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We present explicit exact solutions of some evolution equations including cubic 
Boussinesq and coupled Higgs system by the unified method. The explicit solu-
tions are expressed in terms of some elementary functions including trigonometric, 
exponential, and polynomial. The method is applied to a number of special test 
problems to test the strength of the method and computational results indicate the 
power and efficiency of the method.
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Introduction

Non-linear evolution equations (NLEE) are significant type of PDE having appli-
cations in many different branches of science and engineering including quantum mechanics, 
optical fibres, relativity, plasma, nuclear industry, heat flow, biology, statistical mechanics etc., 
[1-11]. Different types of traveling wave solutions including exponential, rational, hyperbolic, 
trigonometric, dark, bright, complex, elliptic, and Jacobi elliptic, functions model many phe-
nomena in science. Recently, physicist and mathematician have made many efforts in finding 
the analytic solutions to a number of NLEE. Methods such as F-expansion [12], extended tanh 
[13], generalized Kudryashov [14], tanh-sech [15], homogeneous balance [16], exp-function 
[17], multiple exp-function [18], Jacobi elliptic function [19], sine-cosine [20], expansion [19] 
and Riccati-Bernoulli sub-ODE [21, 22] are highly useful techniques for solving NLEE.

For θ(x, t), consider:
( ), , , , , ,... 0x t xx xt ttR θ θ θ θ θ θ = (1)

For c > 0: 
( ) ( ), , x t kx ctθ θ ζ ζ= = − (2)

* Corresponding author, e-mail: dumitru@cankaya.edu.tr



Abdelrahman, M. A. E., et al.: Exact Solutions of the Cubic Boussinesq and ... 
S334 THERMAL SCIENCE: Year 2020, Vol. 24, Suppl. 1, pp. S333-S342

Equation (1) is converted to the following ODE: 
2 3

2 3
d, , , ,... 0

d
d d

d d
G θ θ θθ

ζ ζ ζ

 
=  

 
(3)

Most standard methods for solving NLEE based on transfer these equations to ODE, 
using appropriate transformation and then solve it, which give travelling wave solutions and 
consequently give the solutions of the original NLEE. We observed that there are so many 
classes of NLEE arising in physics, fluid mechanics and engineering fields transferred to the 
following ODE: 

3 0αθ βθ γθ′′ + + = (4)
see [9, 10, 19, 22-29, 31] and so on. This equation is often referred to the pseudoptential or 
sagdeev potential [30].

The Jacobi elliptic function expansion method 

The JEFEM [19, 31] expresses eq. (3): 

( ) ( ) ( ) ( )1
0

1

, 1, 2,3,...
N

j
i j i j i

j

a a b iθ ζ θ ζ θ ζ θ ζ−

=

 = + + = ∑  (5)

with 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2

3 3 4 4

5 5 6 6

, , , 

, , ,

,   , , 

sn cn sn dn

ns cs ns ds

sc nc sd nd

θ ζ ζ θ ζ ζ θ ζ ζ θ ζ ζ

θ ζ ζ θ ζ ζ θ ζ ζ θ ζ ζ

θ ζ ζ θ ζ ζ θ ζ ζ θ ζ ζ

= = = =

= = = =

= = = =

 

 

 

(6)

in which snζ, cnζ, and dnζ are Jacobian elliptic sine, cosine, and third kind functions, respec-
tively. The Glaishers symbols:

1 1 1  , , , ,
       

  , ,
  

snns nc nd sc
sn cn dn cn

cn dn sncs ds sd
sn sn dn

ζζ ζ ζ ζ
ζ ζ ζ ζ

ζ ζ ζζ ζ ζ
ζ ζ ζ

= = = =

= = =
(7)

These functions obey:
2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1, 1, 1 ,

, 1 , 1

sn cn dn m sn ns cs

ns m ds sc nc m sd nd

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

+ = + = = +

= + + = + =
(8)

in which m ∈ (0, 1) is a modulus:
2, ,sn cn dn cn sn dn dn sn cnζ ζ ζ ζ ζ ζ ζ ζ′=′=′ − (9)

 ,   ,  ns ds cs ds cs ns cs ns dsζ ζ ζ ζ ζ ζ ζ ζ ζ′ ′ ′= − = − = − (10)
2 ,  , ,  sc nc dc nc sc dc cd cd nd nd sd cdζ ζ ζ ζ ζ ζ ζ ζ ζ ζ′= =′ ′ ′= (11)

consider 

( )d d, 
d d

sq q
p

q qD n q D np s n qθ θθ
ζ ζ

     = + = + +          
(12)
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Hence, we get:

( ) ( ) ( ) ( )1
0

1

nta tan h se hch
N

j
j j

j

a a bθ ζ ζ ζ ζ−

=

 = + + ∑ (13)

( ) ( ) ( ) ( )1
0

1

oco tth cschc h
N

j
j j

j

a h a bθ ζ ζ ζ ζ−

=

 = + + ∑ (14)

( ) ( ) ( ) ( )1
0

1

tan tan sec
N

j
j j

j

a a bθ ζ ζ ζ ζ−

=

 = + + ∑ (15)

( ) ( ) ( ) ( )cot cot cscj ja a bθ ζ ζ ζ ζ = + + ∑ (16)

Unified solver

Now we give the unified solver for equation:
3 0 αθ βθ γθ′′ + + = (17)

Balancing θ″ and θ3, gives m = 1. Thus, the solution of eq. (17) takes the form [19, 31]: 

( ) ( )0 1 1a a sn b cnθ ζ ζ= + + (18)

in which a0, a1, and b1 are constants. From eq. (18) we get:

( ) ( ) ( ) ( )1 1  a cn dn b sn dnθ ζ ζ ζ ζ′ = − (19)

( ) ( ) ( ) ( )2 3 2 2 2
1 1 1 1 1 2 ( ) 2 ( )  m sn a a sn m m sn cn b a sn b cnθ ζ ζ ζ ζ ζ ζ′′ = − + + − − (20)

Writing eqs. (18)-(20) in (17) and equating all coefficients of sn3, sn2cn, sn2, sncn, sn, 
cn, sn0 to 0, we get:

( )2 3 2
1 1 1 12  3 0m a a a bα β+ − = (21)

( )2 2 3
1 1 1 12  3 0m b a b bα β+ − = (22)

( )2 2
0 1 1 0a a b− = (23)

0 1 1 0a a b = (24)

( ) ( )2 2 2
1 0 1 1 1 1  1 3 3 0a m a a a b aα β γ+ − + − = (25)

( )2 3
1 0 1 1 1 3 0b a b b bα β γ− + − = (26)

( )3 2
0 0 1 03 0a a b aβ γ+ + = (27)
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Solving the system, we obtain:
Case 1. 

 
( )0 1 10, , 0, 1a a m b mγ α= = ± = = +

thus

( ) ( )1
2,x t msnαθ ζ
β
−

= ± (28)

For m → 1, eq. (39) is expressed:

( ) ( )1
2,  tanhx t αθ ζ
β
−

= ± (29)

Case 2.

 ( )2
0 1 1

10, , , 2  
2 2 2

a a m b m mα α γ α
β β
−

= = ± = − = −

thus

( ) ( ) ( )2 ,   
2 2

x t m sn mcnα αθ ζ ζ
β β
−

= ± − (30)

For m → 1, eq. (41) is written:

( ) ( ) ( )2 ,   
2 2

x t tanh sechα αθ ζ ζ
β β
−

= ± − (31)

Case 3.

 
( )2

0 1 1
10, , , 2

2 2 2
a a m b m mα α γ α

β β
−

= = ± = = −

then

( ) ( ) ( )3 ,   
2 2

x t m sn mcnα αθ ζ ζ
β β
−

= ± + (32)

For m → 1, eq. (43):

( ) ( ) ( )3 ,   
2 2

x t tanh sechα αθ ζ ζ
β β
−

= ± + (33)

Case 4. 

 
( )2

0 1 1
20, 0,  , 1 2a a b m mα γ α
β

= = = ± = −

then

( ) ( )4
2,   x t mcnαθ ζ
β

= ± (34)

For m → 1, eq. (62):

( ) ( )4
2,  sechx t αθ ζ
β

= ± (35)
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Test cases for equation αθ″ + βθ3 + γθ = 0  
Test Case 1: Consider the following cubic Boussinesq eq. [24]:

32( ) 0 tt xx xxxx xxχ χ χ χ− − + = (36)
This equation has physical applications including vibrations in a non-linear string, 

non-linear lattice waves and iron sound waves in plasma [32, 33]. Using the transformation 
( ) ( ) ( ), ,x t k x wtχ χ ζ ζ= = − (37)

transform eq. (36) into ODE:

( )2 3 22 1 0 k wχ χ χ′′− + + − = (38)

Comparing it with (17) results that α = –k2, β = 2, and γ = w2 – 1. Hence, we have:
Case 1. The first family of solutions:

( ) ( )2 2
1 , 1 1  x t kmsn k x k m tχ   = ± − − +    

(39)

As long as m → 1, eq. (39) becomes:

( ) ( )2
1 ,  tanh 1 2  x t k k x k tχ  = ± − −  

(40)

where k is arbitrary constant. This solution is depicted in fig. 1.
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Figure 1. Graph of solution of eq. (40) with k = 0.45 

 Case 2. The second family of solutions:

( ) ( ) ( )2 2 2 2
2

1 1, 1 2  1 2  
2 2 2 2
k kx t msn k x k m t i mcn k x k m tχ

         = ± − − − − − − −      
            

(41)

As long as m → 1,  eq. (41) becomes:

( ) 2 2
2

1 1,  tanh 1   sech 1  
2 2 2 2
k kx t k x k t i k x k tχ

         = ± − − − − −      
            

(42)

Case 3. The second family of solutions:

( ) ( ) ( )2 2 2 2
3

1 1, 1 2  1 2  
2 2 2 2
k kx t msn k x k m t i mcn k x k m tχ

          = ± − − − + − − −                    
(43)
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As long as m → 1, eq. (43) becomes:

( ) 2 2
3

1 1,  tanh 1   sech 1  
2 2 2 2
k kx t k x k t i k x k tχ

          = ± − − + − −                    
(44)

where k is arbitrary constant.
Case 4. The fourth family of solutions:

( ) ( )2 2
4 ,  1 1 2  x t ik mcn k x k m tχ   = ± − − −    

(45)

As long as m → 1, eq. (45) becomes:

( ) { }2
4 , sech 1  x t ik k x k tχ  = ± − +

  (46)

where k is arbitrary constant. 

Test Case 2

The second test case is the coupled Higgs system:
2 2| | 2 0, (| | ) 0tt xx tt xx xxu u u u u qφ φ φ− + − = + − = (47)

in which u(x, t) and ϕ(x, t) are the complex scalar nucleon field and the real scalar meson field, 
respectively [34]. Using the traveling wave transformation:

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,, e , , e , , ,i x t i x tu x t q x t x t px rt x tη ηζ φ ψ ζ η ζ µ= = = + = + (48)

where p, r , and µ are constants. Writing eq. (48) into eq. (47) yields:

( ) ( )2 2 2 31 2 0q p r q q qµ ψ′′− + − − + = (49)

( )2 21 2( ) 2 0q q qqµ ′′ ′ ′′+ − − = (50)

Integrating eq. (49) and neglecting the constant of integration:

( )2 21 qµ ψ+ = (51)

Inserting eq. (51) into eq. (50), we obtain:

( ) ( ) ( )( )4 2 3 2 2 21 1 1 0q q p r qµ µ µ′′− + − + + − = (52)

Comparing it  with  (17) gives α = ( µ4 – 1), β  = ( µ2 – 1), and  γ = (µ2 + 1)(p2 – r2):
Case 1.

( )
2 2 2 2

1 2 2,  2 2  1
1 1

p r p rq x t i msn x t
m m

  − − = ± + + +    + +   
(53)

For m → 1, eq. (53) becomes:

( )
2 2

2 2
1 ,  4  tanh 1

2
p rq x t i p r x t

 − = ± − + + +
 
 

(54)
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Thus the solution of eq. (47):

( ) ( )
2 2

2 2
1 ,  e  4  tanh 1

2
i px rt p ru x t i p r x t+

 − = ± − + + +
 
 

(55)

where p, r are arbitrary constants.
Case 2.

( )
( )

( )

2 22 2

2 2 2

2 22 2

2 2

2
, 1 1

2 2

2
1 1

2 2

p rp rq x t i msn x t
m m

p rp r mcn x t
m m

 −−  = ± + + + + − −  
 −−  + + + + − −  

(56)

For m → 1, eq. (56) becomes:

( ) ( )

( )

2 2 2 2
2

2 2 2 2

, 1 tanh 2 1

1 sech 2 1

q x t i p r x p r t

p r x p r t

 = ± − + + − + +  
 + − + + − +  

(57)

Thus the solution of eq. (47):

( ) ( ) ( )

( )

2 2 2 2
2

2 2 2 2

, e 1tanh 2 1

1sech 2 1

i px rtu x t i p r x p r t

p r x p r t

+  = ± ± + + − +  

 + − + + − + 




  

− +



 (58)

where p, r are arbitrary constants. 
Case 3. The third family of equation:

( )
( )

( )

2 22 2

3 2 2

2 22 2

2 2

2
, 1 1

2 2

2
1 1

2 2

p rp rq x t i msn x t
m m

p rp r mcn x t
m m

 −−  = ± + + + − − −  
 −−  − + + + − −  

(59)

For m → 1, eq. (56) becomes:

( ) ( ) ( )2 2 2 2 2 2 2 2
3 , 1 tanh 2 1 1 2 1q x t i p r x p r t p r sech x p r t   = ± − + + − + − − + + − +      

(60)

Thus the solution of eq. (47):

( ) ( ) ( )

( )

2 2 2 2
3

2 2 2 2

, e 1tanh 2 1

1sech 2 1

i px rtu x t i p r x p r t

p r x p r t

+   = ± ± − + + − + +   
 + + + + − +    

(61)

where p, r are arbitrary constants.
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Case 4. 

( )
2 2 2 2

4 2 2, 2 2   1
1 2 1 2
p r p rq x t mcn x t

m m

  − − = ± + + +    − −   
(62)

As long as m → 1,  eq. (62) becomes:

( ) ( )2 2 2 2
4 , 2 2  sech 1q x t r p x r p t = ± − + + − +   (63)

 Thus the solution of eq. (47):
 

( ) ( ) ( )2 2 2 2
4 ,  e  2 2  sech 1i px rtu x t r p x r p t+  = ± − + + − +   (64)

where p, r are arbitrary constants. Figures 2 and 3 illustrate the solutions.
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Figure 2. Graph of real part of solution of eq. (64) with p = 1.5 and r = 1.4 
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Figure 3. Graph of imaginary part of solution of eq. (64) with p = 1.5 and r = 1.4 

Conclusion

 We obtained exact solutions of cubic Boussinesq and coupled Higgs system by the 
unified method. The explicit solutions are expressed in terms of some elementary functions 
including trigonometric, exponential, and polynomial. Tests functions indicated the strength of 
the method. As a future expansion of the work, we will apply the method to some other NLEE 
having a noise term.
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