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Abstract
In this paper, we investigate the existence of mild solutions to semilinear evolution 
fractional differential equations with non-instantaneous impulses, using the concepts 
of equicontinuous (�, �)-resolvent operator function ℙ�,�(t) and Kuratowski measure 
of non-compactness in Banach space �.
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1  Introduction

We can start the paper with the following questions: Why study fractional calculus? 
What are the advantages we gain by investigating and proposing new results in the 
field of fractional calculus? Are the results presented so far important and relevant to 
the point of contributing to the scientific community? In a simple and clear answer, 
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it is enough to notice the exponential scientific growth in the area and the impact 
that the fractional calculus has contributed to mathematics and other diverse sci-
ences, specially, in a shocking way in the context of mathematical modeling [9, 17, 
19, 23, 25–28].

The theory of differential equations with non-instantaneous impulses and impul-
sive evolution equations in Banach spaces has been investigated by many research-
ers in the last decades [2, 18, 24]. It is noted that investigating the existence, unique-
ness, stability of solutions of differential equations of evolution has been object of 
study and applicability in the scientific community, since it describes processes that 
experience a sudden change in their states at certain moments [1, 3, 7, 8, 15]. The 
applicability of the obtained results related to the differential equations, especially 
with non-instantaneous impulses, can be found in several areas, such as: physics, 
engineering, economics, biology, medicine and mathematics itself, among others [2, 
18].

Pierri et al. [21] investigated the existence of solutions of a class of abstract semi-
linear differential equations with non-instantaneous impulses using the semigroup 
analytic theory. In the same year, Hernandez and O’Regan [16], investigated the 
existence of solutions of a new class of impulsive abstract differential equations with 
non-instantaneous impulses. In this sense, Zhang and Li [6], by means of mono-
tone iterative technique and semigroup theory, investigated the existence of mild 
solutions of a class of semi-linear evolution equations, also with non-instantane-
ous impulses in Banach space. So it is noted that the study on the subject is indeed 
important and motivating for the researchers.

Therefore, many researchers, specifically, from the fractional analysis group, had 
the motivation, based on tools and new results from the fractional calculus, to inves-
tigate the essential properties of solutions of fractional differential equations, from 
existence, uniqueness, Ulam–Hyers stabilities, controllability, among others, thus 
providing an exponential growth of new results and strengthening the area [10, 11, 
22, 29–33, 36, 39].

Gu and Trujillo [14] were concerned to focus on the investigation of the existence 
of mild solutions of the evolution of fractional equation in the sense of Hilfer frac-
tional derivative, using noncompactness measure in Banach space X. On the other 
hand, Fu and Huang [12] investigated the existence and regularity of solutions for a 
neutral functional integro-differential equation with state-dependent delay in Banach 
space, using the fixed-point theorem of Sadovskii under compactness condition for 
the resolvent operator and under Holder continuity condition.

In order to propose new results that contribute to the field of fractional differen-
tial equations, Mu [20] decided to investigate the existence of a mild solution for the 
impulsive fractional evolution equation given by

⎧⎪⎨⎪⎩

D�
0+
u(t) + Au(t) = f (t, u(t)), t ∈ I ∶= [0, T], t ≠ tk

�u�t=tk = Ik(u(tk)), k = 1, 2,… ,m

u(0) + g(u) = x0 ∈ X
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where D�
0+
(⋅) is Caputo fractional derivative with 0 < 𝛼 < 1 , A ∶ D(A) ⊂ X → X 

is a linear closed densely defined operator, −A is the infinitesimal gen-
erator of an analytic semigroup of uniformly bounded linear operators 
(T(t))t≥0 , 0 = t0 < t1 < t2 < ⋯ < tm < tm+1 = T  , f ∶ I× → X is continuous, 
g ∶ PC(I,X) → X is continuous, the impulsive function Ik ∶ X → X is continuous, 
�u|t=tk = u(t+) − u(t−) , where u(t+) , u(t−) represent the right and left limits of u(t) 
at t = tk , respectively. For a brief reading on others of existence and uniqueness of 
solutions of fractional differential equations, we suggest [4, 13, 34, 37, 38].

In this sense, inspired by the works proposed up to here, we note the necessity 
and importance of the realization of a work that will contribute to the existence 
of solutions of fractional differential equations. Then, we consider the semi-lin-
ear evolution fractional differential equation with non-instantaneous impulses in 
Banach space � , given by

where H��,�

0+
(⋅) is Hilfer fractional derivative, I1−�

0+
(⋅) is Riemann–Liouville frac-

tional integral with 0 < 𝛼 ≤ 1 , 0 ≤ � ≤ 1 and 0 ≤ � ≤ 1(� = � + �(1 − �)) , 
A ∶ �(A) ⊂ 𝛺 → 𝛺 is a linear operator and is the infinitesimal genera-
tor of a strongly continuous semigroup 

(
C0 − semigroup

)
 (ℙ(t))t≥0 in � with 

0 < t1 < t2 < ⋅ ⋅ ⋅ < tm < tm+1 ∶= a, a > 0 is a constant, s0 ∶= 0 and sk ∈
(
tk, tk+1

)
 

for each k = 1, 2,… ,m . We also have f ∶ [0, a] ×� → � a given nonlinear func-
tion satisfying some assumptions �k ∶

(
tk, sk

]
×� → � is non-instantaneous impul-

sive function for all k = 1, 2,… ,m, and u0 ∈ �.
We highlight here a rigorous analysis of Eq. (1) regarding the main results and 

advantages obtained in this paper: 

1.	 We present a new class of solutions for differential equation of semi-linear evolu-
tion with non-instantaneous impulses by means of the Hilfer fractional derivative.

2.	 An important and relevant factor is the properties of the Hilfer fractional deriva-
tive, since they are preserved for their particular cases. In this sense, when inves-
tigating a particular property of a fractional differential equation and obtaining 
a particular case for the derivative, the properties of the differential equation are 
preserved, in this case, the existence of mild solutions.

3.	 From the limits � → 0 and � → 1 in Eq. (1), we obtain the respective special 
cases for the differential equations, i.e., the classical fractional derivatives of 
Riemann–Liouville and Caputo, respectively. In addition to the integer case, by 
choosing � = 1.

Since many applications are performed by means of differential equations with 
non-instantaneous impulses, specifically in biology and medicine; and by the 

(1)

⎧
⎪⎪⎨⎪⎪⎩

H
�

�,�

0+
u(t) +Au(t)(t) = f (t, u(t)), t ∈

m⋃
k=0

�
sk, tk+1

�

u(t) = �k(t, u(t)), t ∈
m⋃
k=1

�
tk, sk

�

I
1−�

0+
u(0) = u0
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enormous amount of parameters that appear when using differential equations to 
model a given problem, one way to overcome a certain barrier is to propose more 
general differential equations. In this case, one way is to use the more general 
fractional derivatives and here, we use the Hilfer fractional derivative. Although 
there are other fractional derivatives, a special emphasis on the �-Hilfer frac-
tional derivative, we restrict this work to the Hilfer fractional derivative. In this 
sense, the result obtained here may also contribute to future applications.

This paper is organized as follows. In Sect. 2, we present the space of the weighted 
functions and their respective norm, as well as the concepts of Hilfer fractional deriva-
tive. The concepts of equicontinuous (�, �)-resolvent operator function ℙ�,�(t) , Kura-
towski measure of noncompactness �(⋅) , mild solution and Lemmas results that are of 
paramount importance throughout the paper are also presented. In Sect. 3, the main 
result of this paper is investigated, the existence of mild solution of the semi-linear evo-
lution fractional differential equation with non-instantaneous impulses in the Banach � 
space, making use of refined mathematical analysis tools, in particular, of the Lebesgue 
dominated convergence theorem. Concluding remarks close the paper.

2 � Preliminaries

In this section, some definitions and results are presented through Lemmas, essential 
for the development of the paper.

The space of continuous function C(J,ℝ) (J ∶= [0, a]) with norm is given by [29]

On the other hand, the weighted space of functions u on J� ∶= (0, a] is defined by

where 0 ≤ � ≤ 1, with the norm

obviously, the space C1−� (J,�) is a Banach space. We now, present the definition 
piecewise space of functions u on ��1−�

((
tk, tk+1

]
,�

)
 , given by [33]

where the norm is given by

where u
(
t+
)
 and u(t−) represent, respectively, the right and left limits of u(t) at t ∈ J.

‖u‖ = sup
t∈J

‖u(t)‖.

C1−� (J,�) =
{
u ∈ C

(
J�,�

)
, t1−�u(t) ∈ C(J,�)

}
,

‖u‖C1−�
= sup

t∈J�

���t
1−�u(t)

���,

��1−� (J,�) =

{ (
t − tk

)1−�
u(t) ∈ C1−�

((
tk, tk+1

]
,ℝ

)
lim
t→tk

(
t − tk

)1−�
u(t), and exists for k = 1,… ,m

}
,

‖u‖��1−�
= max

�
sup
t∈J

���t
1−�u

�
t+
����, supt∈J

���t
1−�u(t−)

���
�
,
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Consider the following set

Note that, for each finite constant r > 0 , �r is bounded, closed and convex set in 
��1−� (J,�).

We denote by L(�) be the Banach space for all linear and bounded operators 
on � . We denote the (�, �)-resolvent operator function 

(
ℙ,(t)

)
t≥0 generates by 

(−A) given by

then � ≥ 1 is a finite number.
On the other hand, let n − 1 < 𝛼 ≤ n with n ∈ ℕ and f ,� ∈ Cn(J,ℝ) be two 

functions such that � is increasing and � �(t) ≠ 0 , for all t ∈ J. The left-sided �
-Hilfer fractional derivative H��,�

0+
(⋅) of a function u of order � and type 0 ≤ � ≤ 1 

is defined by [26]

where I�;�
0+

(⋅) is �-Riemann–Liouville fractional integral with � = �(n − �) or 
� = (1 − �)(n − �) . The right-sided �-Hilfer fractional derivative H��,�

0−
(⋅) is defined 

in an analogous way [26].
Choosing �(t) = t in Eq. (3), we have the left-sided Hilfer fractional deriva-

tive, given by

For the development of this paper, we use the Hilfer fractional derivative, Eq. (4). 
The following are some fundamental concepts and results for obtaining the principal 
of this paper.

Definition 1  [5] A (�, �)-resolvent operator function ℙ�,�(t) in � is said to be equi-
continuous if ℙ,(t) is continuous by operator for every t > 0.

Definition 2  [1, 7] The Kuratowski measure of non-compactness �(⋅) defined on 
bounded set � of Banach space � is

The following properties about the Kuratowski measure of non-compactness 
are well known.

𝛬r = {u ∈ ��1−𝛾 (J,𝛺), ‖u(t)‖C1−𝛾
< r, t ∈ J}.

(2)� ∶= sup
‖‖‖ℙ�,�(t)

‖‖‖L(�)

(3)H
�

�,�

0+
u(t) = I

�(n−�);�

0+

(
1

� �(t)

d

dt

)n

I
(1−�)(n−�);�

0+
u(t),

(4)H
�

�,�

0+
u(t) = I

�(n−�)

0+

(
d

dt

)n

I
(1−�)(n−�)

0+
u(t).

𝜇(�) ∶= inf

{
𝛿 > 0 ∶ � =

m⋃
i=1

�i with diam
(
�i
) ≤ 𝛿, for i = 1, 2,… ,m

}
.
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Lemma 1  [1, 7] Let � be a Banach space and �,� ⊂ 𝛺 be bounded. The following 
properties are satisfied:

1.	 �(�) = 0 if and only if � is compact, where � means the closure hull of �;
2.	 �(�) = �

(
�

)
= �(conv �) , where conv � means the convex hull of �;

3.	 �(��) = |�|�(�) for any � ∈ ℝ;

4.	 � ⊂ U implies �(�) ≤ �(�);

5.	 �(� ∪ �) = max {�(�),�(�)};

6.	 �(� + �) ≤ �(�) + �(�), where � + � = {x∕x = y + z, y ∈ �, z ∈ �};

7.	 If � ∶ �(�) ⊂ 𝛺 → 𝛺 is Lipschitz continuous with constant k,   then 
�(�(�)) ≤ k�(�) for any bounded subset � ⊂ �(�), where � is another Banach 
space.

Some notations are necessary in order to facilitate and for the better develop-
ment of the results during the paper. Among these, we denote by �(⋅) , �C1−�

(⋅) and 
���1−�

(⋅) the Kuratowski measure of non-compactness, on the bounded set of � , 
C1−� (J,�) and ��1−� (J,�) , respectively.

An important Kuratowski property measure of non-compactness is as follows: 
for any � ⊂ C1−𝛾 (J,𝛺) and t ∈ J, set �(t) = {u(t)∕u ∈ �} then �(t) ⊂ 𝛺. If 
� ⊂ C1−𝛾 (J,𝛺) is bounded, then �(t) is bounded in � and �(�(t)) ≤ �C1−�

(�).

Definition 3  [1, 7] Let � be a Banach space, and let � be a nonempty subset of �. 
A continuous operator � ∶ � → � is called to be k-set-contractive if there exists a 
constant k ∈ [0, 1) such that, for every bounded set �𝛺 ⊂ �

Lemma 2  [1, 7] Assume that �𝛺 ⊂ 𝛺 is a bounded closed and convex set on � ( � is 
Banach space), the operator � ∶ �̃ → �̃ is k-set-contractive. Then Q has at least 
one fixed point in �̃.

Lemma 3  [1, 7] Let � be a Banach space, and let � ⊂ 𝛺 be bounded. Then, there 
exists a countable set �0 ⊂ � , such that �(�) ≤ 2�

(
�0

)
.

Lemma 4  [1, 7] Let � be a Banach space, and let � =
{
un
}
⊂ ��1−𝛾

([
b1, b2

]
,𝛺

)
 

be a bounded and countable set for constants −∞ < b1 < b2 < ∞ . Then �(�(t)) is 
Lebesgue integral on 

[
b1, b2

]
 and

Lemma 5  [1, 7] Let � be a Banach space, and let � ⊂ C1−𝛾

([
b1, b2

]
,𝛺

)
be bounded 

and equicontinuous. Then �(�(t)) is continuous on 
[
b1, b2

]
 , and

�

(
�

(
�̃

)) ≤ k�
(
�̃

)
.

�

({
�

b2

b1

un(t)dt ∶ n ∈ ℕ

})
≤ 2�

b2

b1

�(�(t))dt.
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Definition 4  [5, 14, 37] Suppose that A is a closed, densely defined linear opera-
tor on � . A function ℙ�,� ∶ ℝ+ → �(�) is called a �-times integrated �-resolvent 
operator function or an (�, �)-resolvent operator function if the following conditions 
are satisfied: 

1.	 ℙ�,�(t) is strongly continuous on ℝ+ and ℙ�,�(0) = g�+1(0)I;
2.	 ℙ�,�(s)ℙ�,�(t) = ℙ�,�(t)ℙ�,�(s) for all t, s ≥ 0;
3.	 The functional equation 

 for all t, s ≥ 0 , where g�+1(t) =
t�

� (� + 1)
 ( 𝛽 > 0).

Lemma 6  [14, 29, 37] The fractional nonlinear differential equation Eq. (1) is 
equivalent to the integral equation

The following is the definition of the Wright function, fundamental in mild solu-
tion of Eq. (1). Then, the Wright function ��(�) is defined by

satisfying the equation

Definition 5  [14, 37] A function u ∈ ��1−� (J,�) is called a mild solution of Eq. 
(1), if the integral Eq. (5) holds, we have

�C1−�
(�) = max

t∈[b1,b2]
�(�(t)).

ℙ�,�(s)I
�

t
ℙ�,�(t) − I�

s
ℙ�,�(s)ℙ�,�(t) = g�+1(s)I

�

t
ℙ�,�(t) − g�+1(t)I

�

s
ℙ�,�(s),

(5)

u(t) =

⎧
⎪⎪⎨⎪⎪⎩

t�−1

� (�)
u0 +

1

� (�) ∫
t

0

(t − s)�−1(f (s, u(s)) −Au(s))ds, t ∈
�
0, t1

�

�i(t, u(t)), t ∈
�
ti, si

�
, i = 1,… ,m

�k(t, u(t)) +
1

� (�) ∫
t

0

(t − s)�−1(f (s, u(s)) −Au(s))ds t ∈
�
si, ti+1

�
, i = 1,… ,m

.

�𝛼(�) =

∞∑
n=1

(−�)n−1

(n − 1)!𝛤 (1 − 𝛼n)
, 0 < 𝛼 < 1, � ∈ ℂ

�
∞

0

����(�)d� =
�

(
1 + �

)

�

(
1 + ��

) , for � ≥ 0.

u(t) =

⎧
⎪⎪⎨⎪⎪⎩

ℙ�,�(t)u0 + ∫
t

0

��(t − s)f (s, u(s))ds, t ∈
�
0, t1

�

�i(t, u(t)), t ∈
�
ti, si

�
, i = 1,… ,m

ℙ�,�(t)�k
�
sk, u

�
sk
��

+ ∫
t

si

��(t − s)f (s, u(s))ds t ∈
�
si, ti+1

�
, i = 1,… ,m
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where ��(t) = t�−1��(t) , ��(t) = ∫
∞

0

����(�)ℙ(t
��)d� and ℙ�,�(t) = I

�(1−�)

�
��(t).

3 � Existence continuous mild solutions

In this section, we investigate the main result of this paper, the existence of con-
tinuous mild solutions for Eq. (1) using the idea of equicontinuous (�, �)-resol-
vent operator function (ℙ��(t))t≥0 and the Lebesgue dominated convergence theo-
rem. However, to achieve such a result, we assume certain conditions:

(A1) The nonlinear function f ∶ J ×� → � is continuous, for some r > 0 , 
there exists a constant 𝜌 > 0 , Lebesgue integrable function, � ∶ J → [0,∞) and a 
nondecreasing continuous function � ∶ [0,∞) → [0,∞) , such that for all t ∈ J 
and u ∈ � satisfying ‖u‖C1−�

≤ r,

for r > 0.
(A2) The impulsive function �k ∶

[
tk, sk

]
×� → � is continuous and there 

exists a constant �𝜁k
> 0, k = 1, 2,… ,m , such that for all u, v ∈ �

(A3) There exists positive constants, �k (k = 0, 1,… ,m) such that for any countable 
set � ⊂ 𝛺,

For brevity of notation, we denote

Theorem 1  Suppose that the (�, �)-resolvent operator function 
(
ℙ�,�(t)

)
t≥0 generated 

by −A is equicontinuous, the function �k(⋅, �) is bounded for k = 1, 2,… ,m. If the 
conditions (A1)-(A3) are satisfied, then Eq. (1) has at least one ��1−�−mild solution 
u ∈ ��1−� (J,�) provided that

Proof  First, we define the following operator � on ��1−� (J,�) given by

‖f (t, u)‖C1−𝛾
≤ 𝜑(t)𝜓

�
‖u‖C1−𝛾

�
and lim

r→∞
inf

𝜓(r)

r
= 𝜌 < ∞

���k(t, u) − �k(t, v)
��C1−�

≤ ��k
‖u − v‖C1−�

, ∀t ∈
�
tk, sk

�
.

�(f (t,�)) ≤ �k�(�), t ∈
(
sk, tk+1

]
, k = 0, 1,… ,m.

(6)
� ∶= max

k=1,…,m
��k

;

� ∶= max
k=0,…,m

‖�‖L[sk ,tk+1];

(7)� ∶= max
k=0,…,m

�k

(
tk+1 − sk

)
.

(8)�max {𝜌𝛬 +�,� + 4��} < 1.



Existence of mild solutions to Hilfer fractional evolution... Page 9 of 16  12

where

and

Note that � is well defined and that ��1−�-mild solution of Eq. (1) is equivalent to 
the fixed point of operator � defined by Eq. (9). Now, the objective is to prove that 
the operator � admits at least one fixed point. The proof will be carried out in four 
steps.

Step I: �u ∈ ��1−� (J,�) , ∀u ∈ ��1−� (J,�).
Suppose that 0 ≤ 𝜏 < t ≤ t1 , then by means of the strongly continuity of the (�, �)

-resolvent operator function ℙ�,�(t)(t ≥ 0) Eqs. (2) and (9), we get

as t → �.

(9)(�u)(t) =
(
�1u

)
(t) +

(
�2u

)
(t)

(10)
�
�1u

�
(t) =

⎧
⎪⎨⎪⎩

ℙ�,�(t)u0, t ∈
�
0, t1

�
�k(t, u(t)), t ∈

�
tk, sk

�
, k = 1, 2,… ,m

ℙ�,�(t)�k
�
sk, u(tk+1)

�
, t ∈

�
sk, tk+1

�
, k = 0, 1,… ,m

(11)
�
�2u

�
(t) =

⎧
⎪⎪⎨⎪⎪⎩

∫
t

0

��(t − s)f (s, u(s))ds, t ∈
�
0, t1

�

0, t ∈
�
tk, sk

�
, k = 1, 2,… ,m

∫
t

sk

��(t − s)f (s, u(s))ds, t ∈
�
sk, tk+1

�
, k = 0, 1,… ,m.

‖‖‖t
1−�

[
(�u)(t) − (�u)(�)

]‖‖‖
≤ ‖‖‖t

1−�
[
ℙ�,�(t)u0 − ℙ�,�(�)u0

]‖‖‖
+
‖‖‖‖‖
t1−�

[
�

t

0

��(t − s)f (s, u(s))ds − �
�

0

��(� − s)f (s, u(s))ds

]‖‖‖‖‖
=
‖‖‖t

1−�
[
ℙ�,�(t)u0 − ℙ�,�(�)u0

]‖‖‖
+
‖‖‖‖‖
t1−�

[
�

t

�

��(t − s)f (s, u(s))ds + �
�

0

(
��(t − s) − ��(� − s)

)
f (s, u(s))ds

]‖‖‖‖‖
≤ ‖‖‖t

1−�
[
ℙ�,�(t)u0 − ℙ�,�(�)u0

]‖‖‖ + sup
t∈J

‖‖��(t − s)‖‖
‖‖‖‖‖
t1−� �

t

�

f (s, u(s))ds
‖‖‖‖‖

+
‖‖‖‖t

1−� �
�

0

(
��(t − s) − ��(� − s)

)
f (s, u(s))ds

‖‖‖‖
≤ �

‖‖‖t
1−�

ℙ�,�(t − s)u0
‖‖‖ +�

‖‖‖‖‖
t1−� �

t

�

f (s, u(s))ds
‖‖‖‖‖

+
‖‖‖‖t

1−� �
�

0

(
��(t − �)��(� − s)f (s, u(s)) − ��(t − �)

)
f (s, u(s))ds

‖‖‖‖→ 0 ,



	 J. V. C. Sousa et al.12  Page 10 of 16

In this sense, it follows that �u ∈ C1−�

([
0, t1

]
,�

)
 . Now, it is necessary to check 

for the other intervals, i.e., �u ∈ C1−�

((
tk, sk

]
,�

)
 and �u ∈ C1−�

((
sk, tk+1

]
,�

)
 , for 

every k = 1, 2,… ,m.
Note that, by means of Eq. (8) and the continuity of the non-instantane-

ous impulsive functions �k(t, u(t)) with k = 1, 2,… ,m , it is easy to know that 
�u ∈ C1−�

((
tk, sk

]
,�

)
 , is in fact similar to the proof of continuity carried out 

above (�u)(t) , for t ∈
[
0, t1

]
 , we can prove that �u ∈ C1−�

((
sk, tk+1

]
,�

)
 , for 

k = 1, 2,… ,m . Thus, we conclude that �u ∈ ��1−� (J,�) for u ∈ ��1−� (J,�) , i.e., 
� ∶ ��1−� (J,�) → ��1−� (J,�).

Step II: ∃� > 0 ; �
(
�𝛺�

)
⊂ �𝛺�.

For this step, it will be carried out by contradiction. Suppose that not true, i.e., 
there is no � > 0 such that �

(
�𝛺�

)
⊂ �𝛺� , then in this sense for each r > 0 , 

∃ur ∈ �r and tr ∈ J, such that ‖‖t1−𝛾 (�ur)(tr)
‖‖C1−𝛾

> r . Now, we need to evaluate tr in 
the intervals 

[
0, t1

]
 , 
(
tk, sk

]
 and 

(
sk, tk+1

]
 . Thus, we have:

If tr ∈
[
0, t1

]
 , then by Eqs. (2) and (9) and condition (A1), we obtain

If tr ∈
(
tk, sk

]
 , k = 1, 2,… ,m, then by Eqs. (2), (9) and condition (A2), we get

where

On the other hand, if tr ∈
(
sk, tk+1

]
 , k = 1, 2,… ,m, then by Eqs. (2), (9) and condi-

tions (A1) and (A2), we have

(12)

���t
1−�

��
�ur

��
tr
����� =

�����
t1−�

�
ℙ�,�

�
tr
�
u0 + �

tr

0

��
�
tr − s

�
f
�
s, ur(s)

�
ds

������
≤ ���t

1−�
ℙ�,�

�
tr
�
u0
��� +

�����
t1−� �

tr

0

��
�
tr − s

�
f
�
s, ur(s)

�
ds
�����

≤�
���t

1−�u0
��� +�

���t
1−����

������
tr

0

s�−1�(s)�
�
‖u‖C1−�

�
ds
�����

≤���u0��C1−�
+�� (r)‖�‖L[0,t1].

(13)

‖‖‖t
1−�

[(
�ur

)(
tr
)]‖‖‖ ≤��k

‖‖‖ur
(
tr
)‖‖‖C1−�

≤��k

‖‖‖ur
(
tr
)‖‖‖C1−�

+
‖‖‖�k

(
tr, �

)‖‖‖C1−�

≤��k
r + �

� = max
k=1,2,…,m

sup
t∈J

‖‖‖�k
(
tr, �

)‖‖‖C1−�

.
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By means of Eqs. (2), (6), (9), (12)–(14) and using the fact r < ‖‖t1−𝛾 (�ur)(tr)
‖‖ , we 

have

where � = max
k=0,1,…,m

‖�‖L[sk ,tk+1].
Finally, we divide both sides of Eq. (15) by r and taking the limit as r → ∞ , we 

obtain

Note that, it is a contradiction Eq. (8). Therefore, we conclude the proof.
Step III: �1 ∶ �̃� → �̃� is Lipschitz continuous and �2 ∶ �̃� → �̃� is 

continuous.
Then, for t ∈

(
tk, sk

]
 , k = 1, 2,… ,m and u, v ∈ �̃� by Eq. (10) and condition 

(A2), we obtain

On the other hand, for t ∈
(
sk, tk+1

]
 , k = 1, 2,… ,m and u, v ∈ �̃� , by Eq. (10) and 

condition (A2), we get

(14)

���t
1−�

��
�ur

��
tr
�����

=
���t

1−�
ℙ�,�

�
tr
�
�k
�
sk, u

�
sk
��

+t1−� �
tr

sk

��
�
tr − s

�
f
�
s, ur(s)

�
ds
�����

≤ �

�
��k

���ur
�
sr
����C1−�

+
����k

�
tr, �

����C1−�

�

+
�����
t1−� �

tr

sk

��
�
tr − s

�
f
�
s, ur

�
sr
��
ds
�����

≤ �
�
��k

r + �
�
+��

tr

sk

���s
1−� f

�
s, ur

�
sr
�����ds

≤ �
�
��k

r + �
�
+�� (r)‖�‖L[sk ,tk+1].

(15)r <
‖‖‖t

1−𝛾
(
�ur

)(
tr
)‖‖‖ ≤ �

(‖‖u0‖‖C1−𝛾
+ 𝛹 (r)𝛬 +�r + �

)

1 <

‖‖‖t1−𝛾
(
�ur

)(
tr
)‖‖‖

r
≤ �

r

(‖‖u0‖‖C1−𝛾
+ 𝛹 (r)𝛬 +�r + �

)
= �(𝜌𝛬 +�).

(16)

���t
1−�

��
�1u

�
(t) −

�
�1v

�
(t)
���� =

���t
1−� (t)

�
�k
�
sk, u

�
sk
��

− �k
�
sk, v

�
sk
������

≤��k

���t
1−�

�
u
�
sk
�
− v

�
sk
�����

≤��k
‖u − v‖��1−� .

(17)

���t
1−�

��
�1u

�
(t) −

�
�1v

�
(t)
���� ≤���k

���
�
�k(t, u) − �k(t, v)

����C1−�

≤���k
‖u − v‖��1−�

.
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By means of Eqs. (16), (17), (2) and (6), we have

Therefore, �1 is continuous in �̃� . Now, we prove that �2 is continuous in �̃� . Con-
sider un ∈ �̃� be a sequence such that lim

n→∞
un = u in �̃�. By the continuity of non-

linear term f with respect to the second variable, for s ∈ J , we get

Using the condition (A1), we have

for s ∈ J.
As s → 2�(s)� (�) is Lebesgue integrable for s ∈

[
sk, t

]
 and 

t ∈
(
sk, tk+1

]
, k = 0, 1,… ,m , then by means of Eqs. (2), (11), (19), (20) and the Leb-

esgue dominated convergence theorem, we obtain

as n → ∞.
Then, ‖‖�2un −�2u

‖‖��1−�
→ 0 as n → ∞ which means that �2 defined by Eq. 

(11) is continuous in �̃�.
Step IV: �2 ∶ �̃� → �̃� is equicontinuous.
Then, for any u ∈ �̃� and sk < t1 < t2 ≤ tk+1 for k = 0, 1,… ,m , we have

(18)

���1u −�1v
����1−�

≤���k
‖u − v‖��1−�

+��k
‖u − v‖��1−�

≤� max
k=1,2,…,m

��k
‖u − v‖��1−�

=��‖u − v‖��1−�
.

(19)lim
n→∞

f
(
s, un(s)

)
= f (s, u(s)).

(20)

���t
1−�

�
f
�
s, un(s)

�
− f (s, u(s))

���� ≤ ���f
�
s, un

����C1−�

+ ‖f (s, u)‖C1−�

≤�(s)�
���un��C1−�

�
+ �(s)�

�
‖u‖C1−�

�

= 2�(s)� (�),

(21)

‖‖‖t
1−�

[(
�2un

)
(t) −

(
�2u

)
(t)
]‖‖‖ ≤ t1−� �

t

sk

��(t − s)s�−1
‖‖‖s

1−�
[
f
(
s, un(s)

)
− f (s, u(s))

]‖‖‖ds

≤ ��
t

sk

‖‖‖s
1−�

[
f
(
s, un(s)

)
− f (s, u(s))

]‖‖‖ds → 0

‖‖‖t
1−�

[(
�2u

)(
t2
)
−
(
�2u

)(
t1
)]‖‖‖ ≤ ‖‖‖‖‖�

t2

t1

��
(
t2 − s

)
f (s, u(s))ds

‖‖‖‖‖C1−�

+
‖‖‖‖‖�

t1

sk

(
��

(
t2 − s

)
− ��

(
t1 − s

))
f (s, u(s))ds

‖‖‖‖‖C1−�

∶= I1 + I2



Existence of mild solutions to Hilfer fractional evolution... Page 13 of 16  12

where I1 ∶=
‖‖‖‖‖∫

t2

t1

��
(
t2 − s

)
f (s, u(s))ds

‖‖‖‖‖C1−�

 and 

I2 ∶=
‖‖‖‖‖∫

t1

sk

(
��

(
t2 − s

)
− ��

(
t1 − s

))
f (s, u(s))ds

‖‖‖‖‖C1−�

.

Now, we check I1 and I2 tend to 0 independently of u ∈ �̃� when t2 − t1 → 0 . By 
means of Eq. (2) and condition (A1), we get

as t2 − t1 → 0.
Now, for 𝜀 > 0 small enough and by means of the Eq. (2), condition (A1), equi-

continuity of the (�, �)-resolvent operator function 
(
ℙ�,�(t)

)
t≥0 and the Lebesgue 

dominated convergence theorem, we get

as t2 − t1 → 0 and � → 0.
Note that the result, ‖‖‖t1−�

[(
�2u

)(
t2
)
−
(
�2u

)(
t1
)]‖‖‖C1−�

→ 0 independently of 

u ∈ �̃� as t2 − t1 → 0 , which means that �2 ∶ �̃� → �̃� is equicontinuous.
For any bounded � ⊂ �𝛺�, by Lemma 3, we know that there exists a countable set 

�0 =
{
un
}
⊂ �, such that

I1 ≤ �
t2

t1

�����
�
t2 − s

����C1−�

‖f (s, u(s))‖C1−�
ds

≤��
t2

t1

�(s)�
�
‖u‖C1−�

�
ds

≤�� (�)�
t2

t1

�(s)ds → 0

I2 ≤
‖‖‖‖‖�

t1−�

sk

(
��

(
t2 − s

)
− ��

(
t1 − s

))
f (s, u(s))ds

‖‖‖‖‖C1−�

+
‖‖‖‖‖�

t1

t1−�

(
��

(
t2 − s

)
− ��

(
t1 − s

))
f (s, u(s))ds

‖‖‖‖‖C1−�

≤ � (�)�
t1−�

sk

‖‖‖��
(
t2 − s

)
− ��

(
t1 − s

)‖‖‖C1−�

�(s)ds

+ 2�� (�)�
t1

t1−�

�(s)ds

= � (�)�
t1−sk

�

‖‖‖��
(
t2 − t1 + s

)
− ��(s)

‖‖‖C1−�

�
(
t1 − s

)
ds

+ 2�� (�)�
t1

t1−�

�(s)ds → 0

(22)�
(
�2(�)

)
��1−�

≤ 2�
(
�2

(
�0

))
��1−�

.
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Since �2

(
�0

)
⊂ �2

(
�𝛺�

)
 is bounded and equicontinuous, by means of the 

Lemma 5, we know that

On the other hand, for t ∈
[
sk, tk+1

]
 with k = 0, 1,… ,m , using Lemma 4, condition 

(A3) and Eq. (11), we have

Therefore, by means of Eqs. (8), (22), (23) and (24), we obtain

From Eq. (18) and Lemma 1 (7), for any bounded � ⊂ �𝛺� , we know that is true

Using Eqs. (25), (26) and Lemma 1 (6), we get

Now, combining Eqs. (27), (8) and Definition 3, we have � ∶ �̃� → �̃� is a k-set 
contractive. Thus, through Lemma 2 has at least one fixed point u ∈ �̃� , which is 
just a ��1−� mild solution of Eq. (1).

4 � Concluding remarks

We conclude the paper, with the objective reached, i.e., we investigate the exist-
ence of a mild solution for a new class of semi-linear evolution fractional differen-
tial equations with non-instantaneous impulses in the sense of Hilfer in the Banach 
space by means of the equicontinuous (�, �)-resolvent operator function ℙ�,�(t) and 
the Lebesgue dominated convergence theorem. However, the following question is 
raised that is open: Will it be possible to investigate the existence and uniqueness 

(23)
�
(
�2

(
�0

))
��1−�

= max
t∈[sk ,tk+1]
k=0,1,…,m

�
(
�2

(
�0

))
(t).

(24)

�
(
�2

(
�0

))
(t) ≤�

({
��

t

sk

f
(
s, un(s)

)}
ds

)

≤ 2��
t

sk

Lk�
(
un(s)

)
ds

≤ 2��k�(�)�
t

sk

ds

≤ 2��k�(�)��1−�

(
tk+1 − sk

)
.

(25)
�
(
�2

(
�0

)
(t)
) ≤ 2��k�(�)��1−�

(
tk+1 − sk

)

≤ 4���(�)��1−�
.

(26)�
(
�1(�)

)
��1−�

≤ ���(�)��1−�
.

(27)
�(�(�))��1−�

≤ �
(
�1(�)

)
��1−�

+ �
(
�2(�)

)
��1−�

≤ �(� + 4�)�(�)��1−�
.
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of mild solutions of Eq. (1) or another fractional differential equation in the sense �
-Hilfer fractional derivative? Although Sousa and Oliveira [35] have recently intro-
duced a version called a Leibniz type rule, the answer is initially no, since there 
is not yet an integral transform formulation, in particular the Laplace transform, 
to obtain a mild solution according to Definition 5, since it is necessary and suf-
ficient condition to obtain the expression of the mild solution according to Eq. (1). 
Research in this sense has been developed and consequently contributes a lot to the 
area.
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