dE  which can be written as 
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where  0f   can be written as 
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By using Eq. (4.58), the inverse of the first derivative of the phase function can be 

obtained as  
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which can be divided into two parts of reflection and transmission by the method of 

partial fraction that can be used as  
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where the denuminators can be equated as 
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which can be simplified as 
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So as to find the values of A  and  , some logical values can be inserted instead of   

or  . If   is inserted instead of   in Eq. (4.131), the value of   can be found as 

 1.    (4.132) 

If the term     is inserted instead of   in Eq. (4.131), the value of A can also be 

found as 

 1.A     (4.133) 

After the evaluations of A  and  , Eq. (4.158) can be rewritten as 

 
cos 1 1

.

cos sin sin cos
2 2 2 2


 

              
       
       

  (4.134) 

Finally, the inverse of the first derivative of the phase function can be obtained as 
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By using Eq. (4.135), the generalization of the edge diffraction coefficient  0D    can 

be expressed as 
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  (4.136) 

As a result, the result of nonuniform edge diffraction can be expressed as 
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where the edge diffraction parameters 0el  and el  are are related with  '

0   and  0R   

respectively. The edge diffraction parameters 0el , el , e  and e  can be written as 
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and 
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respectively. 

 

4.4.2 Uniform Diffracted Fields 

 

The uniform diffracted fields consist of the reflected diffracted field and incident 

diffracted field. These uniform fields can be obtained from the nonuniform diffracted 

fields by using the method of the uniform theory of diffraction. The uniform fields will 

be evaluated for both the upper edge point and lower edge point of the reflector. 

 

 

 

 

 

 

 

 

 

 

Figure 12 Geometrical places of the poles 



39 

 

Figure 12 shows the geometrical places of the poles at the edge point where e  and e  

are the incident edge angle and the boundaries of reflection and shadow, respectively. 

The reflection and shadow boundaries can be found from the general diffraction 

coefficient given in the Eq. (4.136). The reflection boundary can be found by 
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Then the pole of the reflected diffracted field can be expressed as 

 .e e    (4.143) 

The shadow boundary can be found by 

 cos 0.
2

e e  
 

 
  (4.144) 

Then the pole of the incident diffracted field can be evaluated as 

 .e e     (4.145) 

It can also be seen that Eq. (4.137) approaches to infinity at e  values found in Eq. 

(4.143) and Eq. (4.145). Consequently, the fields are named as nonuniform fields. As 

a consequence, the uniform fields should be evaluated. 

  

4.4.2.1 Uniform Reflected Diffracted Field 

 

The uniform reflected diffracted field can be derived from the nonuniform reflected 

diffracted field expression that can be defined as  
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which is named as the nonuniform field since it approaches to infinity when e  is equal 

to e .  
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Figure 13 Upper edge point geometry of the hyperbolic reflector 

 

Figure 13 shows the upper edge point geometry of the hyperbolic reflector at point eQ  

where the parameters 0el  and el  are the incident and scattered ray paths, respectively. 

e  and e  are the edge angles of incidence and reflection, respectively. 0  is the angle 

of upper boundary of the reflector. The uniform reflected diffracted field can be 

obtained by using the detour parameter  , signum function and Fresnel function. The 

detour parameter   can be defined as 

  ld GOk l      (4.147) 

where dl  is the sum of 0el  and el . GOl  is the sum of 0l  and l  which are the incident 

and scattered ray paths of the GO. By using the detour parameter, Eq. (4.146) can be 

rearranged as 
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where the square of   can be written as 
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Then Eq. (4.148) can be redefined as 
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where F     is the Fresnel function that can be defined as 
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Finally, the uniform reflected diffracted field can be expressed as 
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where e  can be found by using the sine rule from Fig. 13. The sine rule can be defined 

as 
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Then e  can be found as 
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The other parameters of 0l , l , e , 0el  and el  can be given as 
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and 
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respectively. 
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Figure 14 Lower edge point geometry of the hyperbolic reflector 

 

Figure 14 shows the lower edge point geometry of the hyperbolic reflector at point eQ  

where the parameter e  should be redefined. The sine rule from Fig. 14 can also be 

used as 
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Then e  can be found as 
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Except el ,  the other parameters of 0l , l , e  and 0el  in upper edge part are the same 

for the lower edge point. el  can also be written as 
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4.4.2.2 Uniform Incident Diffracted Field 

 

In this part, the uniform reflected diffracted field can be obtained from the nonuniform 

incident diffracted field expression that can be defined as  
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Figure 15 Geometry of the hyperbolic reflector for the incident diffraction 

 

Figure 15 shows the incident diffraction geometry of the hyperbolic reflector at point 

eQ  where 0el  and el  are the incident and scattered ray paths, respectively. sl  represents 

the sum of  0el  and el . e  and e  are the edge angles of incidence and reflection, 

respectively. By using detour parameter, Eq. (4.163) can be redefined as 
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where detour parameter can be defined as 
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The square of the detour parameter can be expressed as 
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By using Eq. (4.166), the diffraction equation can be redefined as 
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  (4.167) 

The equivalent of the detour parameter can be obtained by using the geometry given 

in Fig. 15. In order to evaluate it, the cosine rule can be used as 
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where   can be written as 
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Eq. (4.168) can be arranged as 
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where the term  0e e sl l l   is equal to 
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. Then the detour parameter can be found 

as 
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By using Eq. (4.167), Eq. (4.167) can be restated as 
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  (4.173) 

where the Fresnel function F     and the signum function can be used. After that, 

the uniform incident diffracted field can be written as 

   0

0

2
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( )
sjklu e e

i

e e s

l l
D F e

k l l l


       

  (4.174) 

where the parameters 0el , el  and e  are also same as in the upper edge point of the 

reflected diffracted parameters. The value of e  does not also change in lower edge 

point geometry.  

The effects of both fields the incident diffracted and reflected diffracted will be 

analyzed in the part numerical analysis. 
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CHAPTER 5 

 

NUMERICAL ANALYSIS 

  

In this chapter, scattering process of the hyperbolic reflector will be examined in terms 

of reflection, transmission and uniform diffraction numerically. First of all, the results 

of the reflection integral of the modified theory of physical optics (MTPO) and 

physical optics (PO) will be compared numerically. Then, the MTPO integrals of 

reflected and transmitted fields will be analyzed. After that, the geometrical optics 

results obtained by the method of stationary phase will be investigated. Moreover, the 

uniform diffracted fields obtained by the method of uniform theory of diffraction 

(UTD) will be analyzed numerically. Furthermore, the summation of the reflected GO 

field and the uniform reflected diffracted fields will be analyzed and compared with 

the reflection integral of the MTPO. Finally, the summation of the incident field and 

the uniform incident diffracted field will be investigated in order to observe the fields 

in the luminous area.   

Initially, the reflection integral of the MTPO and the integral of the reflected fields of 

the PO will be plotted and analyzed numerically. The reflection integral of the MTPO 

can be defined as 
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The integral of the reflected fields of the PO can be expressed as 
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In order to investigate the reflection results of both MTPO and PO, the focal length 

and the observation distance   will respectively be taken as 1.5  and 6  where   

is the wavelength. The reflector is placed between the angles of  0 0,  . 
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Figure 16 Reflected scattered fields by the hyperbolic reflector at 0 30   

 

Figure 16 shows the comparison of the reflected fields of MTPO and PO for a perfectly 

conducting hyperbolic reflector at 0 30 .   It can be seen from Fig. 16 that the fields 

of MTPO and PO are in harmony between 90
 and 270 .  However, the PO integral 

deviates on a large scale between 90  and 90 .  The reason is the construction of the 

PO integral [39]. Eq. (5.2) is not equal to zero for the stationary phase point at 

.s s     For this reason, the PO integral includes the transmitted scattered fields 

as well. 

 

 

 

 

 

 

 

 

 

 

Figure 17 Reflected scattered fields by the hyperbolic reflector at 0 45   
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Figure 17 shows the comparison of the reflection integrals of MTPO and PO at 

0 45 .   It can also be seen from Fig. 17 that the reflection integral of the PO also 

includes the transmitted scattered fields between the angles of 90  and 90 .  

 

 

 

 

 

    

 

 

 

 

 

Figure 18 Reflected scattered fields by the hyperbolic reflector at 0 60   

 

Figure 18 depicts the comparison of the reflection integrals of MTPO and PO at 

0 60 .   The deviation of the PO integral between the angles of 90  and 90
 can also 

be seen in Fig. 18.   

Secondly, the reflected and the transmitted fields of the MTPO integral will be 

analyzed for the various reflector widths. For this analysis, the focal length and the 

observation distance will respectively be taken as 1.5  and 6  where   is the 

wavelength.  
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Figure 19 Reflected fields for several hyperbola widths 

 

Figure 19 shows the reflected fields of the MTPO integral for several reflector widths. 

It can be seen that the reflection range increases as the reflector width increases. The 

reflector width having 60  has the largest reflection range among these three 

reflectors. Although the reflector width having 30  has the minimum reflection range, 

it has the greatest amplitude level at 180 .  

 

Figure 20 Transmitted fields for several hyperbola widths 
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Figure 20 shows the transmitted fields of the MTPO integral for several reflector 

widths. It can be seen from Fig. 20 that the transmission range increases as the reflector 

width increases. The reflector width having 60  has the largest transmission range 

among these three reflectors. Although the reflector width having 30  has the 

minimum transmission range, it shows the greatest amplitude level at 0 .  

Thirdly, the reflected and the transmitted fields of the MTPO integral will be analyzed 

for different observation distances. For this analysis, the focal length will be taken as 

1.5  where   is the wavelength. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Reflected fields for different observation distances at 0 30   

 

Figure 21 depicts the reflected fields of the MTPO integral for different observation 

distances at 0 30 .   It can be seen from Fig. 21 that the maximum amplitude level of 

the reflected fields decreases when the observation distance increases. In addition, the 

maximum amplitude level of the reflected fields can also be seen around 180 .  
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Figure 22 Reflected fields for different observation distances at 0 45   

 

Figure 22 shows the reflected fields of the MTPO integral for different observation 

distances at 0 45 .   It can also be seen from Fig. 22 that the maximum amplitude 

level of the reflected fields decreases when the observation distance increases.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Reflected fields for different observation distances at 0 60   
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Figure 23 shows the reflected fields of the MTPO integral for the different observation 

distances at 
0 60 .   It can be seen from Fig. 23 that the reflection ranges increase 

since the reflector widths increase. It can also be seen that the amplitude levels of the 

reflected fields decreases as the observation distance increases. 

 

 

Figure 24 Transmitted fields for different observation distances at 0 30   

 

Figure 24 shows the transmitted fields for several observation distances at 0 30 .   It 

can be seen from Fig. 24 that the maximum amplitude levels of the transmitted field 

decreases when the observation distance increases. The maximum amplitude level of 

the transmitted fields can be seen around 0 .  
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Figure 25 Transmitted fields for different observation distances at 0 45   

 

Figure 25 shows the transmittted fields for the different observation distances at 

0 45  . It can also be seen from Fig. 25 that the maximum amplitude levels of the 

transmitted field decreases when the observation distance increases. The maximum 

amplitude level of the transmitted fields can also be seen around 0 .  

 

 

 

 

 

 

 

 

 

 

 

Figure 26 Transmitted fields for different observation distances at 0 60   
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Figure 26 shows the transmittted fields for both the different observation distances at 

0 60 .   It can be seen from Fig. 26 that the transmission range increases since the 

reflector width increases, compared to Fig. 24 and Fig. 25. It can also be seen that the 

maximum amplitude levels of the transmitted field decreases when the observation 

distance increases. The maximum amplitude level of the transmitted fields can also be 

seen around 0 .    

Fourthly, the geometrical optics (GO) results obtained by the method of stationary 

phase will be investigated numerically. The GO results will be analyzed for the various 

focal lengths of the various reflectors by changing of the center length a  and the 

eccentricity e . The focal length of the hyperbolic reflector can be defined as 

  1f a e    (5.3) 

where the variables a  and e  will be chosen to set the focal lengths as 1.5  and 2 , 

respectively. The observation distance will be taken as 6 .   

 

the variable a  is chosen as 0.01  and the values of eccentricity e  are chosen as 14  

and 19  in order to set the focal lengths as 1.5  and 2 , respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 27 GO fields for different focal lengths with 0.01a   at 0 30   

 

Figure 27 shows the geometrical optics (GO) fields for the various focal lengths at 

0 30   where the variable a  is chosen as 0.01  and the values of eccentricity e  are 
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chosen as 14  and 19  in order to set the focal lengths as 1.5  and 2 , respectively. It 

can be seen from Fig. 27 that the reflected fields varies almost between 125
 and 235 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 GO fields for different focal lengths with 0.01a   at 0 60   

 

Figure 28 shows the geometric optics (GO) field for the various focal lengths at 

0 60   where the variable a  is also chosen as 0.01  and the values of eccentricity e  

are also chosen as 14  and 19 . It can be seen from Fig. 28 that the reflected fields 

deviates on a larger scale than the fields in Fig. 27 since the reflector width has 

increased. 
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Figure 29 GO fields for different focal lengths with 0.03a   at 0 30   

 

Figure 29 shows the geometric optics (GO) field for the various focal lengths at 

0 30   where the variable a  is chosen as 0.03  and the values of eccentricity e  are 

chosen as 4  and 5.67  in order to set the focal lengths as 1.5  and 2 , respectively. 

It can be seen from Fig. 29 that the reflected field varies almost between 120
 and 

240 .   

 

 

 

 

 

 

 

 

 

 

 

Figure 30 GO fields for different focal lengths with 0.03a   at 0 60   
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Figure 30 shows the geometric optics (GO) field for the various focal lengths 0 60   

where the variable a  is also chosen as 0.03  and the values of eccentricity e  are also 

chosen as 4  and 5.67  in order to set the focal lengths as 1.5  and 2 , respectively. 

It can be seen from Fig. 30 that the reflected fields deviates on a larger scale than the 

fields in Fig. 29 since the reflector width has increased. In addition, the reflected field 

varies almost between 70
 and 290 .    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 GO fields for different focal lengths with 0.04a   at 0 30   

 

Figure 31 shows the geometric optics (GO) field for the various focal lengths at 

0 30   where the variable a  is chosen as 0.04  and the values of eccentricity e  are 

chosen as 2.75  and 4  in order to set the focal lengths as 1.5  and 2 , respectively. 

It can be seen from the Fig. 31 that the reflected field varies almost between the degrees 

of 110
 and 250 .  

 

  0.05

  0.1

  0.15

30

210

60

240

90

270

120

300

150

330

180 0

 

 

1.5

2



57 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 GO fields for different focal lengths with 0.04a   at 0 60   

 

Figure 32 shows the geometric optics (GO) field for the various focal lengths for the 

refletor width at 60  where the variable a  is also chosen as 0.04  and the values of 

eccentricity e  are also chosen as 2.75  and 4  in order to set the focal lengths as 1.5  

and 2 , respectively. It can be seen from Fig. 32 that the reflected fields deviates on 

a larger scale than the fields in Fig. 31 since the reflector width has increased.  

In the next step, the uniform diffracted fields obtained by the method of the uniform 

theory of diffraction (UTD) will be investigated numerically. The uniform diffraction 

consists of the uniform reflected diffracted fields and uniform incident diffracted 

fields. The focal length and the observation distance will be chosen as 1.5  and 6 , 

respectively. 
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Figure 33 Uniform reflected diffracted field for the upper edge point at 
0 60    

 

Figure 33 shows the uniform reflected diffracted field for the upper edge point of the 

reflector at 
0 60  . The reflection boundary angle e  can be defined as 

  1 0
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e e e
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  (5.4) 

where e  can be found as 87 .  It can be seen from Fig. 33 that the peak value is in 

harmony with the reflection boundary e . 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 Uniform reflected diffracted field for the upper edge point at 
0 30   
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Figure 34 shows the uniform reflected diffracted field for the upper edge point of the 

reflector at 
0 30 .  By using Eq. (5.4), the reflection boundary angle e  can be found 

as 130 . It can also be seen from Fig. 34 that the peak value is in harmony with e . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 Uniform reflected diffracted field for the lower edge point at 
0 60    

 

Figure 35 shows the uniform reflected diffracted field for the lower edge point of the 

reflector at 
0 60 .   The reflection boundary angle e  can be defined as 
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  (5.5) 

where e  can be found as 274 . It can be seen from Fig. 35 that the peak value is in 

harmony with the reflection boundary e . 
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Figure 36 Uniform reflected diffracted field for the lower edge point at 
0 30   

 

Figure 36 shows the uniform reflected diffracted field for the lower edge point of the 

reflector at 
0 30 .   By using the Eq. (5.5), the reflection boundary angle e  can be 

found as 230 .  It can also be seen from Fig. 36 that the peak value is also in harmony 

with e . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37 Uniform incident diffracted field for the upper edge point at 
0 60   
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Figure 37 shows the uniform incident diffracted field for the upper edge point of the 

reflector at 
0 60 .   The shadow boundary angle e  can be written as 

 0e    (5.6) 

where e  is equal to 60  since the reflector width 0  is equal to 60 . It can be seen 

from Fig. 37 that the peak value is in harmony with the shadow boundary angle .e  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 Uniform incident diffracted field for the upper edge point at 
0 30   

 

Figure 38 shows the uniform incident diffracted field for the upper edge point of the 

reflector at 
0 30 .  By using Eq. (5.6), the shadow boundary angle e  can be found as 

30 .  It can also be seen from Fig. 38 that the peak value is also in harmony with e . 
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Figure 39 Uniform incident diffracted field for the lower edge point at 
0 60   

 

Figure 39 shows the uniform incident diffracted field for the lower edge point of the 

reflector at 
0 60 .   The shadow boundary angle e  can be written as 

 02e      (5.7) 

where e  can be found as 300 .  It can be seen from Fig. 39 that the peak value is in 

harmony with the shadow boundary .e  

 

 

 

 

 

 

 

 

 

 

 

Figure 40 Uniform incident diffracted field for the lower edge point at 
0 30   
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Figure 40 shows the uniform incident diffracted field for the lower edge point of the 

reflector at 
0 30 .   By using Eq. (5.7), the shadow boundary angle e   can be found 

as 330 .  It can also be seen from Fig. 40 that the peak value is also in harmony with 

.e  

In this section, the summation of the reflected GO field given in Eq. (4.117) and the 

uniform reflected diffracted fields given in Eq. (4.152) will be analyzed and compared 

with the reflection integral of the MTPO. For this analysis, the focal length and the 

observation distance will be chosen as 1.5  and 6 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41 Comparison of the reflection integral of MTPO and the summation of the 

GO result and the uniform reflected diffracted fields at 0 60   

 

Figure 41 shows the comparison of the reflection integral of the MTPO as well as the 

summation of the fields of GO and the uniform reflected diffracted for the reflector at 

0 60 .   It can be seen from Fig. 41 that the summation of the GO result and the 

uniform reflected diffracted fields are in harmony with the reflection integral result of 

the MTPO. 
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Figure 42 Comparison of the reflection integral of MTPO and the summation of the 

GO result and the uniform reflected diffracted fields at 0 45   

 

Figure 42 also shows the comparison of the reflection integral of the MTPO as well as 

the summation of the fields of GO and the uniform reflected diffracted for the reflector 

at 0 45 .   It can also be seen from Fig. 42 that the summation of the GO result and 

then uniform reflected diffracted fields are in harmony with the reflection integral 

result of the MTPO. 

 

 

 

 

 

 

 

 

 

 

 

Figure 43 Comparison of the reflection integral of MTPO and the summation of the 

GO result and the uniform reflected diffracted fields at 0 30   
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Figure 43 also shows the comparison of the reflection integral of the MTPO as well as 

the summation of the fields of GO and the uniform reflected diffracted for the reflector 

at 0 30 .   It can be seen from Fig. 43 that the summation of the GO result and the 

uniform reflected diffracted fields are also in harmony with the reflection integral 

result of the MTPO. 

Lastly, the summation of the incident field given in Eq. (4.10) and the uniform incident 

diffracted field given in Eq. (4.177) will be investigated in order to observe the fields 

in the luminous area.  For this analysis, the focal length and the observation distance 

will be chosen as 1.5  and 6 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44 Summation of the incident field and the incident diffracted fields at 0 60   

 

Figure 44 shows the summation of the incident field and the uniform incident 

diffracted field for the reflector at 0 60   in the luminous area. It can be seen from 

Fig. 44 that the summation of the incident field and the incident diffracted field varies 

between 60
 and 300 .   
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Figure 45 Summation of the incident field and the incident diffracted fields at 0 45   

 

Figure 45 shows the summation of the incident field and the uniform incident 

diffracted field for the reflector at 0 45   in the luminous area. It can be seen from 

Fig. 45 that the summation of the incident field and the incident diffracted field varies 

between 45
 and 315 .  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46 Summation of the incident field and the incident diffracted fields at 0 30   
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Figure 46 shows the summation of the incident field and the uniform incident 

diffracted field for the reflector at 0 30   in the luminous area. It can be seen from 

Fig. 46 that the summation of the incident field and the incident diffracted field varies 

between 30
 and 330 .  It can also be seen that the summation of these fields covers a 

wider range as the reflector width decreases.   
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CHAPTER 6 

 

CONCLUSIONS 

 

In this thesis, the scattering process through a convex hyperbolic reflector was 

investigated. The study was based mainly on the modified theory of physical optics 

(MTPO) suggested by Umul. The theory suggests the exact solution of the scattering 

fields, especially compared to the method of the classical physical optics (PO). The 

difference of MTPO comes from its axioms. The new unit vector expression, taking 

reflection angle as a variables of the integral and taking into consideration the perfectly 

conductor surface with its aperture part together construct the difference of MTPO.  

Furthermore, in this study, in order to evaluate the scattering integral, the hyperbola 

geometry was firstly determined. Since a classical hyperbola has two focal points and 

two legs, the right leg (convex) of the hyperbola was preferred for this thesis and the 

focal point of the left leg of the hyperbola was chosen in order to illuminate this convex 

leg. The hyperbola geometry was so important for the definition of the incident ray 

path '  which is the key factor for the construction of the unit vector and the 

asymptotic evaluations of the scattering integral. After that, the stationary phase points 

were found using the method of stationary phase. One of them was related with the 

reflection and the other one was related with the transmission. Both stationary phase 

points were used in MTPO integrals in order to define the integrals of reflection and 

transmission, individually. After the definitions of integrals as in Ref. [37], the results 

of the reflected and transmitted fields of the MTPO integral were analyzed. Moreover, 

the integrals of the PO and MTPO were analyzed and compared numerically. It was 

seen that the MTPO individually offered information about both the reflected and 

transmitted fields. However, the reflection integral of the PO failed to offer 

information only about reflected fields. It included the transmitted fields in the 

reflection integral as well.  
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Besides, the geometrical optics (GO) fields and edge diffracted fields were obtained 

using the method of stationary phase and edge point technique, respectively. After the 

asymptotic evaluation of the edge point diffraction by the edge point technique, it was 

seen that the results were non-uniform since the diffraction result approaches to 

infinity at the transition regions. In order to obtain the uniform diffracted fields, the 

method of uniform theory of diffraction (UTD) was used. By using the UTD, the 

uniform reflected diffracted fields were found for both the upper and lower edge 

points, respectively. Then the uniform incident diffracted fields were found for both 

the upper and lower edge points, individually. After that, the GO results and the results 

of the uniform diffracted fields were numerically analyzed. 

In addition, the summation of the results of the GO field and the uniform reflected 

diffracted field was analyzed numerically. After the analysis, it was seen that the 

summation of these fields was the same result as the reflection integral of the MTPO. 

Finally, the summation of the incident field and the uniform incident diffracted field 

was investigated and numerically analyzed for the several hyperbola reflector widths 

in order to observe the fields in the luminous area. 

As a result, the scattering behavior of a hyperbolic reflector was gone over by mainly 

focusing on the modified theory of physical optics. The reflected fields, the transmitted 

fields, the GO fields, the nonuniform edge diffraction as well as the uniform reflected 

diffracted and uniform incident diffracted fields were investigated and numerically 

analyzed using the related methods in this thesis. 
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