
Research Article
Existence and Uniqueness of Uncertain Fractional Backward
Difference Equations of Riemann–Liouville Type

Pshtiwan Othman Mohammed ,1 Thabet Abdeljawad ,2,3,4 Fahd Jarad ,5

and Yu-Ming Chu 6,7

1Department of Mathematics, College of Education, University of Sulaimani, Kurdistan Region, Sulaimani, Iraq
2Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
3Department of Medical Research, China Medical University, Taichung 40402, Taiwan
4Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
5Department of Mathematics, Cankaya University, Etimesgut, Ankara 06790, Turkey
6Department of Mathematics, Huzhou University, Huzhou 313000, China
7Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,
Changsha University of Science & Technology, Changsha 410114, China

Correspondence should be addressed to �abet Abdeljawad; tabdeljawad@psu.edu.sa and Yu-Ming Chu;
chuyuming@zjhu.edu.cn

Received 6 August 2020; Revised 6 September 2020; Accepted 29 September 2020; Published 17 October 2020

Academic Editor: A. M. Abd-Alla

Copyright © 2020 PshtiwanOthmanMohammedet al.�is is anopenaccess article distributedunder theCreativeCommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we consider the analytic solutions of the uncertain fractional backward difference equations in the sense of
Riemann–Liouville fractional operators which are solved by using the Picard successive iteration method. Also, we consider the
existence and uniqueness theorem of the solution to an uncertain fractional backward difference equation via the Banach
contraction fixed-point theorem under the conditions of Lipschitz constant and linear combination growth. Finally, we point out
some examples to confirm the validity of the existence and uniqueness of the solution.

1. Introduction

Fractional calculus is based on an old idea that has become
important and popular in applications only recently. �e
idea is to generalize integration and differentiation to
noninteger orders in order to develop and extend the
theory of calculus and to describe a more extensive range of
possible doings in reality. During the past decades, frac-
tional differential equations have been widely employed in
many fields: mathematical analysis, optics and thermal
systems, control engineering, and robotics, see, for ex-
ample, [1–9].

In recent years, uncertain fractional differential and
difference equations and discrete difference equations
have become popular in both theory and applications.
�ese represent a new area for researchers which was

developed slowly in their early stages. By using modeling
techniques with discrete fractional calculus, some re-
searchers established the existence, uniqueness, mono-
tonicity, multiplicity, and qualitative properties of
solutions to uncertain fractional difference equations
(UFDEs) in the sense of Riemann–Liouville, Caputo, and
AB operators; for further details, see [10–22] and the
references cited therein.

�e aim of this attempt is to investigate the existence and
uniqueness of fractional difference equations in the sense of
Riemann–Liouville-like difference operator with assuming
Lipschitz condition on its nonlinear term. Our findings are
partial continuation of some results obtained in [23–25]. It is
worth mentioning that the uncertainty theory of fractional
difference equations is used to make the problems have a
unique solution almost surely.
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2. Preliminaries

�is section presents some preliminaries, definitions, and
facts in the field of uncertainty theory and discrete fractional
calculus, see, e.g., [12, 26–28]. �roughout the article, we
consider Na � a, a + 1, a + 2, . . . ,{ } for a ∈ R and the
backward jump operator ρ(r) ≔ r − 1 for r ∈ Na.

Definition 1 (see [26]). For any function f: Na⟶ R, the
backward difference operator is defined by

∇f(t) � f(t) − f(ρ(t)), t ∈ Na, (1)

while the backward sum is given by

∇− 1
a f(t) � 

t

r�a+1
f(r), t ∈ Na+1. (2)

Definition 2 (see [26–29]). For any natural number j, the
∇-rising factorial function of t is defined by

t
j

� 

j− 1

ℓ�0
(t + ℓ), t

0
� 1. (3)

Moreover, for any ] ∈ R, the ∇-rising factorial function
is defined by

t
]

�
Γ(t + ])

Γ(t)
, 0] � 0, (4)

for t ∈ R\ . . . , − 2, − 1, 0{ }. Also, note that the division by
negative integer poles of the gamma function gives zero.

A major property of the rising factorial function is as
follows:

∇ t
]

  � ]t
]− 1

. (5)

�is implies that t] is increasing on N0 such that ]> 0.

Definition 3 (see [13, 14, 26–29]). For any function
f: Na⟶ R, the nabla fractional sum of order ]> 0 in the
sense of Riemann–Liouville is defined by

∇− ]
a f( (t) �

1
Γ(])



t

r�a+1
(t − ρ(r))

]− 1
f(r),

∇0af (t) � f(t).

(6)

Lemma 1 (see [13, 14, 26–28]). For any function f defined
on Na and any ], α> 0, we have

∇− ]
a ∇

− α
a f( (t) � ∇− (α+])

a f (t) � ∇− α
a ∇

− ]
a f( (t). (7)

Lemma 2 (see [13, 14, 26–28]). For any function f defined
on Na and any ]> 0, we have

∇]af( (t) � ∇∇− (1− ])
a f (t). (8)

Lemma 3 (see [13, 14, 26–28]). For any function f defined
on Na and any ]> 0, we have

∇− ]
a ∇f( (t) � ∇∇− ]

a f( (t) −
(t − a)

]− 1

Γ(])
f(a). (9)

Lemma 4 (see [13, 14, 26–28]). For any function f defined
on Na and any ]> 0, we have

∇− ]
a ∇

]
f( (t) � ∇]a∇

− ]
f( (t) � f(t), ] ∉ N,

∇− ]
a ∇

]
f( (t) � f(t) − 

]− 1

k�0

(t − a)
k

k!
∇k

f(a), ] ∈ N.

(10)

Lemma 5 (see [13, 14, 26–28]). For any a ∈ R and ], α> 0,
we have

∇− ]
a (t − a)

α
�
Γ(α + 1)

Γ(α + ] + 1)
(t − a)

α+]
. (11)

Motivated by the definition of the nth-order backward
sum for uncertain sequence ξt, we define the ]th-order
backward sum for uncertain sequence ξt as follows:

Definition 4 (see [13, 14, 28]). Let ]> 0, a ∈ R, and ξt be an
uncertain sequence indexed by t ∈ Na. �en, we have

∇− ]
a ξt �

1
Γ(])



t

r�a+1
(t − ρ(r))

]− 1ξr, (12)

which is called the ]th-order backward fractional sum of
uncertain sequence ξt.

Definition 5 (see [13, 14, 28]). For any ]> 0, the fractional
Riemann–Liouville-like backward difference for uncertain
sequence ξt is defined by

∇]aξt � ∇a ∇
− (1− ])
a ξt . (13)

Next, we recall the definition of nabla discrete Mittag-
Leffler (ML).

Definition 6 (see [28]). For any λ ∈ R and ], μ, η ∈ C with
Re(])> 0, the two-parameter discreteML function is defined
by

E],μ(λ, η) ≔ 
∞

ℓ�0
λℓ

ηℓ]+μ− 1

Γ(ℓ] + μ)
, |λ|< 1. (14)

Particularly, if μ � 1, we get the one-parameter discrete
ML function:

E](λ, η) ≔ 
∞

ℓ�0
λℓ

ηℓ]

Γ(ℓ] + 1)
, |λ|< 1. (15)
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3. UFBDE and Existence and
Uniqueness Theorem

First, we recall the inverse uncertainty distribution theory.

Definition 7. (see [11]). An uncertainty distribution Ψ is
called regular if it is a continuous and strictly increasing
function and satisfies

lim
x⟶− ∞
Ψ(x) � 0,

lim
x⟶+∞
Ψ(x) � 1.

(16)

Definition 8. (see [11]). Let ξ be an uncertain variable with a
regular uncertainty distribution Ψ. �en, the inverse func-
tion Ψ− 1 is called the inverse uncertainty distribution of ξ.

Example 1. FromDefinition 8, we deduce that the following:

(i) �e inverse uncertainty distribution of a linear un-
certain variable L(a, b) is given by

Ψ− 1
(α) � (1 − α)a + αb. (17)

(ii) �e inverse uncertainty distribution of a normal
uncertain variable L(e, σ) is given by

Ψ− 1
(α) � e +

�
3

√
σ

π
ln

α
1 − α

 . (18)

(iii) �e inverse uncertainty distribution of a normal
uncertain variable LOGN(e, σ) is given by

Ψ− 1
(α) � exp(e) +

α
1 − α

 
(

�
3

√
σ/π)

. (19)

Definition 9. (see [11]). We say that an uncertain variable ξ
is symmetrical if

Ψ(x) + Ψ(− x) � 1, (20)

where Ψ(x) is a regular uncertainty distribution of ξ.

Remark 1. From Definition 9, we can deduce that the
symmetrical uncertain variable has the inverse uncertainty
distribution Ψ− 1(α) that satiates

Ψ− 1
(α) + Ψ− 1

(1 − α) � 0. (21)

Example 2. FromDefinition 9, we deduce that the following:

(1) �e linear uncertain variable L(− a, a) is symmet-
rical for any positive real number a

(2) �e normal uncertain variable L(0, 1) is
symmetrical

Definition 10. (see [11]; i.i.d. definition). In statistics and
probability theory, a collection of random variables ξis is
independent and identically distributed (or briefly, i.i.d.) if
each random variable ξi has the same probability distri-
bution as the others and all are mutually independent.

�en, we state the definition of the UFBDE.

Definition 11. An uncertain fractional difference equation is
a fractional difference equation which is driven by an un-
certain sequence. Moreover, an uncertain fractional back-
ward difference equation for the Riemann–Liouville type is
the uncertain fractional difference equation with Rie-
mann–Liouville-like backward difference.

Consider the following generalized Riemann–Liouville
fractional difference equation:

∇αα− 1y( (t) � G(t, y(t)) + H(t, y(t))ξt, (22)

subject to the initial condition (i.c.)

∇− (1− α)
α− 1 y (t)|t�α � y(α), (23)

where ∇αα− 1 denotes fractional Riemann–Liouville-like
backward difference with 0< α< 1, G, H are two real-valued
functions defined on [1,∞] × R, t ∈ N1 ∩ [1, T + 1],
y(α) ∈ R is a crisp number, and ξ1, ξ2, . . . , ξT+1 are
(T + 1)-i.i.d. uncertain variables with symmetrical uncer-
tainty distribution L(a, b).

Remark 2. Observe that the i.i.d. uncertain variables are
those uncertain variables that are independent and have the
same uncertainty distribution. See [11] for more detail.

Lemma 6. Initial value problem (22) with i.c. (23) is
equivalent to the following uncertain fractional sum equation:

y(t) �
(t − α + 1)

α− 1

Γ(α)
y(α)

+
1
Γ(α)



t

r�α+1
(t − ρ(r))

α− 1
G(r, y(r)) + H(r, y(r))ξr ,

(24)

for t ∈ Nα+1 ∩ [1, T + 1].

Proof. �eproof is very similar to [29], Lemma 5.1, and [30],
�eorem 2, hereby applying the operator ∇− α

α to IVP (22)
with Definition 3, Lemma 2, and Lemma 3, so we omit this.

In this paper, the following special linear UFBDE will be
considered:

∇αα− 1y(t) � λy(t) + λξt, (25)

∇− (1− α)
α− 1 y(t)|t�α � y(α), (26)

for t ∈ N1 ∩ [1, T + 1], n ∈ N1, and λ ∈ (0, 1). □

Remark 3. �e following identity is useful in proving the
upcoming theorem. FromDefinition 3 and Lemma 5, we can
deduce for any real number a
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∇− α
a (t − a + 1)

β
�
Γ(β + 1)

Γ(α + β + 1)
(t − a + 1)

α+β

−
Γ(β + 1)

Γ(α)
(t − a + 1)

α− 1
,

(27)

where α> 0 and β> − 1.

Theorem 1. For any t ∈ Nα+1 ∩ [1, T + 1] and |λ|< 1, linear
UFBDE (25) with the initial condition (26) has a solution

y(t) � (1 − λ)Eα,α(λ, t − α + 1)y(α) + ξt, (28)

where ξt is an uncertain sequence with the uncertainty dis-
tribution L(a · λEα,α+1(λ, t − α), b · λEα,α+1(λ, t − α)).

Proof. Applying the operator ∇− α
α to equation (25), we get

∇− α
α ∇

α
α− 1y(t)(  � λ∇− α

α y(t) ) + λ∇− α
α ξt,

t ∈ Nα+1 ∩ [1, T + 1].
(29)

Making use of Lemma 2 and Lemma 3 to the left-hand
side of (29), we get

∇− α
α ∇

α
α− 1y(t)(  � ∇− α

α ∇α∇
− (1− α)
α− 1 y(t) ,

� ∇α ∇
− α
α ∇

− (1− α)
α− 1 y(t)  −

(t − α + 1)
α− 1

Γ(α)
y(α),

� y(t) −
(t − α + 1)

α− 1

Γ(α)
y(α),

t ∈ Nα+1 ∩ [1, T + 1].

(30)

It follows from this and equation (29) that

y(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α y(t) + λ∇− α
α ξt,

t ∈ Nα+1 ∩ [1, T + 1],

(31)

which is the solution of UFBDE (28).
To derive the solution, we use the Picard approximation

recurrence formula with a starting point y0(t) �

((t − α + 1)α− 1/Γ(α))y(α) for each t ∈ Nα− 1 ∩ [1, T + 1]. �e
other components can be determined by using the following
recurrence relation:

yj(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α yj− 1(t) + λ∇− α
α ξt,

(32)

for t ∈ Nα+1 ∩ [1, T + 1] and j ∈ N1. Since ξ1, ξ2, . . . , ξT+1 are
i.i.d. uncertain variables, we write ξt � ξ in distribution. By
using Lemma 5, Remark 3, and the fact that the linear
combination of finite independent uncertain variables is an
uncertain variable with a positive linear combination co-
efficient (see �eorems 1.21–1.24 of [11]), we can deduce

y1(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α y0(t) + λ∇− α
α ξ

�
(t − α + 1)

α− 1

Γ(α)
y(α)

+ λ
(t − α + 1)

2α− 1

Γ(2α)
−

(t − α + 1)
α− 1

Γ(α)
⎡⎢⎣ ⎤⎥⎦y(α)

+ λ
(t − α)

α

Γ(α + 1)
ξ,

y2(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α y1(t) + λ∇− α
α ξ

�
(t − α + 1)

α− 1

Γ(α)
y(α)

+ λ
(t − α + 1)

2α− 1

Γ(2α)
−

(t − α + 1)
α− 1

Γ(α)
⎡⎢⎣ ⎤⎥⎦y(α)

+ λ2
(t − α + 1)

3α− 1

Γ(3α)
−

(t − α + 1)
2α− 1

Γ(2α)
⎡⎢⎣ ⎤⎥⎦y(α)

+
λ(t − α)

α

Γ(α + 1)
+
λ2(t − α)

2α

Γ(2α + 1)
⎡⎢⎣ ⎤⎥⎦ξ,

⋮
(33)

and so on, continuing the process up to the jth term to get

yj(t) � 

j

k�0
λk (t − α + 1)

kα+α− 1

Γ((k + 1)α)
−

(t − α + 1)
kα− 1

Γ(kα)
⎡⎢⎢⎣ ⎤⎥⎥⎦y(α)

+ 

j

k�1
λk (t − α)

kα

Γ(kα + 1)
ξ,

(34)

for each t ∈ Nα+1 ∩ [1, T + 1]. Observe that the two series
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∞

k�0
λk (t − α + 1)

kα+α− 1

Γ((k + 1)α)
−

(t − α + 1)
kα− 1

Γ(kα)
⎡⎢⎢⎣ ⎤⎥⎥⎦ � Eα,α(λ, t − α + 1) − λEα,α(λ, t − α + 1)

� (1 − λ)Eα,α(λ, t − α + 1),



∞

k�1
λk (t − α)

kα

Γ(kα + 1)
� λEα,α+1(λ, t − α),

(35)

are absolutely convergent for |λ|< 1 by the d’Alembert ratio
comparison test, and the limitation Y(t) ≔ limj⟶∞yj ex-
ists. �us, we have

Y(t) � λEα,α+1(λ, t − α)ξ +(1 − λ)Eα,α(λ, t − α + 1)y(α),

t ∈ Nα+1 ∩ [1, T + 1].

(36)

On the contrary, taking the limit on both sides of (32)
yields

Y(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α Y(t) + λ∇− α
α ξt,

t ∈ Nα+1 ∩ [1, T + 1].

(37)

�at is, Y(t) satisfies equation (31), and hence, Y(t) is a
solution of equation (25) subject to the initial condition (26).
�us, our proof is completed.

�e following theorem provides and confirms the ex-
istence and uniqueness of the solution of UFBDEs. □

Theorem 2. Assume that G(t, x) and H(t, x) satisfy the
Lipschitz condition

|G(t, x) − G(t, y)| +|H(t, x) − H(t, y)|≤L|x − y|, (38)

and there is a positive number L that satisfies the following
inequality:

L<
Γ(α + 1)Γ(T + 1 − α)

Γ(T + 1)(Q + 1)
, (39)

where Q � |a|∨ |b|. Hen, UFBDE (25) subject to the initial
condition (26) has a unique solution y(t) for
t ∈ Nα+1 ∩ [1, T + 1] almost surely.

Proof. Define

l
k
α ≔ x; x � x(t){ }

k
α+1, k ∈ N1 , ‖x‖,

≔ maxt∈Nα+1 ∩ [1,T+1]|x(t)|,
(40)

where x(t){ }
k
α are finite real sequences which have k terms.

It is clear that (lkα, ‖·‖) is a Banach space (see [31], Chapter
4). Now, for any yt ∈ lkα, we define the operator P as
follows:

Pyt �
(t − α)

α− 1

Γ(α)
y(α) +

1
Γ(α)



t

r�α+1
(t − ρ(r))

α− 1
G r, yr( 

+ H r, yr( ξr.

(41)

Since ξt(t ∈ Nα+1 ∩ [1, T + 1]) is an uncertain variable at
each time t with the linear uncertainty distributionL(a, b),
we have M (ξt < a)∪ (ξt > b)  � 0. �e inequality ξt(c)≤Q

(where Q � |a|∨|b|) holds almost surely for any
c ∈ χ (ξt < a)∪ (ξt > b); t ∈ Nα+1 ∩ [1, T + 1] , where χ rep-
resents the universal set on the uncertainty space. �en, by
making use of the assumptions and Lemma 5, we have, for
any xt, yt ∈ lkα,

Mathematical Problems in Engineering 5



Pxt(c) − Pyt(c)
����

���� � max
t∈Nα+1 ∩ [1,T+1]

Pxt(c) − Pyt(c)


,

≤
1
Γ(α)

max
t∈Nα+1 ∩ [1,T+1]



t

r�α+1
(t − ρ(r))

α− 1
,

× G( r, xr(c) − G( r, yr(c)


 + H( r, xr(c) − H( r, yr(c) ξr


 ,

≤
1
Γ(α)

max
t∈Nα+1 ∩ [1,T+1]



t

r�α+1
(t − ρ(r))

α− 1
,

× G( r, xr(c) − G( r, yr(c)


 + Q H( r, xr(c) − H( r, yr(c)


 ,

≤L(1 + Q)
1
Γ(α)

max
t∈Nα+1 ∩ [1,T+1]



t

r�α+1
(t − ρ(r))

α− 1
xr(c) − yr(c)


,

≤L(1 + Q) xt(c) − yt(c)
����

���� max
t∈Nα+1 ∩ [1,T+1]

∇− α
α (t − α)

0
 ,

� L(1 + Q) xt(c) − yt(c)
����

���� max
t∈Nα+1 ∩ [1,T+1]

1
Γ(α + 1)

(t − α)
α

 ,

≤
L(1 + Q)(T + 1 − α)

α

Γ(α + 1)
xt(c) − yt(c)

����
����,

�
L(1 + Q)Γ(T + 1)

Γ(α + 1)Γ(T − α + 1)
xt(c) − yt(c)

����
����.

(42)

Now, we can observe that the mapping P is a contraction
in lkα almost surely with 0<L< (Γ(α + 1)Γ(T − α + 1)/(1 +

Q)Γ(T + 1)) (see [31], Chapter 4).�en, by using the Banach
contraction mapping theorem (see [31], Chapter 4), we get a
unique fixed point yt(c) of P in lkα almost surely. Moreover,
yt(c) � limj⟶∞y

j
t (c), where y

j
t (c) � P(y

j− 1
t (c)), with

y0
t (c) � ((t − α)α− 1/Γ(α))y(α).
For any given t ∈ Nα+1 ∩ [1, T + 1], as G and H are

Lipschitz continuous functions, the operator P is measur-
able. Since y1

t (c), y2
t (c), . . . , y

j
t (c), . . . are uncertain vari-

ables and y0
t (c) is a real-valued measurable function of

uncertain variables, y0
t (c) is an uncertain variable by [11],

�eorem 1.10. Hence, yt � limj⟶∞y
j
t is an uncertain

variable (see [21], �eorem 3).
Consequently, UFBDE (25) with i.c. (26) has a unique

solution yt for t ∈ Nα+1 ∩ [1, T + 1] almost surely. □

4. Example Illustrations

�is section deals with some examples to confirm the val-
idity of �eorem 2.

Example 3. Consider the following UFBDE:

∇(1/2)
(− 1/2)y(t) �

ln(|y(t)| + 1)

2t
3 + 0.5ξt, t ∈ N1 ∩ [1, 4],

y
1
2

  � 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

where ξ1, . . . , ξ4 are four i.i.d. uncertain variables with
uncertainty distribution L(− 1, 2).

According to Lemma 6 with α � (1/2), the inverse
uncertainty distribution of the solution for UFBDE (43) is
the solution of the following sum equation:

y(t) �
(t +(1/2))

− 0.5

Γ(0.5)
y(α) +

1
Γ(0.5)



t

r�(3/2)

(t − ρ(r))
− 0.5

·
ln(|y(r)| + 1)

4r
3 + 0.25ξr , t ∈ N0.5 ∩ [1, 4].

(44)

6 Mathematical Problems in Engineering



�en, for t ∈ N0.5 ∩ [1, 4], we have

|G(t, x) − G(t, y)| +|H(t, x) − H(t, y)| �
ln(|x| + 1)

2t
3 −

ln(|y| + 1)

2t
3




,

�
1
2t

3 |ln(|x| + 1) − ln(|y| + 1)|,

≤
1

2(3/2)
3 ||x| − |y||≤

4|x − y|

27
,

Γ(0.5 + 1)Γ(4 + 1 − 0.5)

3Γ(4 + 1)
≈ 0.1636>

4
27

� 0.1481.

(45)

�us, UFBDE (43) has a unique solution almost surely
by �eorem 2.

Example 4. We consider the following UFBDE:

∇0.25
− 0.25y(t) �

y
2
t

40
+ ξt, t ∈ N1 ∩ [1, 4], (46)

where ξ1, ξ2, ξ3, ξ4 are four i.i.d. linear uncertain variables
with linear uncertainty distribution L(− 3, 3).

According to Lemma 6 with α � (1/4), the inverse
uncertainty distribution of the solution for UFBDE (46) is
the solution of the following sum equation:

y(t) �
(t +(1/2))

− (3/4)

Γ(0.25)
y(α)

+
1
Γ(0.25)



t

r�1.25
(t − ρ(r))

− (3/4) y
2
r

40
+ ξr .

(47)

Observe that |G(t, x) − G(t, y)| + |H(t, x) − H(t, y)| is
Lipschitz-continuous in [− 20, 20] with Lipschitz constant
0.1 as follows:

|G(t, x) − G(t, y)| +|H(t, x) − H(t, y)|≤
1
40

|x + y||x − y|

� 0.1|x − y|.

(48)

Also, we have

Γ(0.25 + 1)Γ(3 + 1 − 0.25)

4Γ(3 + 1)
≈ 0.167> 0.1. (49)

Consequently, UFBDE (50) has a unique solution almost
surely by �eorem 2.

Example 5. Consider the following UFBDE:

∇0.5
− 0.5y(t) �

sin(ty)

10 + t
2 + 0.1ξt, t ∈ N1 ∩ [1, 4], (50)

where ξ1, ξ2, ξ3, ξ4 are 4 i.i.d. linear uncertain variables with
linear uncertainty distribution L(− 1, 1).

According to Lemma 6 with α � (1/2), the inverse
uncertainty distribution of the solution for UFBDE (50) is
the solution of the following sum equation:

y(t) �
(t +(1/2))

− 0.5

��
π

√ y(α)

+
1
��
π

√ 

t

r�1.5
(t − ρ(r))

− 0.5 sin(ry)

10 + r
2 + 0.1ξr .

(51)

�en, we can directly verify that

|G(t, x) − G(t, y)| +|H(t, x) − H(t, y)|≤
1
10

|x − y|,

Γ(0.5 + 1)Γ(3 + 1 − 0.5)

2Γ(3 + 1)
≈ 0.2454>

1
10

� 0.1.

(52)

Consequently, UFBDE (50) has a unique solution almost
surely by �eorem 2.

5. Conclusion

We have presented analytical solutions to a special type of
linear UFBDEs. Moreover, a Lipschitz condition with its
constant is given to provide a unique solution almost surely
to an UFBDE. It can be seen that our obtained results pave
the way for the future works, that is, to investigate the
stability analysis and applications of UFBDEs.
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