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h i g h l i g h t s

� This article proposes a new robust
nonlinear controller that stabilizes a
chaotic finance system in a finite-
time without cancellation of the
spacecraft’s nonlinear terms, it
improves the efficiency of the
closed-loop.

� It accomplishes an oscillation-free
faster convergence of the perturbed
state variables to the desired
steady-state.

� The proposed controller is insensitive
to the parameter uncertainties of the
nonlinear terms and exogenous
disturbances.

� The paper performs a comparative
study to verify the performance and
efficiency of the proposed controller.
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Introduction: Robust, stable financial systems significantly improve the growth of an economic system.
The stabilization of financial systems poses the following challenges. The state variables’ trajectories
(i) lie outside the basin of attraction, (ii) have high oscillations, and (iii) converge to the equilibrium state
slowly.
Objectives: This paper aims to design a controller that develops a robust, stable financial closed-loop sys-
tem to address the challenges above by (i) attracting all state variables to the origin, (ii) reducing the
oscillations, and (iii) increasing the gradient of the convergence.
Methods: This paper proposes a detailed mathematical analysis of the steady-state stability, dissipative
characteristics, the Lyapunov exponents, bifurcation phenomena, and Poincare maps of chaotic financial
dynamic systems. The proposed controller does not cancel the nonlinear terms appearing in the
closed-loop. This structure is robust to the smoothly varying system parameters and improves closed-
loop efficiency. Further, the controller eradicates the effects of inevitable exogenous disturbances and
accomplishes a faster, oscillation-free convergence of the perturbed state variables to the desired
steady-state within a finite time. The Lyapunov stability analysis proves the closed-loop global stability.
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The paper also discusses finite-time stability analysis and describes the controller parameters’ effects on
the convergence rates. Computer-based simulations endorse the theoretical findings, and the compara-
tive study highlights the benefits.
Results: Theoretical analysis proofs and computer simulation results verify that the proposed controller
compels the state trajectories, including trajectories outside the basin of attraction, to the origin within
finite time without oscillations while being faster than the other controllers discussed in the comparative
study section.
Conclusions: This article proposes a novel robust, nonlinear finite-time controller for the robust stabiliza-
tion of the chaotic finance model. It provides an in-depth analysis based on the Lyapunov stability theory
and computer simulation results to verify the robust convergence of the state variables to the origin.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Many systems in nature and social sciences exhibit chaotic
behavior. Generally, chaotic systems are highly sensitive to the ini-
tial conditions and parameter variations [1]. Chaotic systems dis-
play predictable random-like behavior, which may produce
undesired system performance [2]. These inadmissible characteris-
tics motivate research communities to either reduce or eliminate
the effects of chaos and employ these systems for industrial and
technological advancement [3]. For example, the dynamics of
many systems appearing in science, engineering, economics, poli-
tics, and the environment owe chaotic behavior [4–6]. The coro-
nary artery system exhibits both regular and chaotic dynamics.
Chaotic behavior in the coronary artery system occurs due to
myocardial infraction that gives birth to cardiopathy and other
arrhythmia diseases [7]. The investigation of chaos stabilization
in the coronary artery system is to diagnose and propose a treat-
ment that reduces cardiopathy risk and diminishes other arrhyth-
mia problems [4]. Mobile robots encounter several complex
challenges, including vibrations, noise-sensing generation, and
irregular robot-environmental interfaces during the execution of
a particular task. These nonlinearities generate chaos in mobile
robots that cause failure to complete the mission [8]. The main
objective of chaos suppression in mobile robots is to eliminate
the chaotic behavior to complete the task [8]. Chaos occurs in arti-
ficial satellites due to the perturbation torque acting on them; it
moves the spacecraft away from the desired stable orbit [9]. The
main objective for controlling chaos in an artificial satellite system
is to stabilize the satellite’s attitude motion in the desired orbit [9].
The DC-DC converter is a type of power electronic circuit used in
everyday electronic equipment. The fluctuations in the voltage,
external disturbances, and uncertainties in the components’ values
produce chaos in the DC-DC converter [10]. The existence of chaos
affects the performance of the DC-DC converter in practice, includ-
ing faults in actuation. Chaos suppression in the DC-DC converter
aims to run the system at a desirable low frequency and rejecting
fault tolerance [10]. Similarly, [11] describes the chaotic behavior
of the single-machine-infinite bus power system, and [12] pro-
poses four feedback controllers for the chaotic permanent magnet
synchronous motor that make the closed-loop characteristics inde-
pendent of the initial operational conditions. [13] designs a con-
troller to address issues related to the non-fragile memory
filtering in Takagi–Sugeno (T-S) fuzzy delayed neural networks
with randomly occurring time-varying parameters uncertainties
and variable sampling rates. A reliable asynchronous sampled-
data T-S fuzzy controller is proposed in [14] that assures the
asymptotic stability of the uncertain delayed neural networks with
stochastically switched topologies. Though [13] and [14] consider
the stochastic environment but adopt a chaotic system control
strategy in designing the controller.
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Researchers in different fields developed various feedback con-
trol strategies for controlling the chaos appearing in the above
applications, such as backstepping control design [15], switched
fuzzy sampled-data control [16], sliding mode control method
[17], H1 control strategy [18], adaptive control technique [19],
and nonlinear controller [20], (among others). These control tech-
niques are applied to achieve either asymptotic stability [19] or
finite-time stability [20] of the closed-loops. In the asymptotic sta-
bility, the state trajectories of a chaotic system converge to the ori-
gin as t ! 1, while the finite-time stability accomplishes the
control of chaos in finite-time. The finite-time control methodolo-
gies demonstrate faster convergence of the state variables to zero
than the asymptotic stabilization control strategies; they show
better disturbance rejection characteristics and higher precision
performance [21]. These attributes of the finite-time controllers
have many benefits in practical applications [22–24].

Chaos occurs in nonlinear finance models that exhibit complex
behavior due to inherent randomness in economic factors [25].
Change of interest rates due to external forces, environmental
interferences, fluctuations in the exchange rates, sudden changes
in the stock market prices, and other economic factors, including
political policies and news, alter the saving amount in a financial
model that transforms the financial system’s periodic dynamics
into chaotics [26–28]. The presence of chaos in real economic
and financial systems reveals that the macroeconomic operations
have inherent uncertainties that produce economic growth distur-
bances, leading to financial system crises [27]. Chaos in the finan-
cial system poses difficulties in short-medium-long term
predictions and financial systems planning [28]. The primary pur-
pose of chaos stabilization in a financial system is to maintain the
saving amount to a certain level that restores the economic cycle’s
normalization; it helps in management and decision-making
strategies [29]. Therefore, it is desirable to design control strategies
to reduce or eliminate the chaotic phenomenon in the financial
systems to improve the economic system’s predictability [29].
Chaos in the dynamics of the financial and economic models moti-
vates researchers that develop efficient control algorithms to sup-
press hyper(chaos) in various financial models. [30] investigates
the control of chaos in the chaotic finance model (CFM) [25] using
the Pyragas feedback control scheme [31]. A nonlinear state-
feedback controller is designed in [32] to study the finite-time con-
trol of a CFM. By adding a fourth state variable (marginal profit) to
the CFM proposed in [25], the chaotic phenomena of a new hyper-
chaotic system are discussed in [33]. The article [33] designs linear
feedback and speed feedback controllers that achieve hyperchaos
suppression of the CFM. [34] use the linear matrix inequality tech-
nique based on the Lyapunov functional method and Jensen
inequality approach to discussing the control of a CFM in the pres-
ence of input time-delay and exogenous disturbances. Based on
Pontryagin’s maximum principle [35] and using the optimal
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control theory, [36] stabilizes the hyperchaotic finance model pro-
posed in [33] to the equilibrium point at the origin. In the paper
[36], an adaptive control algorithm has also been extended to con-
trol the uncertain hyperchaotic finance model. [37] investigates a
new hyperchaotic finance system and discusses its chaotics based
on its parameter variations. In [37], a modified adaptive control
algorithm is proposed that realizes the stabilization and synchro-
nization of the proposed hyperchaotic finance model with uncer-
tain parameters. [38] designs a nonlinear finite-time adaptive
controller and discusses the finite-time stabilization of third-
order and fourth-order chaotic finance systems with and without
market confidence. A linear matrix inequality technique based on
the Lyapunov second theorem of stability, finite-time stability the-
ory, and the Wirtinger inequality technique is proposed in [39] to
investigate the finite-time H1 control of a CFM. The energy-
bounded exogenous disturbances and time-delay perturb the
CFM in [39]. Most recently, [40] proposes a robust resilient fault-
tolerant guaranteed cost controller with delay to tackle the fluctu-
ations in investment policy scheme with minimum guaranteed
cost bound. The article [40] also discusses the finite-time control
of hyperchaos in a CFM.

Challenges and motivations

The following items delineate a summary of the challenges.

(i) The control algorithms in [29,30,33,34,37] achieve the
asymptotic stabilization of the hyper(chaotic) finance model
at the origin. It creates two challenges; (a) if the initial state
variables of the controlled system lie outside the basin of
attraction, the state trajectories may not converge to the tar-
geted equilibrium point, and (b) it generates rapid and
uneven fluctuations in the financial market that affect eco-
nomic growth and activities [40].

(ii) The paper [32] discusses the finite-time control of CFM using
the feedback linearization concept. The feedback lineariza-
tion methods employ the nonlinear terms cancelation tech-
nique. Generally, the closed-loop structures formed by the
feedback linearization methods generate high oscillations
in the transient phase. The oscillations in state variables tra-
jectories are the sources of several undesirable attitudes in
the CFM [40], such as the fast fluctuations in the cash flow
and labor force. Further, the control input signal in the
finite-time controller (FTC) function [32,38] comprises a
feedback component xp tð Þ (0 < p < 1), where x tð Þ repre-
sents the state variables vector. However, xp tð Þ 2 C when
x tð Þ < 0. This attribute of the FTC scheme makes it an infea-
sible solution.

(iii) The controllers proposed in [29,30,32–34,36–40] show
slower convergence rates of the state variables vector to
the origin.

Table 1 summarizes the contributions of the recent research in
CFM control [30,32–34,36–40] and describes future research direc-
tions that emerge from these state-of-the-art developments.

The above challenges motivate the design of feedback con-
trollers to stabilize a financial system that develops a closed-loop
structure with the following properties to prevent socio-
economic crises and unrest.

(i) The state variables converge to the desired steady-state in a
finite time.

(ii) The fast convergence rates of the state variables to the
steady-state.

(iii) Better disturbance rejection.
(iv) Higher precision.
3

This paper proposes a control strategy and develops a method-
ology that establishes finite-time convergence of the state variable
trajectories to the origin smoothly. The closed-loop response is fas-
ter and oscillation-free. Subsection ‘Contributions’ describes the
contributions of the proposed controller.

Contributions

This article proposes and analyzes a novel FTC design to address
the above challenges having the properties given in motivation
items (i) to (iii). This novel FTC consists of four nonlinear feedback
components that make the closed-loop stable, converge the state
variables to the desired steady-state in a finite time, and eradicate
the effect of time-varying exogenous disturbances and parameter
variations. The upper bound of the finite-time convergence is
robust. It is the main contribution of the paper, as discussed in Sec-
tion ‘Proposed Finite-Time Controller’. Analysis based on the Lya-
punov direct theorem [41] and finite-time stability theory [42]
assures the global stabilization of the CFM at the origin in finite
time. Computer-based simulation results validate the theoretical
analysis.

Further, the closed-loop system analysis and the simulation
results show the robust performance of the CFM for the smooth
variations in the plant parameters. The proposed controller does
not cancel the plant’s nonlinear terms, and the synthesis of the
control effort is independent of the nonlinear terms of the CFM.
Therefore, the exogenous disturbances and smooth slow parameter
variations do not affect the closed-loop stability performance. The
paper provides an in-depth analysis, which shows that the closed-
loop is finite-time stable. The stability analysis is based on the Lya-
punov stability theory. It also assures that the stability of the
closed-loop is robust to the disturbances and parameter uncertain-
ties. The article discusses computer simulation results for the ver-
ification of the theoretical findings. Also, it compares the
performance of the closed-loop with other state-of-the-art FTC
methodology proposed in [20].

Preliminaries of chaotic finance model

This section illustrates the preliminaries of CFM.
Subsection ‘Notations and symbols’ provides notations and

symbols used in this paper. Subsection ‘Chaotic dynamics of the
finance model’ gives the dynamics of the CFM. In subsections ‘Sta-
bility analysis of the balancing points’, the article discusses chaos
in the financial system and stability analysis at the balancing
points. The dissipative characteristics and Lyapunov exponents of
the CFM are discussed in subsections ‘Dissipative characteristic’
and ‘Lyapunov exponents and Kaplan-Yorke dimension’, respec-
tively. The bifurcation phenomena and Poincare analysis of the
CFM are illustrated in subsections ‘Chaotic analysis based on bifur-
cation theory’ and ‘Poincare analysis’, respectively. Subsection
‘Methodology for the finite-time analysis’ describes the methodol-
ogy for the finite-time analysis.

Notations and symbols

Table 2 describes the notation and symbols used in this paper.

Chaotic dynamics of the finance model

This paper considers the CFM proposed in [25]. The CFM is com-
posed of four sub-components that include production, stock,
money, and labor force. Equation (1) presents the mathematical
model describing the chaotic dynamics of the finance model. The
structure of the CFM (1) comprises three basic state variables;



Table1
Review of the state-of-the-art controllers.

References Contributions and methodology Controller Proof of stability Possible research direction(s)

Chen et.al [30] Time-delay feedback controller, and
uses computer simulations based
verification of the closed-loop system

Appendix A The paper does not describe the
stability proof

i. Theoretical stability and performance
analysis of the closed-loop

ii. Study the effects of the disturbances
and parameter variations

iii. Robust analysis
iv. Analysis of the rate of convergence

Wang et.al [32] Finite-time controller, theoretical and
simulations based verification, and
evaluation of the closed-loop system

Appendix B Finite-time stability using control
Lyapunov function

i. Avoiding the cancellation of nonlinear
terms in the closed-loop

ii. Singularities issues in the neighbor-
hood of zero

iii. Study the effects of the disturbances
and parameter variations

iv. xp tð Þ 2 C when x tð Þ < 0, and0 < p < 1
Yu et.al [33] Construction of a new hyperchaotic

finance system, state-feedback
controller, asymptotic stabilization of
the closed-loop, theoretical and
simulations based verification and
evaluation of the closed-loop system

Appendix C Asymptotic stabilization of the
closed-loop based on the Lyapunov
stability theory

i. Avoiding the cancellation of nonlinear
terms in the closed-loop

ii. Study the effects of the disturbances
and parameter variations

iii. Robust analysis
iv. Analysis of the rate of convergence

Zhao et.al [34] Time-delay feedback controller, linear
matrix inequality technique, asymptotic
stabilization of the closed-loop

Appendix D Robust stability of the closed-loop
using the linear matrix inequality
technique based on the Lyapunov
functional method and Jensen
inequality

i. Study the effects of the parameter
variations

ii. Analysis of the rate of convergence
iii. Reducing the state variable trajectories

oscillations
Cao [36] Adaptive controller, asymptotic

stabilization of the closed-loop,
theoretical and simulations based
verification, and evaluation of the
closed-loop system

Appendix E Asymptotic stabilization of the
closed-loop based on the Lyapunov
stability theory

i. Study the effects of the disturbances
and parameter variations

ii. Robust analysis
iii. Avoiding the cancellation of nonlinear

terms in the closed-loop
iv. Analysis of the rate of convergence

Jajarmi et.al [37] Construction of a new hyperchaotic
finance system, Adaptive control,
theoretical and simulations based
verification, and evaluation of the
closed-loop system

Appendix F Asymptotic stabilization of the
closed-loop based on the Lyapunov
stability theory

i. Avoiding the cancellation of nonlinear
terms in the closed-loop

ii. Study the effects of the disturbances
and parameter variations

iii. Robustness
iv. Analysis of the rate of convergence

Ma et al. [38] Direct adaptive finite-time controller,
theoretical and simulations based
verification, and evaluation of the
closed-loop system

Appendix G Finite-time stabilization of the
closed-loop based on the Lyapunov
stability theory and finite-time
stability technique

i. Singularities issues in the neighbor-
hood of zero

ii. Study the effects of the disturbances
and parameter variations

iii. xp tð Þ 2 C when x tð Þ < 0, and0 < p < 1
Xu et al. [39] Time-delay finite-time feedback

controller, theoretical and simulations
based verification, and evaluation of the
closed-loop system

Appendix H Stability of the closed-loop in finite-
time using the linear matrix
inequality technique based on the
Lyapunov functional theory,
Wirtinger-based inequality

i. Study the effects of the disturbances
and parameter variations

ii. Robustness
iii. Reducing the state variable trajectories

oscillations
iv. Analysis of the rate of convergence

Harshavarthini
et.al [40]

Design of a resilient fault-tolerant
guaranteed cost controller with delay,
finite-time stabilization of the closed-
loop, and simulations based verification,
and evaluation of the closed-loop
system

Appendix I Stability of the closed-loop in finite-
time using the linear matrix
inequality technique based on the
Lyapunov functional theory

i. Study the effects of the disturbances
and parameter variations

ii. Robustness
iii. Analysis of the rate of convergence
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the interest rate x1 tð Þ, demand for investment x2 tð Þ, and the price
index x3 tð Þ.
x tð Þ ¼
_x1 tð Þ ¼ x2 tð Þ � g1½ �x1 tð Þ þx3 tð Þ
_x2 tð Þ ¼ 1� g2x2 tð Þ �x2

1 tð Þ
_x3 tð Þ ¼ �g3x3 tð Þ �x1 tð Þ

8><>: ð1Þ

The parameters g1 > 0, g2 > 0, and g3 > 0 represent the saving
amount, cost per investment, and elasticity of demand of commer-
cial markets, alternatively. Contradiction in the investment market
and structural adjustment in the price of goods influence the state
variable x1 tð Þ. The rate of change ofx2 tð Þ is proportional to the
inversion of the cost of investment, interest rate and rate of invest-
ment. The contradiction between supply and demand of the com-
mercial market controls the variablex3 tð Þ; it also depends on
inflation rates [25].
4

Stability analysis of the balancing points

Considering _x1 tð Þ ¼ _x2 tð Þ ¼ _x3 tð Þ ¼ 0 gives the steady-state of
(1).

x2 tð Þ � g1½ �x1 tð Þ þx3 tð Þ ¼ 0
1� g2x2 tð Þ �x2

1 tð Þ ¼ 0
�g3x3 tð Þ �x1 tð Þ ¼ 0

8><>: ð2Þ

The solution of (2) gives the balancing points of the CFM (1).

xe1 ¼ 0;
1
g2

;0
� �

;xe2;3

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g1g2 �

g2

g3

r
; g1 þ

1
g3

� �
;� 1

g3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g1g2 �

g2

g3

r� �



Table 2
Notation and symbols.

Symbols Description

R Real numbers
T Transpose of a matrix/vector

x tð Þ ¼ x1 tð Þ;x2 tð Þ;x3 tð Þ½ �T 2 R3�1 State variables vector of the CFM (1)

g1, g2, andg3 The constant parameters of the CFM (1)

K tð Þ ¼ K1 tð Þ;K2 tð Þ;K3 tð Þ½ �T 2 R3�1 Time-varying exogenous disturbances acting on the CFM (12)

u tð Þ ¼ u1 tð Þ;u2 tð Þ;u3 tð Þ½ �T 2 R3�1 Control input vector

a ¼ aij; i; j ¼ 1;2;3; i–j ) aij ¼ 0

 � 2 R3�3,

b ¼ bij; i; j ¼ 1;2;3; i–j ) bij ¼ 0

 � 2 R3�3c ¼ cij ; i; j ¼ 1;2;3; i–j ) cij ¼ 0

h i
2 R3�3

Feedback controller gains

r 2 R, 0 < r < 1 Controller parameter
e The base of the natural Logarithm

sign x tð Þð Þ ¼ 1 x tð Þ 2 Rþ

�1 x tð Þ 2 R�

�
Signum function

aj j The absolute value of a scalara 2 R

bj j ¼ b1j j; b2j j; � � � ; bnj j½ �T The absolute of a vector b 2 Rn�1, where bi 2 b for i 2 1;2; � � � ;nð )
kbk ¼Pn

1 bij j Norm-1 ofb

kbk2 ¼ Pn
1b

2
i

 �1
2 Norm-2 ofb
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The authors in [25] give a detailed discussion about the stability
and bifurcation of these balancing points.

This paper considers g1 ¼ 0:9;g2 ¼ 0:2; and g3 ¼ 1:2 in the sim-
ulation examples by following [26,33]. Stability and bifurcation of
these balancing points as follows.

The Jacobian matrix of the CFM (1) is given below.

Jx tð Þ ¼
�0:9þx2 tð Þ x1 tð Þ 1

�2x1 tð Þ �0:2 0
�1 0 �1:2

264
375 ð3Þ

Table 3 summarizes the stability analysis of the CFM (1) balanc-
ing points.

Dissipative characteristic

The existence of a strange attractor in a nonlinear or infinite-
dimensional dynamical system assures chaos in the system [43].
A dynamic system is dissipative if the vector field’s divergence is
negative.

Following (1), let us consider the vector field v as:

v ¼
_x1 tð Þ
_x2 tð Þ
_x3 tð Þ

264
375 ¼

x1 tð Þx2 tð Þ � 0:9x1 tð Þ þx3 tð Þ
1� 0:2x2 tð Þ �x2

1 tð Þ
�1:2x3 tð Þ �x1 tð Þ

264
375 ð4Þ

The divergence of (4) is given by:

r:v ¼ @ x1 tð Þx2 tð Þ � g1x1 tð Þ þx3 tð Þð Þ
@x1 tð Þ þ @ 1� 0:2x2 tð Þ �x2

1 tð Þ� �
@x2 tð Þ

þ @ �1:2x3 tð Þ �x1 tð Þð Þ
@x3 tð Þ

¼ x2 tð Þ � 0:9� 0:2� 1:2 ¼ � x2 tð Þ þ 2:3ð Þ ð5Þ
Table 3
Stability analysis of CFM (1).

i xei kij ,i; j ¼ 1;2;3 Analysis

1 0;5;0½ � k11 ¼ 3:894,
k12 ¼ �1:0037,
k13 ¼ �0:2

The system is unstable at
xe1 (saddle-focus)

2 0:83;1:57;�0:55½ � k21;22 ¼ 0:093� 1:36i,
k23 ¼ �0:916

The system is unstable at
xe2 (saddle-focus)

3 �0:83;1:57;0:55½ � k31;32 ¼ 0:093� 1:36i,
k33 ¼ �0:916

The system is unstable at
xe3 (saddle-focus)

5

The system (1) is dissipative for x2 tð Þ > �2:3; it means that
each volume element V0e� x2 tð Þþ2:3ð Þt containing the trajectories of
the system (1) shrinks to zero at an exponential rate
x2 tð Þ þ 2:3ð Þ as t ! 1. Therefore, trajectories of the CFM (1) are
attracted by a strange attractor. Hence, system (1) is chaotic.

Lyapunov exponents and Kaplan-Yorke dimension

The Lyapunov exponents [44] provide a quantitative measure of
the divergence or convergence of the nearby trajectories for a
dynamical system. The Lyapunov exponent measures sensitive
dependence on initial conditions at t ¼ 0 and is calculated based
on how rapidly two nearby states diverge from each other. The
Lyapunov exponents of (1) are LE1 ¼ 0:000, LE2 ¼ 0:0180, and
LE3 ¼ �0:2127.

Now

0:000þ 0:0180� 0:2127 ¼ �0:1947 < 0 ð6Þ
Therefore, system (1) is chaotic [44].
The Lyapunov dimension of CFM (1) is computed by the Kaplan-

Yorke conjecture,

DKY ¼ jþ
Pj

i¼1LEj

LEjþ1

		 		 ¼ 2þ LE1 þ LE2

LE3j j ¼ 2:0846 ð7Þ

which is fractional. Consequently, system (1) is chaotic [45].
Fig. 1 illustrates the 3D chaotic attractor, Fig. 2 demonstrates

the state variables’ behavior, and Fig. 3. depicts the 2D phase por-
traits of the system (1), when g1 ¼ 0:9;g2 ¼ 0:2; and g3 ¼ 1:2.

Chaotic analysis based on bifurcation theory

Variations in the parameter values cause qualitative changes in
the system dynamics, referred to as bifurcation; the points at
which these qualitative changes occur are known as bifurcation
points [46]. Fig. 4 shows that all the equilibrium points follow
higher order bifurcation periods due to the variations in the system
parameter g3. This behavior of the bifurcation plots confirms that
system (1) exhibits chaotic dynamics.

Poincare analysis

The Poincare section technique [46] investigates the behavior of
a continuous dynamical system for projecting higher dimensions
trajectories into two dimensions; the system exhibits a chaotic
phenomenon when a dense limit cycle of the state space trajecto-
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ries on a 2-D section has a limit cycle; otherwise, it shows a peri-
odic orbit. Fig. 5 illustrates the Poincare sections of the system (1),
(a) x1 tð Þvs x2 tð Þ, (b) x1 tð Þvs x3 tð Þ, and (c) x2 tð Þvs x3 tð Þ,
alternatively.

Methodology for the finite-time analysis

This subsection describes the finite-time convergence analysis
framework for a nonlinear dynamic system based on the Lyapunov
function.

Lemma 1 [47]. Consider V tð Þ : 0;1½ Þ ! 0;1½ Þ be a Lyapunov func-
tion described in (8).
6

_V tð Þ 	 �jVp tð Þ; and
0 	 V t0ð Þ; t0 	 t;

(
ð8Þ

where t0 is the initial time, and j;p 2 R such that j > 0, and 0 < p < 1.
Equation (9) gives the solution of (8).

V1�p tð Þ 	 V1�p t0ð Þ � t � t0ð Þ 1� pð Þj; for t0 	 t 	 s; and
V tð Þ ¼ 0;8t0 	 t:

(
ð9Þ

In (10), s is the time such that if V t0ð Þ > 0, then lim
t!s

V tð Þ ¼ 0, and

s 	 s1 ¼ t0 þ V1�p t0ð Þ
1� pð Þj ð10Þ

where j regulates the finite-time convergence rates and s1 2 Rþ.
The following remark drives the relationship in (10).

Remark 1 [48]. For lim
t!s

V tð Þ ¼ 0, Eq. (9) gives:

s 1� pð Þj 	 V1�p t0ð Þ þ j 1� pð Þt0
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) s 	 s1 ¼ t0 þ V1�p t0ð Þ
1� pð Þj ð11Þ

If V t0ð Þ, t0, s1, and p are known, then it is easy to compute

j 	 V1�p t0ð Þ
s�t0ð Þ 1�pð Þ
Problem description

When exogenous disturbances Ki tð Þ and control efforts ui tð Þ act
on the CFM (1), then (12) represents the closed-loop dynamics.

_x1 tð Þ ¼ x2 tð Þ � g1½ �x1 tð Þ þx3 tð Þ þK1 tð Þ þ u1 tð Þ
_x2 tð Þ ¼ 1� g2x2 tð Þ �x2

1 tð Þ þK2 tð Þ þ u2 tð Þ
_x3 tð Þ ¼ �g3x3 tð Þ �x1 tð Þ þK3 tð Þ þ u3 tð Þ

8><>: ð12Þ

In this scenario, it is desired to design a feedback controller for
synthesizing control effort u tð Þ 2 R3�1 that forces the state of the
closed-loop system (12) to the origin in finite time.
7

Assumption 1. The exogenous disturbances caused by environ-
mental interference influence the financial and economic chaotic
models [34]; it may destabilize systems, resulting in undesirable
behavior. This paper assumes that the bounded exogenous distur-
bances Ki tð Þ act upon CFM (12). Therefore, there exists an upper
bound ui 2 Rþ of the disturbances such that:

Ki tð Þj j 	 ui; i 2 1;2;3ð Þ ð13Þ

Assumption 2. The influence of the economic factors such as
supply-demand, fluctuations in the prices and cost of demand; the
parameters g1 2 Rþ, g2 2 Rþ, and g3 2 Rþ of the CFM (1) vary
during the financial activities in the market [37].
Proposed finite-time controller

The presence of chaos in a financial system prevents policymak-
ers from predicting and analyzing future economic trends. This fea-
ture of a financial system brings an economic crunch in the
financial cycle [33]. Therefore, it is necessary to eliminate the chao-
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tic financial system phenomena in a finite time to make long-term
future predictions that establish healthy economic activities and
growth [28]. Most of the literature discusses the asymptotic stabil-
ity of the CFM. Timely prediction of the financial system behavior
is a requirement for planning and management; the asymptotic
stability of a CFM does not develop a good base for predicting
the rapid fluctuations in the financial system that affects economic
growth. These issues urge to design of a controller that suppresses
the chaos in the CFM in a finite time.

Eq. (14) introduces a new FTC design that stabilizes the closed-
loop (12) at the origin in finite time.

u tð Þ ¼ ui tð Þ ¼ �aiwi tð Þxi tð Þ � Xi tð Þ þuið Þsgn xi tð Þð Þ; i ¼ 1;3
u2 tð Þ ¼ �a2w2 tð Þx2 tð Þ � X2 tð Þ þu2ð Þsgn x2 tð Þð Þ � 1;

�
ð14Þ

where X tð Þ ¼ diag ciwi tð Þ þ bi½ �, where wi tð Þ ¼ e�r xi tð Þj j.
If xi tð Þ > 0, then sgn xi tð Þð Þ ¼ 1, if xi tð Þ < 0, then

sgn xi tð Þð Þ ¼ �1, and if xi tð Þ–0, then sgn xi tð Þð Þ ¼ xi tð Þ
xi tð Þj j for

i ¼ 1;2;3.
Items (i)-(iii) summarize the role of distinct components of the

control input (14).

(i) aiwi tð Þxi tð Þ makes the closed-loop globally stable; it assures
the converges of the state variables to the origin.

(ii) ciwi tð Þ þ bið Þsgn xi tð Þð Þ realizes oscillation free, smooth, and
rapid convergence of the state variables to zero and estab-
lishes finite-time stabilization. The parameter r regulates
the decay rate. The simulation results depicted in Fig. 6 val-
idates it.

(iii) uisgn xi tð Þð Þ eradicates the effects of time-varying
exogenous disturbances.

Analysis of the closed-loop

This section analyzes two claims; (a) the perturbed state vari-
ables converge to the equilibrium point of the closed-loop, and
(b) converges of the state variables completes in finite time.
Theorem 1 limns it.

Theorem 1. FTC (14) computes control effort u tð Þ. It is an input signal
to the CFM (12). Application of u tð Þ to the CFM (12) establishes
convergence of the state variables vector x tð Þ to the origin in finite-
time s as given in (15).
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r ¼ 0:01, ai ¼ bi ¼ ci ¼ 1 Fig. 6 (c). The convergence of the state variables xi tð Þ,
i ¼ 1;2;3 to zero when r ¼ 5,ai ¼ bi ¼ ci ¼ 1.

8

s 	 s1 ¼ kx 0ð Þk2
bm

ð15Þ

where bm ¼ Minimum bið Þ, and 0 < s 	 s1 2 Rþ represents the finite
time. s depends on the initial conditions x 0ð Þ ¼ x1 0ð Þ;x2 0ð Þ;½
x3 0ð Þ�T and the controller parameter bm.

Subsection ‘Analysis of the state trajectories convergence’
proves the convergence of the closed-loop state variables based
on the Lyapunov direct analysis theorem for global asymptotic sta-
bility [49]. Theorem 1 assures the finite-time convergence, and
subsection ‘Proof of Theorem 1’ describes its proof.

Analysis of the state trajectories convergence

Consider the following quadratic and positive definite function:

V x tð Þð Þ ¼ 1
2
xT tð Þx tð Þ 
 0 ð16Þ

The derivative of (16) along (12) implies:

dV x tð Þð Þ
dt ¼ x1 tð Þ x2 tð Þ � g1½ �x1 tð Þ þx3 tð Þ þK1 tð Þ þ u1 tð Þð Þ

þx2 tð Þ 1� g2x2 tð Þ �x2
1 tð Þ þK2 tð Þ þ u2 tð Þ� �

þx3 tð Þ �g3x3 tð Þ �x1 tð Þ þK3 tð Þ þ u3 tð Þð Þ

¼ x2
1 tð Þx2 tð Þ � g1x2

1 tð Þ þx1 tð Þx3 tð Þ þK1 tð Þx1 tð Þ þx1 tð Þu1 tð Þ
þx2 tð Þ � g2x2

2 tð Þ �x2
1 tð Þx2 tð Þ þK2 tð Þx2 tð Þ þx2 tð Þu2 tð Þ

�g3x2
3 tð Þ �x1 tð Þx3 tð Þ þK3 tð Þx3 tð Þ þx3 tð Þu3 tð Þ:

ð17Þ
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Apply the controller (14) to (17) yields:

dV x tð Þð Þ
dt ¼ �P3

1
gix2

i tð Þ þP3
1
Ki tð Þxi tð Þ �P3

1
aiwi tð Þx2

i tð Þ

�P3
1

Xi tð Þ þuið Þsgn xi tð Þð Þxi tð Þ

	 �P3
1

aiwi tð Þ þ gið Þx2
i tð Þ þP3

1
Ki tð Þ xi tð Þj j

�P3
1
Xi tð Þsgn xi tð Þð Þxi tð Þ �uisgn xi tð Þð Þxi tð Þ:

ð18Þ

Using Assumption 1 and the fact sgn xi tð Þð Þxi tð Þ ¼ xi tð Þj j to
(18) implies:

dV x tð Þð Þ
dt

	 �
X3
1

aiwi tð Þ þ gið Þx2
i tð Þ �

X3
1

Xi tð Þ xi tð Þj j ð19Þ

Remark 2. According to the Lyapunov theory, Eqs. (16) and (19)
guarantee that the closed-loop is globally asymptotically stable
provided aiwi tð Þ þ gið Þ > 0, ciwi tð Þ > 0 and bi > 0. It assures the
convergence of the state variables to the equilibrium point.
Remark 3. Assume that L1i tð Þ ¼ aiwi tð Þ þ gi, and L2i tð Þ ¼ ciwi tð Þ.
Choosing L1i tð Þ > 0, L2i tð Þ > 0, and bi > 0 is sufficient to satisfy
inequality (19). The speed of convergence increases for larger val-
ues of L1i tð Þ > 0, L2i tð Þ > 0, and bi > 0; it is evident from Fig. 7.
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Fig. 7. The convergence behavior of the state variables when (a)
ai ¼ bi ¼ ci ¼ 2;r ¼ 0:01, and (b)ai ¼ bi ¼ ci ¼ 5;r ¼ 0:01.

9

Remark 4. As the plant parameters gi 2 Rþ; therefore, the closed-
loop stability is insensitive to the variation of these parameters.
Thus, the closed-loop performance is robust to the smooth varia-
tions of the CFM (1) parameters. Fig. 8 illustrates this finding.
Proof of Theorem 1

Let us proceed by using (19)

dV x tð Þð Þ
dt

	�
X3
1

aiwi tð Þþgið Þx2
i tð Þ�

X3
1

ciwi tð Þ xi tð Þj j�
X3
1

bi xi tð Þj j

	 �
X3
1

bi xi tð Þj j 	 0

Further,

dV x tð Þð Þ
dt

	 �Minimum bið Þkx tð Þk1 ¼ �bmkx tð Þk2

¼ �bm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xT tð Þx tð Þ

2

s
¼ �

ffiffiffi
2

p
bm V x tð Þð Þð Þ12 	 0

Hence

dV x tð Þð Þ
dt

	 �
ffiffiffi
2

p
bm V x tð Þð Þð Þ12 ð20Þ

Using the finite-time convergence analysis framework in sub-
section ‘Methodology for the finite-time analysis’, Eq. (20) gives:

s 	 s1 ¼ kx 0ð Þk2
bm

ð21Þ
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Fig. 8. The convergence behavior of the state variables for (a) Example 2, (b)
Example 3.
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Remark 5. The upper bound of the time of convergence is a

function of initial conditions x1 0ð Þ;x2 0ð Þ;x3 0ð Þ½ �T and the con-
troller parameter bm.

This completes the proof of Theorem 1.

Numerical simulations and comparative study

All the simulations are performed by considering the parame-
ters and initial conditions given in Table 4. This paper uses Math-
ematica 12.0 version in the Microsoft 10 environment for all the
simulations. The numerical solution of the dynamic systems is per-
formed using the fourth-order Runge-Kutta method with step size
0.001. The truncation error in the fourth-order Runge-Kutta

method is of order-four O h4
 �

, where h represents the step size

and O is the order. It is a widely used method for the numerical
solution of differential equations [50,51].

Fig. 6(a) demonstrates the behavior of the state variables xi tð Þ,
i 2 1;2;3ð Þ without any control effort. It shows that the state vari-
able trajectories keep oscillating in a bounded region. This behav-
ior is a consequence of the chaotics, as discussed in
Section ‘Preliminaries of Chaotic Finance Model’.

Example 1. In this example, parameters of the financial system are
fixed, and no exogenous disturbance exists.

The convergence behavior of the state variables depicted in
Fig. 6(b) is achieved using the proposed FTC (14) by selecting
r ¼ 0:01. It illustrates that all converge to zero in less than 0.48 s
smoothly. Fig. 6(c) demonstrates the convergence behavior for
r ¼ 4. Results in Fig. 6(b) and (c) conclude that for larger values
of controller parameter r, the convergence behavior becomes slow,
while in both cases, trajectories remain smooth.

Fig. 7 illustrates that the convergence of the state variable tra-
jectories become faster when the values of gains ai, bi, and ci are
large. This observation is shown in Fig. 7. In Fig. 7(a),
ai ¼ bi ¼ ci ¼ 2 and Fig. 7(b), ai ¼ bi ¼ ci ¼ 5. In Fig. 7(a) and (b),
all the trajectories converge to zero in less than 0.26 and 0.14 s,
respectively.

Robustness analysis of the closed-loop

The influence of the economic factors such as supply-demand,
fluctuations in the prices, and cost of demand; the positive param-
eters g1, g2, and g3 of the CFM (1) vary due to the variations in the
financial market activities. Similarly, the exogenous disturbances
caused by environmental interference influence the financial and
economic chaotic models [34]; it may destabilize systems, result-
ing in undesirable behavior. Therefore, to analyze the robustness
Table 4
Initial conditions and parameters for simulations.

Initial conditions CFM parameters Controller parameters

x1 0ð Þ ¼ �0:5 g1 ¼ 0:9 a1 ¼ b1 ¼ c1 ¼ 1, r ¼ 0:01
x2 0ð Þ ¼ 1:5 g2 ¼ 0:2 a2 ¼ b2 ¼ c2 ¼ 1, r ¼ 0:01
x3 0ð Þ ¼ 1 g3 ¼ 1:5 a3 ¼ b3 ¼ c3 ¼ 1, r ¼ 0:01

Table 5
Comparative results for the convergence time to zero.

Example No. Figure No. Parameter variations Convergence time E

2 8(a) Eq. (23a) t ¼ 0:5s 4
3 8(b) Eq. (23b) t ¼ 0:48s 5
Example No. Figure No. P

e
6 10(a) E
7 10(b) E

10
of the proposed FTC (14), this subsection discusses the conver-
gence behavior of the state variable trajectories to the origin when
the CFM (1) parameters change smoothly and expose to the various
exogenous disturbances acting on the system.

Effects on the performance of the closed-loop due to the smooth
system parameter variations

This subsection discusses effects on the convergence time due
to smooth variations in the system parameters between 0:1 and 1.

Example 2. Parameter variations in this example are:

g1 ¼ 0:9� 0:2 cos 5t;g2 ¼ 0:2� 0:2 cos 5t; and
g3 ¼ 1:2� 0:2 cos 5t ð23aÞ

Example 3. Parameter variations in this example are:

g1 ¼ 0:9� 0:1ert;g2 ¼ 0:2� 0:1ert ; and g3 ¼ 1:2� 0:1ert ð23bÞ
Fig. 8 (a) and (b) demonstrate the convergence of state variables

to the equilibrium point for Examples 2 and 3, respectively. Table 5
summarizes the convergence time behavior.

Impact of the exogenous disturbances on the closed-loop performance
The following two examples describe the effects of the exoge-

nous disturbances [52–54] on the convergence time on the state
variable trajectories.

Example 4. Exogenous disturbances are selected as:

Ki tð Þ ¼ 0:3 sin 0:5
p
6
t; i ¼ 1;2;3 ð24aÞ

Example 5. Exogenous disturbances are selected as:

Ki tð Þ ¼ 0:1 cos 0:5pt þ p
6

 �
; i ¼ 1;2;3 ð24bÞ

Fig. 9 (a) and (b) depict that the convergence time remains less
than the upper bound of the finite time computed as a function of
initial conditions in the presence of the exogenous disturbances.
The summary of the convergence time is given in Table 5.

Effects of both parameter variations and exogenous disturbances
Examples in this subsection discuss the combined effect of the

parameter variations and exogenous disturbances on the conver-
gence time of the state variable trajectories.

Example 6. This example considers parameters variations gi tð Þ
and exogenous disturbances Ki tð Þ, which are given in (25a) and
(25b), respectively.

ið Þ g1 ¼ 0:9� 0:2 cos 5t;g2 ¼ 0:2� 0:2 cos 5t; and
g3 ¼ 1:2� 0:2 cos 5t ð25aÞ
xample No. Figure No. Exogenous disturbances Convergence time

9(a) Eq. (24a) t ¼ 0:54s
9(b) Eq. (24b) t ¼ 0:54s

arameter variations and
xogenous disturbances

Convergence time

qs. (23a) and (24a) t ¼ 0:78s
qs. (23b) and (24b) t ¼ 0:68s
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Fig. 10. The convergence behavior of the state variables in the presence of
parameters variations and exogenous disturbances, (a) Example 6, and (b) Example
7.
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Fig. 11. The convergence behavior of the state variables using the control effort
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Fig. 9. The convergence behavior of the state variables in the presence of exogenous
disturbances (a) Example 4, and (b) Example 5.
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iið Þ Ki tð Þ ¼ 0:3 sin 0:5
p
6
t; i ¼ 1;2;3 ð25bÞ

Example 7. Parameter variations and exogenous disturbances in
this example are:

ið Þ g1 ¼ 0:9� 0:1ert ;g2 ¼ 0:2� 0:1ert; and
g3 ¼ 1:2� 0:1ert ð26aÞ

iið Þ Ki tð Þ ¼ 0:5 cos 0:5pt þ p
6

 �
; i ¼ 1;2;3 ð26bÞ

Fig. 10 (a) and (b) show that the convergence time is 0:78 sec-
onds and 0:68 seconds, respectively. The summary of all simulation
results is given in Table 5.

Data in Table 5 verifies that state variable trajectories in all
examples converge to the equilibrium point in less than the upper
bound of the finite-time convergence. These examples describe
that smooth parameter variation and bounded exogenous distur-
bances do not destabilize the closed-loop and the convergence
time follows the design finite-time bound.

Comparative study

The following examples are chosen from the paper [20] to ana-
lyze the comparative performance and efficiency of the proposed
FTC (14). Assume that initial conditions and controller design
parameters are the same for both systems for benchmarking.

Example 8:. This example re-simulates Example 1 using the
controller proposed in [20] and described by (27).
11
u1 tð Þ ¼ �x1 tð Þx2 tð Þ �x3 tð Þ � a1xp
1 tð Þ

u2 tð Þ ¼ �1þx2
1 tð Þ � a2xp

2 tð Þ
u3 tð Þ ¼ x1 tð Þ � a3xp

3 tð Þ

8><>: ð27Þ

where 0 < p < 1 is any positive real constant.
Fig. 11 depicts the transient behavior of the state variable vector

trajectories by FTC (27). Fig. 11 demonstrates that the state vari-
ables xi tð Þ; i ¼ 1;2;3 do not show convergence behavior.

This paper modifies FTC (27) by introducing uisgn xi tð Þð Þ as
described in (28), this modification makes the closed-loop stable
(27).
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hence eliminates the diverging behavior. Now, the closed-loop is
suitable for the comparative study.

u1 tð Þ ¼ �x1 tð Þx2 tð Þ �x3 tð Þ � a1xp
1 tð Þ �u1sgn x1 tð Þð Þ

u2 tð Þ ¼ �1þx2
1 tð Þ � a2xp

2 tð Þ �u2sgn x2 tð Þð Þ
u3 tð Þ ¼ x1 tð Þ � a3xp

3 tð Þ �u3sgn x3 tð Þð Þ

8><>: ð28Þ

Example 9. This example considers the same parameter variations
and exogenous disturbances as given in (23a) and (24a),
respectively.

Fig. 12(a) shows that the time of convergence of state variable
trajectories to the equilibrium point is longer than the proposed
FTC (14), and it is greater than the upper bound of the finite-
time defined in (15).

Example 10. When parameters variations gi tð Þ and exogenous
disturbances Ki tð Þ are used as given in (23b) and (24b),
respectively.
         Time(s) 
        (a) 

        Time(s) 
        (b) 

1 t 2 t 3 t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1.0

0.5

0.0

0.5

1.0

1.5

1 t 2 t 3 t

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0

1.5

Fig. 12. The convergence behavior of the state variables using the control effort
(28), (a) Example 9, and (b) Example 10.

Table 7
Comparitive results for the dissipation rate of the energy function.

Feedback control technique Parameter variations and exogenous disturbance

Eq. (14) Eqs. (23a) and (24a)

Eq. (28) Eqs. (23a) and (24a)

12
The state variable trajectories in Fig. 12(b) do not converge.
The analysis of these simulation results concludes that the pro-

posed algorithm is more robust to the smooth parameter varia-
tions and exogenous disturbances than [20].

Subsection ‘Analysis and conclusion of the computer simula-
tions’ briefly describes the analysis of the simulation results and
conclusions with some remarks.
Analysis and conclusion of the computer simulations

The gradient of the energy function associated with the state
variable trajectories of the closed-loops developed by the proposed
FTC (14) and FTC in [20] are given in Table 7. Here energy function
terminology is used for the Lyapunov function in subsection ‘Anal-
ysis of the state trajectories convergence’.

In Table7,V x tð Þð Þ ¼ V1 x tð Þð Þ, and thegradients are given in (29).

d
dt

V x tð Þð Þ 	 d
dt

V1 x tð Þð Þ: ð29Þ

The simulation results depicted in Fig. 13 verify the inequality
(29). Fig. 13 and inequality (29) affirm that the proposed controller
(14) accomplishes faster convergence of energy function V x tð Þð Þ to
zero than the other controller (28). It confirms that the proposed
controller (14) uses lesser energy than the controller (28). Further,
in the vicinity of zero, d

dt V x tð Þð Þ approaches zero that assures the
smoothness and oscillation-free behavior of the steady-state.

Table 8 reports and compares convergence time between Exam-
ples 1 and 8, Examples 6 and 9, and Examples 7 and 10. This table
shows that the proposed controller (14) establishes convergence of
the state variable vector in all cases faster than the controller in
[20]. Further, the closed-loop formed by the controller in [20]
diverges for some initial conditions, parameter variations, and
exogenous disturbances. It concludes that the proposed controller
(14) develops a closed-loop, which is energy-efficient, and conver-
gence of the state variables is fast, oscillation-free, and robust to
the parameter variations and exogenous disturbances.
s Energy function Dissipation rate of the energy function

V x tð Þð Þ ¼ 1
2

P3
1x2

i tð Þ d
dt V x tð Þð Þ 	 �P3

1 aiwi tð Þ þ gið Þx2
i tð Þ

�P3
1 ciwi tð Þ þ bið Þ xi tð Þj j

V1 x tð Þð Þ ¼ 1
2

P3
1x2

i tð Þ d
dt V1 x tð Þð Þ 	 � 1

2

� �pþ1
2 1

2

P3
1x2

i tð Þ
 �pþ1

2

  Time (s)

d
dt
V1 t

d
dt
V t

0 1 2 3 4

6

4

2

0

Fig. 13. Comparison of the rate of energy functions.



Table 8
Comparison of the convergence time in simulations.

Proposed FTC (14) FTC in [20]

Figure No. Parameter variations Exogenous disturbances Convergence time Figure No. Parameter variations Exogenous disturbances Convergence time

6(a) Does not vary No disturbances t ¼ 0:47s 11 Does not vary No disturbances Diverge
10(a) Eq. (23a) Eq. (24a) t ¼ 0:76s 12(a) Eq. (23a) Eq. (24a) t ¼ 2:6s
10(b) Eq. (23b) Eq. (24b) t ¼ 0:68s 12(b) Eq. (23b) Eq. (24b) Diverge
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Conclusions

This article designs a novel robust finite-time feedback control
law. It describes the chaotic finance model properties and proposes
a controller that flourishes finite-time globally stable closed-loop
supported by the established theoretical analysis. The proposed
controller scheme accomplishes oscillation-free and faster conver-
gence of the state variables to the equilibrium point in the pres-
ence of parameter variations and exogenous disturbances. The
closed-loop theoretical and computer simulation analysis affirms
the robust performance. A comparative performance study verifies
that the proposed finite-time feedback control algorithm is supe-
rior in smoothness, robustness, convergence rate, and disturbance
rejection. Time of convergence remains lesser than the upper
bound of the finite time of convergence. The upper bound of the
finite-time is insensitive to the parameter variations and exoge-
nous disturbances. Therefore, the closed-loop is robust.

The research team will study the proposed controller’s perfor-
mance for the possible Markovian jumps in the chaotic finance
model and modify the controller if needed.
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Appendix A. [30]8

u1 tð Þ ¼ a1 x1 tð Þ �x1 t � s1ð Þð Þ
u2 tð Þ ¼ a2 x2 tð Þ �x2 t � s2ð Þð Þ
u3 tð Þ ¼ a3 x3 tð Þ �x3 t � s3ð Þð Þ

><>:
where s1; s2, and s3 are the time-delays, and a ¼ diag ai; i ¼ 1;2;3½ �
is a matrix of the feedback gain.

Appendix B. [32]
u1 tð Þ ¼ �xe3 � xy tð Þ þxe2 � g1

� �
xx tð Þ þxe1ð Þ � b 1

2x
2
x tð Þ� �p

xx tð Þ

u2 tð Þ ¼ k1xy tð Þ;u2 tð Þ ¼ k1xz tð Þ
where
k1 ¼

xx tð Þxz tð Þ þxe3 tð Þxx tð Þ þ xy tð Þ þxe2 � g1

� �
xx tð Þ þxe1ð Þxx tð

�g2xy tð Þ xy tð Þ þxe2
� �� xx tð Þ þxe1ð Þ2xy tð Þ � xx tð Þ þxe1ð Þxz

 
x2

x tð Þ þx2
z tð Þ

13
xx tð Þ ¼ x1 tð Þ �xe1;xy tð Þ ¼ x2 tð Þ �xe2;xz tð Þ ¼ x3 tð Þ �xe3;
�
Y tð Þ ¼ xx tð Þ xy tð Þ xz tð Þ½ �T , and b > 0, 0 < p < 1 are any two
real constants.

Appendix C. [33]

u4 tð Þ ¼ k1 _x1 tð Þ ¼ k1 x2 tð Þ þ 1
g2
� g1

 �
x1 tð Þ � g4

g2
x1 tð Þ

�g4x1 tð Þx2 tð Þ � g4x4 tð Þ;
u1 tð Þ ¼ u2 tð Þ ¼ u3 tð Þ ¼ 0;

8>><>>:
where gi; i ¼ 1;2;3;4 are the positive parameters of the proposed
hyperchaotic finance model, and k1 is a feedback gain.

Appendix D. [34]

u tð Þ ¼ a x tð Þ �xeð Þ � b x t � sð Þ �xeð Þ
where xe ¼ xe1;xe2;xe3ð Þ is the equilibrium point of the chaotic
financial system, a ¼ diag ai; i ¼ 1;2;3½ � and b ¼ diag bi; i ¼ 1;2;3½ �
are the feedback gain matrices.

Appendix E. [36]

u1 tð Þ ¼ a1x1 tð Þ;u2 tð Þ ¼ u3 tð Þ ¼ u4 tð Þ ¼ 0

and a1 is a feedback gain.

Appendix F. [37]
u1 tð Þ ¼ �x3 tð Þ � x2 tð Þ � bg1 tð Þ� �
x1 tð Þ �x4 tð Þ � a1x1 tð Þ

u2 tð Þ ¼ �1þ bg2 tð Þx2 tð Þ þx2
1 tð Þ � a2x2 tð Þ

u3 tð Þ ¼ x1 tð Þbg3 tð Þx3 tð Þ � a3x3 tð Þ
u3 tð Þ ¼ 0:05x1 tð Þx3 tð Þ � bg4 tð Þx3 tð Þ � a4x4 tð Þ

8>>><>>>:
where bgi tð Þ; i ¼ 1;2;3;4 are the uncertain parameters of the pro-
posed hyperchaotic finance model and a ¼ diag ai; i ¼ 1;2;3;4½ � is
the gain matrix.

Appendix G. [38]
u1 tð Þ ¼
bk tð Þx1 tð Þ � n V1 x tð Þð Þð Þp

x1 tð Þ ; ifx1 tð Þ–0;

0; ifx1 tð Þ ¼ 0

(

where n > 0, 0 < p < 1 are any positive real constants,
x tð Þ ¼ x2

1 tð Þ þx2
2 tð Þ þx2

3 tð Þ, V1 x tð Þð Þ ¼ 1
2x

2
1 tð Þ þ V0 x2 tð Þ;x3 tð Þð Þ,

and V0 is a positive definite function of x2 tð Þ;x3 tð Þð Þ. The unknown

controller parameter bk tð Þ is adapted according to the law,
_bk tð Þ ¼ �kx tð Þ, and k 2 Rþ.
Þ � b 1
2x

2
x tð Þ� �p þxy tð Þ

tð Þ � g3xz tð Þ xz tð Þ þxe3ð Þ þ b V Y tð Þð Þð Þp
!
;
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Appendix H. [39]

u tð Þ ¼ a x tð Þ �xe tð Þð Þ þ b x t � sð Þ �xe tð Þð Þ
where a ¼ diag ai; i ¼ 1;2;3½ � and b ¼ diag bi; i ¼ 1;2;3½ � are the
matrices of feedback gains, s is the time-delay, and
xe tð Þ ¼ xe1 tð Þ;xe2 tð Þ;xe3 tð Þð Þ is one of the unstable equilibrium
points.

Appendix I. [40]

u tð Þ ¼ G aþ Dað Þ x tð Þ �xe tð Þð Þ þ G bþ Dbð Þ x t � sð Þ �xe tð Þð Þ
where the matrix G ¼ diag l1; l2; � � � ; lm½ � specify the fault effects,
xe tð Þ ¼ xe1 tð Þ;xe2 tð Þ;xe3 tð Þð Þ is one of the unstable equilibrium
point, a ¼ diag ai; i ¼ 1;2;3½ � and b ¼ diag bi; i ¼ 1;2;3½ � represent
the gain matrices, and Da ¼ diag Dai; i ¼ 1;2;3½ � and
b ¼ diag Dbi; i ¼ 1;2;3½ � denote the gains fluctuation with appropri-
ate dimension.
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