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Abstract
In this effort, the analytic solution of a class of algebraic Briot–Bouquet differential
equations (ABBDE) in the open unit disk is investigated by making use of a major
theory. The class is presented by the formula

α1ϕ
′3(z) + α2ϕ

′2(z)ϕ(z) + α3ϕ
′(z)ϕ2(z) + ℵk

ϕ (z) = 0,

ℵk
ϕ (z) := akϕ

k(z) + ak–1ϕ
k–1(z) + · · · + a1ϕ(z) + a0.

The conformal analysis (angle-preserving) of the ABBDEs is considered. Analytic
outcomes of the ABBDEs are indicated by employing the major method. Some
special cases are investigated.

MSC: 30C55; 30C45
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Algebraic differential equations; Majorization method

1 Introduction
The algebraic Briot–Bouquet differential equation (ABBDE) is a significant nonlinear dif-
ferential equation which occurs in many applications such as neuroscience, geometry,
economy, banking studies, and physics. The most important property of ABBDE is that it
shows that every meromorphic solution of ABBDE belongs to the class of meromorphic
functions containing elliptic functions and their degenerates, i.e., the rational functions
of one exponential eζ z , ζ ∈ C, z ∈ U = {z ∈ C : |z| < 1} and rational functions. Many con-
sequences for higher-order ABBDE are also presented in a sequence of documents (see
[1–12]).

The majorization inequality theory (real and complex) has many applications in our
real life [13]. For example, they have measured the economy, specifically in the income-
distribution (economic inequality), that is, the distribution of income between the pri-
mary factors of production. New economists have, furthermore, addressed issues of in-
come distribution, but have absorbed further on the distribution of income persons and
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households. Important theoretical and policy concerns consist of the balance between in-
come majorization inequality and economic growth, and their often-inverse association.
Moreover, the Gini coefficient measures the inequality among the values of a frequency
distribution (for example, levels of income) [14]. A Gini coefficient of zero states perfect
equality, where all values are the same (for example, where everyone has the same in-
come) [15]. Therefore, the solution of any class of differential equations majoring by a
convex function or by special function is very attractive, especially in wealth and health
distribution [16].

In this paper, we investigate a class of ABBDEs in the open unit disk. We study the ge-
ometric representation for this class and majorize them by employing special function in
U including the exponential function.

2 Complex ABBDEs
A special class of ABBDEs is studied in [7] taking the structure

α1ϕ
′3(z) + α2ϕ

′2(z)ϕ(z) + α3ϕ
′(z)ϕ2(z) + ℵk

ϕ(z) = 0, (2.1)

where αı ∈C, ı = 1, 2, 3, and

ℵk
ϕ(z) := akϕ

k(z) + ak–1ϕ
k–1(z) + · · · + a1ϕ(z) + a0,

where aj , j = 0, 1, . . . , k, are constants (real or complex).
Now, we reorganize (2.1) and consider the geometric possessions by designing some

classes of normalized analytic functions inU. Then the resolution is majorized by engaging
special functions in U. Equation (2.1) suggests the homogeneous form when α1 �= 0,

(
zϕ′(z)
ϕ(z)

)2

+ b2z
(

zϕ′(z)
ϕ(z)

)
+ b3z2 = 0, z ∈ U, b2 =

α2

α1
, b3 =

α3

α1
. (2.2)

To study Eq. (2.2) geometrically, we request the following theory.

Definition 2.1 An analytic function h is subordinated to an analytic function g , written
h ≺ g , if substitutes for an analytic function w with |w(z)| ≤ |z| such that h = (g(w)) (see
[17]). The Ma-Minda classes S∗(ρ) and K(ρ) of starlike and convex functions respectively
indicated by ( zh′(z)

h(z) ) ≺ ρ(z) and (1 + zh′′(z)
h′(z) ) ≺ ρ(z), where ρ has a positive real part in U,

ρ(0) = 1, ρ ′(0) > 1 and maps U onto a starlike-domain.

We recognize our study by applying the above inequality to formulate the following spe-
cial class.

Definition 2.2 A function of normalized expansion ϕ(z) = z +
∑∞

n=2 ϕnzn, z ∈ U is said to
be in the class M(ρ) if and only if

P(z) :=
(

zϕ′(z)
ϕ(z)

)2

+ b2z
(

zϕ′(z)
ϕ(z)

)
+ b3z2 ≺ ρ(z), (2.3)

(
ρ(0) = 1,ρ ′(0) > 1, z ∈U

)
.
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It is clear that P(0) = 1. For example, let ϕ(z) = z/(1 – z), z ∈ U, then

P(z) = 1 + (b2 + 2)z + (b2 + b3 + 3)z2 + (b2 + 4)z3 + (b2 + 5)z4 + (b2 + 6)z5 + O
(
z6).

Also, for ϕ(z) = z/(1 – z)2, z ∈U, we have

P(z) = 1 + (b2 + 4)z + (2b2 + b3 + 8)z2 + 2(b2 + 6)z3 + 2(b2 + 8)z4

+ 2(b2 + 10)z5 + O
(
z6).

In the sequel, we theorize a starlike function with positive real part such as ez (this func-
tion yields an oscillation solution of Eq. (2.1) [7]) and a convex function (univalent)

ρe(z) =
z

ez – 1
= 1 –

z
2

+
z2

12
–

z4

720
+ · · ·

as well as

�e(z) := 1/ρe(z) = 1 +
z
2

+
z2

6
+

z3

24
+

z4

120
+ · · ·

is convex univalent in U (see [17], p. 415). Note that the coefficients are converging to the
Bernoulli numbers. Moreover, the real part of the function �e(z) = (ez – 1)/z satisfies the
inequality



(

eηz – 1
ηz

)
≥ 1

2
, 0 < η ≤ 1.793 . . . .

Hence, 
( eηz–1
ηz ) ≥ 1/ρe(–1) = 1

2 .
Our calculation is established by the analytic method of Caratheodory functions which

are characterized in [18]. Consequently, by making use of major theory, we approximate
ℵk

ϕ(z) by a special type of ρ(z), z ∈U denoted by ℵk
ϕ(z) � ρ(z). Note that the two functions

are under majorization if and only if |aj | ≤ |ρj | for all j = 1, 2, . . . , where aj and ρj are
the coefficients of ℵk

ϕ(z) and ρ(z) respectively. In this situation, we demonstrate adequate
conditions of the coefficient constraints of ℵk

ϕ(z), for altered values of k = 0, 1, . . . , using a
Caratheodory theory.

3 Computations
In this position, we demonstrate our theoretical results.

Theorem 3.1 Let the function ϕ ∈ M(ρ) achieve the inequality

1 + �
(

zP′(z)
[P(z)]k

)
≺ z +

√
z2 + 1, k = 0, 1, 2,

where � is a constant and P(z) = ( zϕ′(z)
ϕ(z) )2 + b2z( zϕ′(z)

ϕ(z) ) + b3z2. Then

P(z) ≺ ρe(z) =
z

ez – 1
, z ∈U.

When �≥ max�k ,
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•

min�0 =
–((e – 1)(–2 +

√
2 + log(2) – log(1 +

√
2)))

(e – 2)
≈ 1.8516 . . .

and

max�0 = (e – 1)
(√

2 + log(2) + log(
√

2 – 1)
) ≈ 2.106 . . .

•

min�1 =
(2 –

√
2 – log(2) + log(1 +

√
2))

log(e – 1)
≈ 1.5 . . .

and

max�1 =
(–

√
(2) – log(2) – log(

√
(2) – 1))

(log(e – 1) – 1)
≈ 2.839 . . .

•

min�2 =
2 –

√
2 + log(1/2 + 1/

√
2)

(e – 2)
≈ 1.077 . . .

and

max�2 = e
(√

2 + log(2) – log(1 +
√

2)
) ≈ 3.33 . . . .

Proof Case I: k = 0 ⇒ 1 + �(zP′(z)) ≺ z +
√

z2 + 1.
Set a function 	� : U →C admitting the structure

	�(z) = 1 +
1
�

(
z +

√
z2 + 1 – log

(
1 +

√
z2 + 1

)
– 1 + log(2)

)
.

Clearly, 	�(z) is analytic in U such that 	�(0) = 1 and it is the outcome of the differential
equation

1 + �
(
z	′

�(z)
)

= z +
√

z2 + 1, z ∈U. (3.1)

Consequently, we have Q(z) := �(z	′
�(z)) = z +

√
z2 + 1 – 1 is starlike in U. Then for J(z) :=

Q(z) + 1, we conclude that



(

zQ′(z)
Q(z)

)
= 


(
zJ′(z)
Q(z)

)
> 0.

Thus, the Miller–Mocanu lemma (see [17], p. 132) yields that

1 + �
(
zP′(z)

) ≺ 1 + �z	′
�(z) ⇒ P(z) ≺ 	�(z).
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To finish this event, we only need to prove that 	�(z) ≺ ρe(z). Clearly, the function 	�(z)
is increasing in the interval (–1, 1) that has the inequality

	�(–1) ≤ 	�(1).

Because the function ρe(z) achieves the inequality for real ϑ

1
e – 1

≤ 
(
ρe(z)

) ≈ 1 –
cos(ϑ)

2
+

∞∑
n=1

β2n cos(2nϑ)
(2n)!

≤ e
e – 1

,

then the consequence inequality holds

1
e – 1

≤ 	�(–1) ≤ 	�(1) ≤ e
e – 1

if � fulfills the upper and lower bounds

min�0 =
–((e – 1)(–2 +

√
2 + log(2) – log(1 +

√
2)))

(e – 2)
≈ 1.8516 . . .

and

max�0 = (e – 1)
(√

2 + log(2) + log(
√

2 – 1)
) ≈ 2.106 . . . .

This yields the subordination inequalities

	�(z) ≺ z
ez – 1

⇒ P(z) ≺ z
ez – 1

, z ∈U.

Case II: k = 1 ⇒ 1 + �( zP′(z)
P(z) ) ≺ z +

√
z2 + 1.

Now we present a function �� : U →C structuring by the formula

��(z) = exp

(
1
�

(
z +

√
z2 + 1 – log

(
1 +

√
z2 + 1

)
– 1 + log(2)

))
.

Obviously, ��(z) is analytic in U having ��(0) = 1 and it is an outcome of the differential
equation

1 + �
(

z�′
�(z)

��(z)

)
= z +

√
z2 + 1, z ∈U. (3.2)

By using Q(z) = z +
√

z2 + 1 – 1, which is starlike in U and J(z) = Q(z) + 1, we get



(

zQ′(z)
Q(z)

)
= 


(
zJ′(z)
Q(z)

)
> 0, z ∈U.

Then again, by Miller–Mocanu lemma, we obtain

1 + �
(

zP′(z)
P(z)

)
≺ 1 + �

(
z�′

�(z)
��(z)

)
⇒ P(z) ≺ ��(z).
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Consequently, the following inequality holds:

1
e – 1

≤ ��(–1) ≤ ��(1) ≤ e
e – 1

if � has the upper and lower bounds

min�1 =
(2 –

√
2 – log(2) + log(1 +

√
2))

log(e – 1)
≈ 1.5 . . .

and

max�1 =
(–

√
(2) – log(2) – log(

√
(2) – 1))

(log(e – 1) – 1)
≈ 2.839 . . . .

This indicates the subordination inequalities

��(z) ≺ z
ez – 1

⇒ P(z) ≺ z
ez – 1

, z ∈ U.

Case III: k = 2 ⇒ 1 + �( zP′(z)
P2(z) ) ≺ z +

√
z2 + 1.

Now, we introduce a function �� : U→ C having the formal

�(z) =
(

1 –
1
�

(
z +

√
z2 + 1 – log

(
1 +

√
z2 + 1

)
– 1 + log(2)

))–1

.

Clearly, ��(z) is analytic in U admitting ��(0) = 1, and it is the outcome of the differential
equation

1 + �
(

z′
�(z)

�(z)

)
= z +

√
z2 + 1, z ∈U. (3.3)

By utilizing Q(z) = z +
√

z2 + 1 – 1, which is starlike in U and J(z) = Q(z) + 1, we get



(

zQ′(z)
Q(z)

)
= 


(
zJ′(z)
O(z)

)
> 0, z ∈U.

Consequently, by Miller–Mocanu lemma, we get

1 + �
(

zP′(z)
P2(z)

)
≺ 1 + �

(
z′

�(z)
2

�(z)

)
⇒ P(z) ≺ �(z).

Accordingly, we attain

1
e – 1

≤ �(–1) ≤ �(1) ≤ e
e – 1

if �2 admits the upper and lower bounds

min�2 =
2 –

√
2 + log(1/2 + 1/

√
2)

(e – 2)
≈ 1.077 . . .
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and

max�2 = e
(√

2 + log(2) – log(1 +
√

2)
) ≈ 3.33 . . . .

This yields the subordination inequalities

�(z) ≺ z
ez – 1

⇒ P(z) ≺ z
ez – 1

, z ∈U. �

The next result studies the subordination with respect to the function

�e(z) =
ez – 1

z
, z ∈U.

Theorem 3.2 Let the assumptions of Theorem 3.1 hold for a constant � where

1 + �
(

zP′(z)
[P(z)]k

)
≺ z +

√
z2 + 1, k = 0, 1, 2.

Then

P(z) ≺ �e(z) =
ez – 1

z
, z ∈U.

When �≥ max�k ,
•

min�0 =
(
√

2 + log(2) + log(
√

2 – 1))
(e – 2)

≈ 1.706 . . .

and

max�0 = –e
(
–2 +

√
2 + log(2) – log

(
1 +

√
(2)

)) ≈ 2.10399 . . . .

•

min�1 =
(–2 +

√
2 + log(2) + log(

√
2 – 1))

(log(e – 1) – 1)
≈ 1.70 . . .

and

max�1 =
(√

2 + log(2) + log(
√

2 – 1)
)
/ log(e – 1) ≈ 2.2 . . . .

•

min�2 = –(e – 1)
(
–2 +

√
2 + log(2) – log(1 +

√
2)

) ≈ 1.329 . . .

and

max�2 =
((e – 1)(

√
2 + log(2) – log(1 +

√
2)))

(e – 2)
≈ 2.932 . . . .
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Proof State the convex univalent function �e(z) = ez–1
z . It is clear that �(0) = 1 with a pos-

itive real part. Moreover, it satisfies the inequality

e – 1
e

≤ 
(
�e(z)

) ≤ e – 1, z ∈ U.

By the conversation of Theorem 3.1, we indicate the following inequality:

e – 1
e

≤ 	�(–1) ≤ 	�(1) ≤ e – 1

if � has the upper and lower bounds

min�0 =
(
√

2 + log(2) + log(
√

2 – 1))
(e – 2)

≈ 1.706 . . .

and

max�0 = –e
(
–2 +

√
2 + log(2) – log

(
1 +

√
(2)

)) ≈ 2.10399 . . . .

This establishes the subordination inequalities

	�(z) ≺ ez – 1
z

⇒ P(z) ≺ ez – 1
z

, z ∈U.

Similarly, we have

min�1 =
(–2 +

√
2 + log(2) + log(

√
2 – 1))

(log(e – 1) – 1)
≈ 1.70 . . .

and

max�1 =
(√

2 + log(2) + log(
√

2 – 1)
)
/ log(e – 1) ≈ 2.2 . . . .

This yields the subordination inequalities

��(z) ≺ ez – 1
z

⇒ P(z) ≺ ez – 1
z

, z ∈ U.

Lastly, we get the upper and lower bounds

min�2 = –(e – 1)
(
–2 +

√
2 + log(2) – log(1 +

√
2)

) ≈ 1.329 . . .

and

max�2 =
((e – 1)(

√
2 + log(2) – log(1 +

√
2)))

(e – 2)
≈ 2.932 . . . .

This admits the subordination inequalities

�(z) ≺ ez – 1
z

⇒ P(z) ≺ ez – 1
z

, z ∈U. �
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4 Majorization
We progress to involve the formula

ℵk
ϕ(z) = akϕ

k(z) + ak–1ϕ
k–1(z) + · · · + a1ϕ(z) + a0

for some k to investigate the geometric solutions of Eq. (2.1). Dividing Eq. (2.1) by α1 �= 0,
we receive

ϕ′3(z) –
α2

α1
ϕ

′2(z)ϕ(z) –
α3

α1
ϕ′(z)ϕ2(z) = –

ℵk
ϕ(z)
α1

, z ∈ C. (4.1)

We have the following result.

Theorem 4.1 Consider CADE (4.1) with α1 = –1 and a0 = 1. If ϕ ∈ M(ρ) is a convex uni-
valent function inU fulfilling the restriction of Theorem 3.1, then the communication values
aı have the following construction:

a1 = –
1
2

, a2 =
7

12
, a3 = –

8
12

, a4 =
74

100
, a5 = –

79
100

. (4.2)

Proof From Eq. (4.1) together with Theorem 3.1, we have ℵk
ϕ(z) ≺ ρe(z). Since ϕ is convex

univalent in ∪, then it indicates the extreme function construction

ϕ(z) =
z

(1 – z)
= z + z2 + · · · .

Thus, we obtain

ℵ0
ϕ(z) = 1,

ℵ1
ϕ(z) = 1 + a1z + a1z2 + a1z3 + a1z4 + a1z5 + O

(
z6),

ℵ2
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2)z3 + (a1 + 3a2)z4 + (a1 + 4a2)z5 + O

(
z6),

ℵ3
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2 + a3)z3 +

(
a1 + 3(a2 + a3)

)
z4

+ (a1 + 4a2 + 6a3)z5 + O
(
z6),

ℵ4
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2 + a3)z3 + (a1 + 3a2 + 3a3 + a4)z4

+ (a1 + 4a2 + 6a3 + 4a4)z5 + O
(
z6),

ℵ5
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2 + a3)z3 + (a1 + 3a2 + 3a3 + a4)z4

+ (a1 + 4a2 + 6a3 + 4a4 + a5)z5 + O
(
z6),

ℵ6
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2 + a3)z3 + (a1 + 3a2 + 3a3 + a4)z4

+ (a1 + 4a2 + 6a3 + 4a4 + a5)z5 + O
(
z6),

...

Moreover, we attain that

ρe(z) =
z

ez – 1
=

∞∑
n=0

Bnzn

n!
,
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where Bn is the Bernoulli numbers having the inequality

|Bn| � 4
√

πn
(

n
πe

)2n

, B2n+1 = 0,

(B0 = 1, B1 = –1/2, B2 = 1/6, B4 = –1/30, B6 = 1/42).

Comparing the coefficients of ℵk
ϕ(z) and ρe(z), we have

a1 =
B1

1!
= –

1
2

,

a2 = –a1 +
B2

2!
=

7
12

,

a3 = –a1 – 2a2 +
B3

3!
= –

8
12

,

a4 = –a1 – 3a2 – 3a3 +
B4

4!
=

74
100

,

a5 = –a1 – 4a2 – 6a3 – 4a4 +
B5

5!
= –

79
100

. �

The next result indicates the value of constant coefficients of ℵk
ϕ when ϕ is starlike in U.

Theorem 4.2 Consider CADE (4.1) with α1 = –1 and a0 = 1. If ϕ ∈ M(ρ) is a starlike
function in U fulfilling the construction of Theorem 3.1, then the communication values aı

have the construction

a1 = –
1
2

, a2 =
13
12

, a3 = –
28
10

, a4 =
795
100

, a5 = –24. (4.3)

Proof Plainly, from the conditions, we get ℵk
ϕ(z) ≺ ρe(z). Since ϕ is starlike in ∪, then it

has the extreme function formula

ϕ(z) =
z

(1 – z)2 = z + 2z2 + · · · .

Thus, we get

ℵ0
ϕ(z) = 1,

ℵ1
ϕ(z) = 1 + a1z + 2a1z2 + 3a1z3 + 4a1z4 + 5a1z5 + O

(
z6),

ℵ2
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2)z3 + (4a1 + 10a2)z4

+ 5(a1 + 4a2)z5 + O
(
z6),

ℵ3
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2 + a3)z3 + (4a1 + 10a2 + 6a3)z4

+ (5a1 + 20a2 + 21a3)z5 + O
(
z6),

ℵ4
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2 + a3)z3 + (4a1 + 10a2 + 6a3 + a4)z4

+ (5a1 + 20a2 + 21a3 + 8a4)z5 + O
(
z6),

ℵ5
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2 + a3)z3 + (4a1 + 10a2 + 6a3 + a4)z4
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+ (5a1 + 20a2 + 21a3 + 8a4 + a5)z5 + O
(
z6),

ℵ6
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2 + a3)z3 + (4a1 + 10a2 + 6a3 + a4)z4

+ (5a1 + 20a2 + 21a3 + 8a4 + a5)z5 + O
(
z6),

...

Contrasting the connections of ℵm
ϕ (z) and ρe(z), we have

a1 =
B1

1!
= –

1
2

,

a2 = –2a1 +
B2

2!
=

13
12

,

a3 = –3a1 – 4a2 +
B3

3!
= –

28
10

,

a4 = –4a1 – 10a2 – 6a3 +
B4

4!
=

795
100

,

a5 = –5a1 – 20a2 – 21a3 – 8a4 +
B5

5!
= –24. �

Remark 4.3
• Note that Theorems 4.1 and 4.2 indicate that ℵk

ϕ(z) accumulates at k = 5, which yields
the expansion formulas

ℵ5
z/(1–z) = 1 –

z
2

+
z2

12
–

z4

100
+ O

(
z6)

and

ℵ5
z/(1–z)2 = 1 –

z
2

+
8z2

100
–

2z4

100
+ O

(
z6).

• One can extend Theorems 4.1 and 4.2 in expressions of α for all estimates. In this
suggestion, we get the constant connections kı = aı

–α1
provided α �= 0

k1 = –
1
2

, k2 =
7

12
, k3 = –

8
12

, k4 =
74

100
, k5 = –

79
100

and

k1 = –
1
2

, k2 =
13
12

, k3 = –
28
10

, k4 =
795
100

, k5 = –24,

respectively.
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