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Abstract
In this study we propose a fractional frequency flexible Fourier form fractionally
integrated ADF unit-root test, which combines the fractional integration and
nonlinear trend as a form of the Fourier function. We provide the asymptotics of the
newly proposed test and investigate its small-sample properties. Moreover, we show
the best estimators for both fractional frequency and fractional difference operator for
our newly proposed test. Finally, an empirical study demonstrates that not
considering the structural break and fractional integration simultaneously in the
testing process may lead to misleading results about the stochastic behavior of the
Covid-19 pandemic.
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1 Introduction
The forecasts of daily events lead many decision-making processes to be more manage-
able. In time-series analysis, forecasts are generally made using the Box–Jenkins method.
In the Box–Jenkins method, the prerequisite for making long-term forecasting or setting
up an ARIMA model is the stationarity of the series under investigation. It is also essential
to make long-term forecasts in the current Covid-19 outbreak. These forecasts contain
crucial information to eliminate the uncertainties that may arise during the process. For
example, forecasting the peak number of infected cases in the long term may give valuable
information about the health care system. If these numbers can be accurately predicted,
then the intensive care unit bed capacities and other resources can be allocated efficiently.
This vital information can also be used by the other sectors which are affected by the
Covid-19 outbreak. Besides, long-term forecasting can also be made for all other natural
phenomena. Reliable forecasts of earthquakes, meteorology, biodiversity, and others are
needed to manage disasters. The time-series literature has described covariance stationar-
ity as a steady state in which the mean, variance, and covariance do not change over time.
The stochastic difference equation’s stationarity is determined by using the unit-root test
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of [1]. The test’s basic principle is to see if the first-degree stochastic difference equation’s
parameter is statistically equal to 1 or not. If it is equal to 1, the series is a unit-root process
or simply not stationary.

In this study, we need to add the dynamics of this natural outbreak to the [1] (hence-
forth, ADF) method to examine the outbreak’s stochastic features and test its long-term
predictability. If the epidemic’s data generation process is substituted correctly into the
test methodology leading to a stationarity test result, then we can claim that the correct
long-term forecast model is achieved. It is recognized that the number of daily cases in
the outbreak models conforms to exponential function patterns. However, it is not easy to
generalize the epidemic model to different functional designs, such as the second wave that
may occur in later stages. This functional pattern will create a double exponential model or
a more complex functional form. The complexities that arise obtained in this way can also
decrease the effectiveness of the long-term forecasts. We have used the Fourier function
to overcome this problem, thereby providing a remarkable convergence to any functional
form whose structure is uncertain. In the literature, many researchers have employed the
Fourier function to capture smooth structural breaks with integer frequency. Neverthe-
less, some studies have shown that this should be handled within a fractional frequency
structure. In addition to the importance of using low frequency, previous studies have also
emphasized the problems of using cumulative frequency in Fourier type of unit-root test-
ing. A well-known problem associated with the traditional unit-root tests is that the power
of the test decreases if too many variables are added into the testing equation when the
cumulative frequency is employed.

So how can the Fourier function capture the short-term oscillations in the daily cases
without using cumulative frequency? In the consecutive days of pandemics, different dy-
namics or numbers of infected patients are detected. Temporary or permanent jumps
are a prevailing dynamic of daily infected cases that the first-order difference equation
cannot capture. The fractional difference equation employed recently in the literature is
seen to solve such dynamics. It has been observed that the number of daily cases exhibits
fractional-order difference equation features. After detrending the daily infected cases
data with the Fourier function, the remaining series exhibit the features of a fractional
first-order difference equation. Therefore, in the light of these explanations, the pretest of
the long-term predictability of the number of daily Covid-19 cases must have considered
the fractional frequency Fourier functional form with a fractional difference equation. Let
us now turn to discussing the methodology used in the paper and literature available until
now.

Following the influential work of [1], testing the stationarity characteristics of variables
has attracted a great deal of attention among researchers. This testing methodology can
be broadly classified into three categories; linear unit-root tests, unit-root tests that per-
mit a break in mean and/or trend (this can be termed time-dependent nonlinearity, or
structural break (SB)), and finally unit-root tests that permit state-dependent nonlinear-
ity. However, after recognizing the long-memory features of the stochastic processes, the
fractionally integrated unit-root tests have attracted a great deal of attention in the recent
literature. Therefore, in this study, we will focus on combining the unit-root tests that
permit structural break and fractional integration (FI).

A typical exercise in most time-series investigations is to check whether the drift part of
a series is correctly characterized as deterministic or stochastic. Naturally, the stochastic
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drift is considered as a unit-root process. In contrast, the deterministic one is particularly
time trends. It is generally concluded that traditional methods developed for fractionally
integrated processes could drive spurious FI response if employed to short memory pro-
cesses encompassing structural breaks. The reverse outcome is also entirely recognized;
standard methods for identifying and measuring break dates lead to spurious structural
change, generally at the midpoint of the series, in fact, there is only fractional integra-
tion in the sample (see [2, 3]). Therefore, fractional integration and structural break indi-
cate vastly diverse long and medium-run dynamics, making it hard to discriminate among
them. As it is also recommended in [4], these two methods, FI and SB, are alternative
methods for difference stationarity (D-ST) and trend stationarity (T-ST). It is well known
that to avoid spurious estimates of the parameters and biases in the time-series studies,
the data must be differenced to make them stationary. Therefore, the decision of optimal
differencing is vital for obtaining correct information from the data under investigation.
By introducing these two alternatives, we have to choose the correct differencing among
D-ST, T-ST, fractional difference stationarity (FD-ST), and structural break stationarity
(SB-ST). In addition to these, it is well documented that in the D-ST case memory is infi-
nite, and past shocks are perfectly remembered. In the case of T-ST, memory is short, and
the autocorrelation function decays exponentially. [2] indicates that the FI processes or
the FD-ST case establish an interesting alternative to this separation as they are capable of
linking the gap between these two possibilities. Therefore, FD-ST has a long memory but
not as much as the D-ST, which indicates that d = 0.1 has a short memory with respect to
d = 0.9. These methods can fulfil the gap between the short-lasting and unchanging effect
of shocks in the T-ST and D-ST models, respectively, by providing transitional behaviors
such as long memory and nonstationary mean-reversion (see [2]). So finding the exact dif-
ferencing order is vital to limit information losses. As we have mentioned above, fractional
integration and structural break indicate very different medium and long-run dynamics.
Thus, it is hard to differentiate between them, so it is essential first to distinguish these two
methodologies. To this end, we propose a procedure that combines these two methods us-
ing a simple but yet efficient way to identify the SB and FI processes correctly. Therefore,
we can eliminate the problems which are explained in the above paragraph efficiently.

The unit-root tests which are permitting for a break in mean and/or trend are as follows;
[5–8], and [9]. These have acknowledged alternative trend models in examining for the
unit-root testing, and have concentrated on models with segmented line trends; and sin-
gle or multiple breaks [10]. However, recent studies have proposed unit-root tests where
the alternative hypothesis is stationarity around a smoothly changing trend. [11] (LNV,
hereafter) and [12] used logistic smooth trend functions that permit a smooth break in
the data’s deterministic trend. [13] specified nonlinear trend employing Chebyshev poly-
nomials. Reference [14] employed trigonometric functions in Fourier form to define prob-
able smooth breaks in the data. Numerous problems were encountered with these types
of unit-root tests.1 Nevertheless, the simplest and most accurate one has been the Fourier
function, which was used by [14–16], and [17].

The second strand of literature deals with the fractionally integrated unit-root test pro-
posed by [18] (henceforth, DGM). One stated that that both null hypotheses were rejected
frequently in the previous studies, and concluded that many time-series were not well

1See [10] for more details.
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characterized as either I(1) or I(0). Therefore, the group of fractionally integrated pro-
cesses, represented as FI(d), has proved to be very suitable in catching the persistence fea-
tures of many long-memory processes (see [19, 20], and [21]). Reference [18] has pointed
out the shortcomings of the alternative methodologies used and suggested a simple Wald-
type test in the time domain with adequate power properties. As a by-product of its appli-
cation, this test delivers knowledge about the values of d under the alternative hypothesis.
Therefore, this methodology is a generalization of the well-known Dickey–Fuller (D-F)
test, which was originally developed for the case of I(1) versus I(0), to the more general
case of FI(d0) versus FI(d1) with d1 < d0 and, thus, is denoted as the fractional Dickey–
Fuller (FD-F) test. DGM test is based on the normalized-OLS estimates, or on its t-ratio,
of the parameter on �d1 yt–1 in a regression of �d0 yt on �d1 yt–1 and possibly some lags of
�d0 yt . Depending on the alternative hypothesis H1 : d < d0, the pre-estimation is needed
for the order of d. DGM has shown that the choice of a T1/2 consistent estimator of d
in its appropriate range suffices to make the FD-F test possible, while preserving asymp-
totic normality. Reference [18] has highlighted the advantages of their testing procedure
as follows. The first one is theorizing the simple D-F framework to obtain simplicity for
testing unit roots with a fractional difference operator. The second one is that the LM
tests proposed contain a different structure than the traditional LM tests. The proposed
LM test does not assume any known density for errors, which makes it more robust to
fundamental ones. The third one is that in the exact case where d0 = 1, the FD-F method
inherits the flexibility of the standard D-F test. This provides a usual framework for test-
ing the I(1) null hypothesis against some interesting compound alternative. According to
[18], producing a fractional integration unit-root test by including a structural break does
not seem feasible with other FI unit-root tests. However, the flexible FD-F structure that
they propose will make this study much easier and feasible. The final one is that [18] has
found a good finite sample properties with respect to other competing tests.

Following [18], the third advice, we have extended this methodology to the structural
break set up by using the [17] method. As we have mentioned above, the [17] procedure
employs trigonometric functions in the form of Fourier form to define presumable smooth
breaks in the data. Numerous difficulties are encountered with structural break type of
unit-root tests. Nevertheless, the easiest and accurate one is the Fourier function used by
[17] with which extended it to fractional frequency case. Therefore, [17] is another simple
generalization of the ADF test like the DGM test. Combining these two simple methodolo-
gies will emerge as a more generalized and simple set up without facing any unnecessary
details to test stationarity in a composite alternative hypothesis. The composite hypoth-
esis of the series under investigation is a fractionally integrated series around a smoothly
changing trend.

Other attempts have been made in the literature to combine these two methodologies
(namely SB and FI) by using different techniques. References [22] and [23], following [24]
and [25], derived a Lagrange multiplier test in the time domain, and [26] and [3] have
considered Wald-type tests for a unit-root null hypothesis against fractional integration
following [18]. The traditional unit-root tests usually reject the null hypothesis when the
actual process is a series that is integrated fractionally with d = (0.5, 1). We will see later
that such series are not stationary. Therefore, the results of these studies become ques-
tionable. Moreover, it is well known that short memory processes with level shifts display
features that lead one to conclude that long memory is present in the data generating
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process (e.g., [23], among many others). On the other hand, it was also recognized that
long-memory processes cause the null hypothesis of no structural change to be rejected
when traditional structural change tests are used (see, [2, 3, 23], among many others). To
overcome these problems in the SB-FI literature and to address the reasons mentioned
earlier, we propose the SB-FI unit-root test in the form of a fractionally integrated series
around a smoothly changing fractional frequency flexible Fourier form. Therefore, we have
obtained the following contributions from this newly proposed methodology:

1. The confusion about structural break and fractional integration, which we explained
above, has been resolved with the most appropriate methods.

2. The two-step methodology allowed us to obtain the asymptotic distribution of the
unit-root test easily.

3. It has been shown that the Fourier function can represent the deterministic structure
of the Covid-19 outbreak. Also the best optimization algorithm that should be used
with the fractional frequency Fourier function is found.

4. For fractional integration, a new estimator has been proposed that minimizes
information losses. It has also been shown that predictions can be made with the
least loss of information with this new estimator.

5. Finally, how to design the optimal forecast model for outbreaks by combining all of
these methodologies has been shown.

The structure of the article is as follows. Section 2 presents fractional frequency Fourier
form fractionally integrated ADF test with its asymptotic distribution and presents an ex-
tensive simulation study to show the small-sample features. Section 3 discusses the various
optimization algorithms that can be used with the fractional frequency estimation along
with the parametric and semi parametric estimation of the difference operator d. Sec-
tion 4 applies the FFFFF-FI-ADF test to pretest the long-term predictability of the Covid-
19 cases. Section 5 is devoted to concluding remarks.

2 The methodology for the fractional frequency flexible Fourier form
fractionally integrated ADF test: FFFFF-FI-ADF

In the introduction, we gave some basic ideas about the testing procedure. The main con-
cern is to be simple in deriving the test, and its asymptotic. Hence, we have started with
the Fourier approach in which we can detrend the series at first and assume the remaining
part has fractionally integrated stationarity or nonstationarity of the series. Apart from
[15, 16] and [17], this two-step approach provides a straightforward setting for obtaining
the testing procedure and asymptotic distribution of the proposed test statistics. There-
fore, we will start with the Fourier approach and include the fractionally integrated ADF
test in the second step.

References [16] and [17] consider the following augmented Dickey–Fuller (DF) test:

yt = ϕ(t) + ψyt–1 + λt + εt , (1)

where εt is a stationary error term with a variance of σ 2, and ϕ(t) denotes the deterministic
intercept and trend. Reference [16] claims that it is problematic to estimate Eq. (1) directly
and study the unit-root hypothesis ψ = 1 without knowing the functional structure of
ϕ(t). Following [14, 16, 27] and [17], we assume that ϕ(t) includes the following Fourier



Omay and Baleanu Advances in Difference Equations        (2021) 2021:167 Page 6 of 33

components:

ϕ(t) = α0 + α1 sin

(
2πkt

T

)
+ α2 cos

(
2πkt

T

)
, (2)

where α0, α1, and α2 are changing intercept parameters, T is the number of observations,
and t gives the trend term. The term k denotes the particular frequency to be determined
over a pre-given interval. The trigonometric components sin( 2πkt

T ) and sin( 2πkt
T ) are uti-

lized to approximate smooth breaks. If α1 = α2 = 0, then there are no smooth breaks.
Through the grid-search method, [15, 16] use k = k∗ to minimize the residual sum of
squares (SSR) in Eq. (1), where k∗ indicates the value of k that achieves the minimum
SSR. Besides, Becker et al. (2006) show that it is acceptable to set k = 1 or k = 2 to find
the substantial structural changes in the data. Using a data-driven technique, [14] set the
maximum number of breaks to be 5. Reference [15] further recommends the usage of
low frequency to capture the smooth structural changes in the data. Reference [17] men-
tions the flexibility of the integer, but argues that it has many drawbacks in estimating the
smooth trends (i.e., over filtration, type two error etc.). Hence, we follow [17] and use the
fractional version of the test in this paper. To this end, instead of searching for a single in-
teger frequency k in Eq. (2) we try to find the fractional frequency in Eq. (3), which is also
employed in [14] and [15, 16] for integer values. The largest frequency applied is kmax, and
�k = 0.1 is used in the 0.1 range and other smaller increments, and the accuracy of the
fractional frequency search was increased. The optimal fractional frequency is obtained at
the point where the SSR is the lowest. This optimization process is carried out by applying
the algorithm described above for Eq. (1). Moreover, we can also employ this to define the
fractional frequency Fourier trend by using an F-test as proposed in [14] and [15, 16]. The
model is as follows:

�yt = α0 + α1 sin

(
2πkt

T

)
+ α2 cos

(
2πkt

T

)
+ δyt–1 + λt + εt . (3)

The null hypothesis of linear unit root is obtained when δ = 0, which is suggested by
[16]. The two-step testing process is as follows.

In the first step of the two stages procedure the following regression is run:

yt = α0 + α1 sin

(
2πkfrt

T

)
+ α2 cos

(
2πkfrt

T

)
+ λt + ω̄t , t = 1, 2, . . . , T , (4)

where kfr indicates the fractional Fourier frequency. The above equation assumes that ωt

is a random walk process and after being demeaned or detrended it can be used in the
second step as ω̄t ,

ω̄t = δω̄t–1 + ut , (5)

where ut ∼ iidN(0,σ 2
u ) and the initial condition ω̄0 is a constant. Notice that this technique

is asymptotically the same as the one step procedure of [17].
As we have mentioned above instead of assuming the case of I(1) versus I(0), the more

general case of FI(d0) versus FI(d1) with d1 < d0 can be used following [18]. The DGM test
is based on the normalized-OLS estimates, or on its t-ratio, of the coefficient on �d1 ω̄t–1
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in a regression of �d0 ω̄t on �d1 ω̄t–1 and possibly some lags of �d0 ω̄t .2 The definition of
the FI(d) process that we will implement is that of an (asymptotically) stationary process
when d < 0.5, and that of a nonstationary (truncated) process when d > 0.5.

For the asymptotic distribution of δ = 1, the two-step process will be used with the fol-
lowing demeaned and detrended series ω̄:

ω̄t = yt–1 – α̂0 – α̂1 sin

(
2π k̂frt

T

)
– α̂2 cos

(
2π k̂frt

T

)
,

ω̄t = yt–1 – α̂0 – α̂1 sin

(
2π k̂frt

T

)
– α̂1 cos

(
2π k̂frt

T

)
– λ̂t,

where α̂0, α̂1, α̂2 and λ̂ are OLS estimators for demeaned and detrended cases, respectively.
Next, we build the fractional Fourier unit-root test by using the demeaned and detrended
series ω̄t in the second step. Although the D-F test is coherent when compared to the frac-
tional alternatives, its low power makes it an appropriate ground for studying the new test
procedures. Thus, we extend the regression model in (3) and (5) to test the null hypothesis
that a series is FI(d0) against the alternative that it is FI(d1). The variable ω̄ is thought to be
a unit-root process under the null hypothesis, but it constitutes a fractionally integrated
stationary process in the alternative. Precisely, our suggestion is built upon testing for the
statistical significance of β in the following FI-DF equation:

�d0 ω̄t = β�d1 ω̄t–1 + ξt , (6)

where ξt ∼ iid(0,σ 2
ξ ) I(0) process. Keep in mind that (6) is still an unbalanced regression

where the dependent and independent variables are differenced with respect to their de-
grees of integration under the null and the alternative hypothesis. The ω̄t series follows
the following process assuming that ut = ξt and β = 0 in (6):

�d0 ω̄t = ξt . (7)

This implies that ω̄t in (7) is FI(d0). When β < 0, ω̄t can be expressed as

(
�d0–d1 – βL

)
�d1 ω̄t = ξt , (8)

where ω̄t is a FI(d1) process. By using these arguments, we can write the normalized-OLS
estimated coefficient or its t-ratio as in the standard D-F testing methodology as follows:

H0 : β = 0, ω̄t is FI(d0) • Linear unit root I(1),
H1 : β < 0, ω̄t is FI(d1) • Fractionally integrated around a smoothly

changing trendϕ(t) – FI(d1).

2�(·) denotes the gamma function, and {πi(d)} represents the sequence of coefficients associated with the expansion of �d

in powers of L, which are defined as πi(d) = �(i–d)
�(–d)�(i–1) .
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2.1 The test and its asymptotic properties
Now we allow for d0 = 1 and ut = ξt in (7), where {ξt} is a sequence of zero-mean i.i.d.
random variables with unknown variance σ 2

ξ and finite fourth-order moment. The OLS
estimator β̂ols and its t-ratio, tFF , are given by their usual least-squares formulas;

β̂ols =
∑T

t=2 �ω̄t�
d1 ω̄t–1∑T

t=2(�d1 ω̄t–1)2
, (9)

tFF =
∑T

t=2 �ω̄t�
d1 ω̄t–1

ST (
∑T

t=2(�d1 ω̄t–1)2)1/2
, (10)

S2
T =

∑
(�ω̄t – β̂ols�

d1 ω̄t–1)2

T
.

In order to obtain the asymptotic distribution of the tFF (i = μ, τ ) test, we need the subse-
quent outcomes, where we let [rT], r ∈ [0, 1] be an integer close to rT . During the course
of the derivation → implies weak convergence as T approaches ∞.

Proposition 1

(i) T–3/2
T∑

t=1

ω̄t → σ
1∫
0

W (r) dr = σ f1,

(ii) T–5/2
T∑

t=1

tω̄t → σ
1∫
0

rW (r) dr = σ f2,

(iii) T–3/2
T∑

t=1

sin

(
2πkt

T

)
ω̄t → σ

1∫
0

sin(2πkr)W (r) dr = σ f3,

(iv) T–3/2
T∑

t=1

cos

(
2πkt

T

)
ω̄t → σ

1∫
0

cos(2πkr)W (r) dr = σ f3,

(v) T–1
T∑

t=1

sin

(
2πkfrt

T

)
→ 1 – cos(2πkfr)

2πkfr ≡ s0,

(vi) T–1
T∑

t=1

cos

(
2πkfrt

T

)
→ sin(2πkfr)

2πkfr ≡ c0,

(vii) T–2
T∑

t=1

t sin

(
2πkfrt

T

)
→ sin(2πkfr)

(2πkfr)2 –
cos(2πkfr)

2πkfr ≡ s1,

(viii) T–2
T∑

t=1

t cos

(
2πkfrt

T

)
→ cos(2πkfr) – 1

(2πkfr)2 –
sin(2πkfr)

2πkfr ≡ c1,

(ix) T–1
T∑

t=1

sin2
(

2πkfrt
T

)
→ 1

2

[
1 –

sin(4πkfr)
4πkfr

]
≡ s2,

(x) T–1
T∑

t=1

cos2
(

2πkfrt
T

)
→ 1

2

[
1 +

sin(4πkfr)
4πkfr

]
≡ c2,

(xi) T–1
T∑

t=1

sin

(
2πkfrt

T

)
cos

(
2πkfrt

T

)
→ 1 – cos(4πkfr)

8πkfr ≡ m0.
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We have assumed that the remaining part or detrended series is a fractionally integrated
series. Thus, we preserve the notation of [18] hereafter to derive the asymptotics of the
proposed test.

Lemma 1 Let {ξt} be a sequence of zero-mean i.i.d. random variables with variance σ 2
ξ

such that E|ξ 4
t | < ∞ implies the following linear processes:

�dzt = ξt , d ∈ [–0.5, 0.5),

�dz∗
t = ξtIt>0, d ∈ [–0.5, 0.5),

where I(·) is an indicator function and

g∗
t =

t∑
i=1

z∗
i .

Then the following process verifies:

if – 0.5 < d < 0.5, (Case 1)

T–1
T∑

t=1

(
zt – z∗

t
)

= op(1), (11)

T–1
T∑

t=1

(
z2

t – z∗2
t

)
= op(1), (12)

and

T–1
T∑

t=1

(
ztzt+k – z∗

t z∗
t+k

)
= op(1), (13)

if d = –0.5 (Case 2)

(T log T)–1
T∑

t=1

z∗2
t

p→ σ 2

π
; (14)

where
p→ denotes convergence in probability,

if – 0.5 < d < 0.5, (Case 1)

T–2(1+d)
T∑

t=1

z∗2
t

w→
∫ 1

0
W 2

d dr, (15)

where
p→ denotes weak convergence.

Lemma 2 Let ξt , zt , z∗
t , and g∗

t be identified as in Lemma 1. Then the subsequent processes
are martingale differences and confirm:

if 0 < d < 0.5, (*)
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T–1/2
T∑

t=2

zt–1ξt
w→ N

(
0,σ 4 �(1 – 2d)

�2(1 – d)

)
, (16)

T–1/2
T∑

t=2

z∗
t–1ξt

w→ N
(

0,σ 4 �(1 – 2d)
�2(1 – d)

)
, (17)

if d = –0.5 (Case 2)

(T log T)–1
T∑

t=1

z∗
t ξt

w→ N
(

0,
σ 4

π

)
; (18)

if – 0.5 < d < 0. (**)

When we impose the Fourier form to the FI process:

T–(1+d)
T∑

t=2

gt–1ξt
w→ σ 2

∫ 1

0
Bd

(
kfr , r

)
dB(r), (19)

T–(1+d)
T∑

t=2

g∗
t–1ξt

w→ σ 2
∫ 1

0
Wd

(
kfr , r

)
dB(r), (20)

where B(·) denotes a standard Brownian motion, and Bd(·), Wd(·) or Wd(kfr , r) are stan-
dard fractional Brownian motions. Depending on Lemma 2, the subsequent two theo-
rems derive the asymptotic distribution and prove the consistency of an appropriately
standardized-OLS estimator of β̂ and its t-ratio, under the null hypothesis of I(1).

Theorem 1 Under the null hypothesis of unit root and with ω̄t as a random walk, the
asymptotic distribution of tFF is as follows:

tFF ,i
(
kfr , d1

) w→ ∫1
0 Wi,–d1 (kfr , r) dB(r)

(∫1
0 W 2

i,–d1
(kfr , r) dr)1/2

, i = μ, τ , if 0 ≤ d1 < 0.5,

where Wi,–d1 (kfr, r) for i = μ, τ give the demeaned and detrended standard fractional Brow-
nian motions.

We can derive the asymptotics of the other cases; d1 = 0.5 and 0.5 < d1 < 1 in a similar
fashion with the 0 ≤ d1 < 0.5. As pointed out before, since we are following two-step ap-
proaches the other distributions are the same as [18]. Therefore, we concentrate on the
non-degenerated distribution of case 1 and give its distribution explicitly in Theorem 1.
This asymptotic distribution obtained for fractional frequency is the general form of the
integer frequency case, and it can be easily converted to an integer form with the values
given in [15].

Proof The proof of Theorem 1 is given explicitly in Appendix A. �

Apparently, the asymptotic distribution of the obtained test statistics under the null de-
pends on the fractional Fourier frequency, kfr , and integration order, d1, but it is invariant
to the other parameters in the testing equation. The fractional frequency versions of the
critical values are tabulated in Appendix B and for integer frequency the critical values
tabulated in Tables 1–3 as follows:
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Table 1 Critical values for FI models only intercept included in integer frequency Fourier function

T 100 250 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

k = 1
0.1 –4.297 –3.635 –3.295 –4.210 –3.565 –3.227 –4.175 –3.580 –3.262
0.2 –4.035 –3.377 –3.026 –3.858 –3.295 –2.970 –3.969 –3.330 –3.001
0.3 –3.777 –3.099 –2.762 –3.625 –3.011 –2.672 –3.675 –3.009 –2.676
0.4 –3.506 –2.868 –2.510 –3.386 –2.732 –2.398 –3.444 –2.780 –2.419
0.5 –3.275 –2.604 –2.260 –3.155 –2.506 –2.142 –3.212 –2.500 –2.159
0.6 –3.060 –2.406 –2.048 –2.851 –2.233 –1.898 –2.995 –2.290 –1.941
0.7 –2.860 –2.217 –1.875 –2.790 –2.077 –1.727 –2.812 –2.102 –1.745
0.8 –2.777 –2.094 –1.729 –2.706 –1.999 –1.618 –2.613 –1.935 –1.600
0.9 –2.667 –1.963 –1.604 –2.522 –1.839 –1.499 –2.583 –1.870 –1.512

k = 2
0.1 –3.804 –3.172 –2.809 –3.851 –3.163 –2.804 –3.809 –3.119 –2.781
0.2 –3.737 –3.015 –2.655 –3.632 –2.963 –2.625 –3.628 –2.968 –2.629
0.3 –3.571 –2.854 –2.470 –3.431 –2.771 –2.428 –3.431 –2.755 –2.415
0.4 –3.305 –2.656 –2.292 –3.229 –2.579 –2.232 –3.271 –2.613 –2.239
0.5 –3.170 –2.473 –2.111 –3.029 –2.406 –2.051 –3.124 –2.399 –2.032
0.6 –3.058 –2.326 –1.953 –2.912 –2.170 –1.819 –2.882 –2.192 –1.838
0.7 –2.944 –2.182 –1.818 –2.759 –2.068 –1.700 –2.809 –2.069 –1.695
0.8 –2.648 –1.995 –1.661 –2.594 –1.902 –1.554 –2.594 –1.890 –1.540
0.9 –2.586 –1.926 –1.554 –2.480 –1.825 –1.461 –2.523 –1.837 –1.483

k = 3
0.1 –3.636 –2.964 –2.616 –3.614 –2.989 –2.657 –3.510 –2.941 –2.589
0.2 –3.505 –2.847 –2.514 –3.492 –2.830 –2.485 –3.420 –2.810 –2.491
0.3 –3.311 –2.698 –2.344 –3.364 –2.668 –2.323 –3.304 –2.657 –2.315
0.4 –3.246 –2.549 –2.213 –3.222 –2.509 –2.157 –3.191 –2.485 –2.142
0.5 –3.072 –2.430 –2.050 –2.968 –2.326 –1.974 –3.044 –2.306 –1.959
0.6 –2.944 –2.269 –1.878 –2.819 –2.171 –1.817 –2.857 –2.205 –1.848
0.7 –2.867 –2.123 –1.761 –2.755 –2.054 –1.666 –2.737 –2.012 –1.628
0.8 –2.775 –2.006 –1.661 –2.644 –1.937 –1.546 –2.611 –1.941 –1.578
0.9 –2.577 –1.905 –1.554 –2.480 –1.827 –1.474 –2.498 –1.807 –1.453

k = 4
0.1 –3.579 –2.926 –2.563 –3.526 –2.909 –2.564 –3.563 –2.880 –2.561
0.2 –3.466 –2.758 –2.425 –3.399 –2.758 –2.435 –3.415 –2.756 –2.402
0.3 –3.355 –2.670 –2.283 –3.246 –2.588 –2.248 –3.233 –2.623 –2.281
0.4 –3.206 –2.528 –2.144 –3.087 –2.408 –2.065 –3.185 –2.441 –2.108
0.5 –3.099 –2.347 –2.009 –2.962 –2.294 –1.945 –2.994 –2.331 –1.942
0.6 –3.011 –2.270 –1.899 –2.821 –2.130 –1.786 –2.820 –2.136 –1.788
0.7 –2.829 –2.094 –1.724 –2.706 –2.030 –1.672 –2.680 –1.988 –1.623
0.8 –2.670 –1.994 –1.628 –2.510 –1.919 –1.558 –2.617 –1.888 –1.525
0.9 –2.634 –1.897 –1.536 –2.488 –1.821 –1.439 –2.552 –1.892 –1.492

k = 5
0.1 –3.555 –2.861 –2.525 –3.445 –2.866 –2.540 –3.484 –2.801 –2.494
0.2 –3.431 –2.724 –2.391 –3.383 –2.726 –2.368 –3.345 –2.694 –2.374
0.3 –3.333 –2.578 –2.246 –3.269 –2.568 –2.241 –3.290 –2.576 –2.234
0.4 –3.136 –2.465 –2.131 –3.034 –2.420 –2.088 –3.058 –2.413 –2.064
0.5 –2.975 –2.334 –1.969 –2.955 –2.299 –1.932 –2.945 –2.291 –1.930
0.6 –2.961 –2.187 –1.810 –2.797 –2.095 –1.742 –2.838 –2.140 –1.801
0.7 –2.808 –2.092 –1.708 –2.713 –2.001 –1.642 –2.655 –1.987 –1.642
0.8 –2.684 –2.009 –1.640 –2.609 –1.917 –1.546 –2.599 –1.909 –1.550
0.9 –2.650 –1.909 –1.537 –2.571 –1.874 –1.484 –2.509 –1.813 –1.444
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Table 2 Critical values for FI models intercept and trend included in integer Fourier function

T 100 250 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

k = 1
0.1 –4.722 –4.110 –3.809 –4.649 –4.054 –3.765 –4.567 –4.003 –3.708
0.2 –4.505 –3.865 –3.511 –4.320 –3.722 –3.447 –4.257 –3.698 –3.397
0.3 –4.183 –3.524 –3.199 –4.089 –3.409 –3.087 –4.031 –3.394 –3.073
0.4 –3.931 –3.205 –2.883 –3.730 –3.107 –2.781 –3.723 –3.035 –2.717
0.5 –3.640 –2.951 –2.606 –3.515 –2.837 –2.484 –3.414 –2.732 –2.392
0.6 –3.367 –2.752 –2.382 –3.220 –2.536 –2.174 –3.127 –2.444 –2.079
0.7 –3.167 –2.502 –2.167 –3.044 –2.345 –1.987 –2.806 –2.202 –1.882
0.8 –2.985 –2.282 –1.933 –2.843 –2.143 –1.777 –2.733 –2.020 –1.671
0.9 –2.857 –2.170 –1.782 –2.720 –2.007 –1.620 –2.557 –1.916 –1.530

k = 2
0.1 –4.524 –3.869 –3.519 –4.402 –3.775 –3.458 –4.369 –3.764 –3.453
0.2 –4.253 –3.606 –3.261 –4.130 –3.541 –3.197 –4.099 –3.501 –3.178
0.3 –4.122 –3.343 –3.006 –3.887 –3.273 –2.941 –3.883 –3.223 –2.878
0.4 –3.764 –3.147 –2.766 –3.599 –2.955 –2.633 –3.570 –2.924 –2.591
0.5 –3.548 –2.868 –2.510 –3.360 –2.712 –2.342 –3.349 –2.636 –2.288
0.6 –3.353 –2.689 –2.316 –3.159 –2.453 –2.122 –3.063 –2.410 –2.056
0.7 –3.051 –2.422 –2.062 –2.903 –2.233 –1.900 –2.905 –2.192 –1.818
0.8 –2.969 –2.234 –1.884 –2.753 –2.116 –1.730 –2.685 –2.005 –1.643
0.9 –2.755 –2.084 –1.724 –2.593 –1.961 –1.596 –2.598 –1.866 –1.524

k = 3
0.1 –4.318 –3.649 –3.310 –4.209 –3.602 –3.273 –4.189 –3.561 –3.258
0.2 –4.055 –3.445 –3.093 –4.031 –3.392 –3.053 –3.919 –3.337 –2.998
0.3 –3.899 –3.231 –2.885 –3.822 –3.115 –2.791 –3.771 –3.097 –2.768
0.4 –3.650 –3.026 –2.680 –3.476 –2.870 –2.527 –3.504 –2.832 –2.491
0.5 –3.478 –2.791 –2.446 –3.324 –2.677 –2.327 –3.262 –2.588 –2.246
0.6 –3.311 –2.569 –2.212 –3.112 –2.473 –2.092 –3.019 –2.344 –1.978
0.7 –3.084 –2.407 –2.038 –2.843 –2.209 –1.858 –2.824 –2.177 –1.821
0.8 –2.947 –2.240 –1.884 –2.811 –2.084 –1.727 –2.656 –1.986 –1.636
0.9 –2.863 –2.142 –1.763 –2.660 –1.977 –1.608 –2.543 –1.870 –1.496

k = 4
0.1 –4.157 –3.508 –3.167 –4.141 –3.487 –3.166 –4.145 –3.495 –3.146
0.2 –4.025 –3.344 –2.962 –3.912 –3.269 –2.946 –3.911 –3.240 –2.932
0.3 –3.903 –3.178 –2.816 –3.778 –3.088 –2.754 –3.704 –3.013 –2.692
0.4 –3.727 –2.941 –2.604 –3.519 –2.858 –2.505 –3.408 –2.819 –2.479
0.5 –3.411 –2.761 –2.392 –3.290 –2.639 –2.286 –3.160 –2.543 –2.203
0.6 –3.201 –2.525 –2.173 –3.151 –2.399 –2.053 –2.996 –2.328 –1.970
0.7 –3.031 –2.368 –1.998 –2.847 –2.211 –1.879 –2.837 –2.126 –1.762
0.8 –2.856 –2.209 –1.854 –2.714 –2.078 –1.724 –2.691 –2.002 –1.639
0.9 –2.853 –2.113 –1.741 –2.708 –1.973 –1.610 –2.497 –1.863 –1.513

k = 5
0.1 –4.212 –3.454 –3.111 –4.021 –3.411 –3.113 –4.052 –3.405 –3.077
0.2 –3.994 –3.302 –2.939 –3.874 –3.231 –2.903 –3.787 –3.202 –2.894
0.3 –3.816 –3.114 –2.758 –3.626 –3.006 –2.663 –3.602 –2.988 –2.672
0.4 –3.522 –2.895 –2.552 –3.429 –2.783 –2.466 –3.427 –2.740 –2.430
0.5 –3.458 –2.683 –2.318 –3.267 –2.605 –2.260 –3.173 –2.532 –2.188
0.6 –3.270 –2.544 –2.177 –3.012 –2.368 –2.027 –3.032 –2.342 –1.965
0.7 –3.100 –2.390 –2.001 –2.872 –2.231 –1.896 –2.840 –2.121 –1.735
0.8 –2.887 –2.241 –1.869 –2.801 –2.093 –1.726 –2.727 –1.991 –1.612
0.9 –2.734 –2.101 –1.745 –2.693 –1.968 –1.617 –2.596 –1.865 –1.490

2.2 Small sample properties of the fractional frequency flexible Fourier form
fractionally integrated ADF test FFFFFFI-ADF (FFFFF-FI-ADF)

First, we will examine the small-sample size features of the test statistics. To assess the size
of the test statistics, we investigate the following data generating process (DGP):

yt = yt–1 + υt for t = 1, 2, . . . , T ,υt ∼ iid.N(0, 1), (21)
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Figure 1 Size properties of FFFFF-FI-ADF % 5 nominal significance level

where υt is stationary with the above given distribution. The size features of the tests were
simulated with 2000 replications via the sample dimension T = {100, 200, 300, 400, 500,
600, 700, 800, 900, 1000}. The results of these simulation exercises are presented below in
Fig. 1 and suggest that the proposed test statistics have satisfactory size properties.

As can be seen from Fig. 1, the newly proposed test exhibits good size properties similar
to the previous tests [18, 26, 28]. Considering the scale next to the figure, the minimum
and maximum size values are in the range of 0.02 and 0.08, respectively. Since the size
analysis is performed for the 5 percent significance level, this scale indicates that the newly
proposed test approaches the correct size value with a minimal error rate. As can be seen
from the color spectrum given above, instead of the extreme values of yellow and dark
blue, the size results were obtained with light green and blue intensity, and the real value
of size was mostly 5%. Thus, in the light of Fig. 1 we can safely conclude that the newly
proposed test has strong size properties.

Therefore, we can proceed with the power analysis without any size adjustment. Now,
we turn to the small-sample power properties of the proposed tests. We have done an ex-
tensive simulation study to see the proposed unit-root tests’ power surface using the model

yt = ϕ(t) + ω̄t , (22)

ϕ(t) = α0 + α1 sin

(
2πkt

T

)
+ α2 cos

(
2πkt

T

)
, (23)

yt = α0 + α1 sin

(
2πkfrt

T

)
+ α2 cos

(
2πkfrt

T

)
+ λt + ω̄t , t = 1, 2, . . . , T , (24)

�d0 ω̄t = β�d1 ω̄t–1 + ξt . (25)

Following [15, 16], we set α1 = (0, 3) and α2 = (0, 5). The results presented in Fig. 2 suggest
that the proposed FFFFF-FI-ADF test clearly exhibits a similar behavior to [18, 26, 28].

As it can be seen from Fig. 2, the power performance of the test is working well. The
test’s power increases with the time dimension T and decreases as the difference operator
parameter varies from 0.1 to 0.9. Especially after 0.8, the power has started to decline
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Figure 2 Power properties of FFFFF-FI-ADF %5 nominal significance level

from 1.00 to 0.2. and the lowest as 0.0. Towards 1, the color spectrum turns to yellow
and black, while power weakens with blue and dark blue tones. As Fig. 2 shows, the high
power of the test is justified with the abundance of yellow or black areas. Overall, this
analysis proves that the test is powerful in capturing fractional integration data dynamics
with a structural break. Furthermore, with these power analysis results we can distinguish
between structural break and fractional integration because the detrended series in the
first stage will not give a pseudo-integration order in the second stage.

3 The method of estimations for Fourier fractional frequency and fractional
integration parameter d

3.1 Estimation of fractional frequency for Fourier function
The authors of [29] have conducted an extensive study analyzing the BFGS, BHHH, Ge-
netic, Simplex and Grid Search (GS) algorithms in the estimation of the fractional fre-
quency. They used the alternative hypothesis of the test [17] to evaluate the effects of us-
ing different algorithms on the parameter estimates. They have noticed that in the earlier
studies, comparison of different optimization algorithm evaluation is commonly made on
the critical value accuracy. Yet the Fourier unit-root test depends on the fractional fre-
quency. Thus, the frequency is specified at first and then the critical values are acquired.
Consequently, producing the critical values with a different optimization algorithm will
not lead to different set of critical values. In our simulation study, the issues in [29] will be
taken into consideration. In addition, since the subject to be examined should imitate the
data generation process of the Covid-19 pandemic, the following model will be used:

yt = α0 + α1 sin

(
2πkfrt

T

)
+ α2 cos

(
2πkfrt

T

)
, (26)

where T = 100. Subsequently, investigating different schemes of experiments, the authors
of [29] have decided to use the SSR of the estimation results. The authors of [29] have
classified the fractional frequency values that they obtain in terms of the stages of the
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Table 3 Estimated frequencies with different optimization algorithms

Linear trend Grid search Simplex Genetic BHHH BFGS

Case1 kfr = 0.25, α1 = 5, α2 = 3
Est. Fre. – 0.230 0.263 0.263 1.277 4.026
SSR 18.585 0.000 0.001 0.001 19.402 33.907

Case2 kfr = 0.25, α1 = 11, α2 = –5
Est. Fre. – 0.230 0.230 0.230 0.230 0.569
SSR 15.325 0.000 0.000 0.000 0.000 36.329

Case 3 kfr = 0.80, α1 = –11, α2 = 1
Est. Fre. – 0.690 0.689 0.689 0.689 0.687
SSR 1209.888 0.008 0.000 0.000 0.000 0.006

Case 4 kfr = 1, α1 = 11, α2 = –1
Est. Fre. – 0.920 0.918 0.918 0.918 0.927
SSR 1209.888 0.008 0.000 0.000 0.000 0.006

Case 5 kfr = 1.25, α1 = 10, α2 = –1
Est. Fre. – 1.150 1.148 1.148 1.148 1.132
SSR 4907.469 0.052 0.000 0.000 0.000 2.507

Note: Estimated frequency: Est. Fre. SSR: Sum of square residuals.

Case 1. Early stages of the pandemic: kfr = 0.25, α1 = 5, α2 = 3

Case 2. Early stages of the pandemic with different amplitudes: kfr = 0.25, α1 = 11, α2 = –5

Case 3. Around the peak stage: kfr = 0.80, α1 = 11, α2 = 1

Figure 3 Different DGS and algorithms for obtaining fractional frequency
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Case 4. Early second stage: kfr = 1, α1 = 11, α2 = –1

Case 5. Late second stage: kfr = 1.25, α1 = 10, α2 = –1

Figure 3 Continued

pandemic. According to this classification, the fractional frequency was estimated to be
between 0–0.75 in the early stages of the pandemic, 0.75–1.0 near the peak day, 1–1.25 in
the second stage, and 1.5 around the plateau stage. We follow their study and use Eq. (25)
to obtain Fig. 3 and Table 3.

Like [29], we have found that the best estimation algorithms with nonlinear trends are
simplex and genetic, which are indifferent in terms of SSR. As reported in [29], the sec-
ond best approach appears to be the GS grid-search algorithm, while the third one is the
derivative free methods of BHHH and BFGS. Consequently, following our results and the
ones obtained in [29], we use the simplex algorithm for the estimation of the fractional
frequency.

3.2 Estimation of the fractional difference d
In this study, we have used Andrews and [30] (henceforth, AG), [24]) (henceforth, RE)
and [31]) (henceforth, GPH). The authors of [31] suggest a bias-reduced log-periodogram
regression estimator, d̂r , of the long-memory parameter, d, that eliminates the first- and
higher-order biases of the GPH estimator of [31]. The bias-reduced estimator is identical
to the GPH estimator except that the pseudo-regression model that produces the GPH es-
timator contains as extra regressors the frequencies to the power 2k for k = 1, . . . , r where
r is a particular positive integer. The bias decrease is acquired by the assumptions made
on the spectrum solitary in the neighborhood of the zero frequency. The authors of [30]
following [24] found that the asymptotic bias, variance, and mean-squared error (MSE)
of d̂r . These outcomes show that the bias of d̂r goes to zero at a faster rate than that of
the GPH. Therefore, the most suitable estimator for our FFFFF-FI-ADF test among these
estimators is AG, which manages to catch the T1/2 convergence and satisfies the unbi-
asedness property. There are other estimators which may be used in our study such as
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the [32]’s simple search algorithm. This algorithm depends on the SSR minimization and
considers both the structural break and the estimation of d. However, since we are using
the two-step procedure which considers the structural break and integration order sep-
arately, this procedure creates problems in our study. Despite this fact, we have tried the
SSR approach in obtaining an estimate for the d parameter but found poor results with
respect to the other estimators.3

In the light of all these results, we propose a new estimator by using a simple search
algorithm, which may be more suitable in our case and many other cases. In the interval
d = [0, 1] plenty of different dynamics are available including d = 0, which corresponds to
stationarity, 0 < d < 0.5, which gives difference stationarity, 0.5 ≤ d < 1.0, which refers to
a nonstationary but mean-reverting process, and d = 1, which corresponds to a unit-root
process. In our case, instead of using a priori estimate of d, we estimate it simultaneously
within the unit-root testing procedure. For this purpose, we utilize both a search algorithm
and a simple bootstrap algorithm as follows.

Step 1: Estimate yt = α0 + ϕ1 sin( 2πkt
T ) + ϕ1 cos( 2πkt

T ) + ω̄t for the series under
investigation by using the optimal k∗

fr and use the series thereby obtained in the
second step estimation,
Step 2: For a predetermined value of d1, starting from d1 = 0.1, estimate the
FFFFF-FI-ADF test value by running �d0 ω̄t = β�d1 ω̄tt–1 + ut . Also introduce lags of
the dependent variable using the AIC or SIC,
Step 3: Obtain critical values for this predetermined value of d1 using 2000 centered
residuals from step 2 and a simple bootstrap algorithm,
Step 4: Use steps 2 and 3 to obtain the p-values of the test statistics for the series
under consideration,
Step 5: Repeat steps 2 to 4 using the interval d = (0, 1) and increments �d = 0.001.
Then obtain all available p-values in this range,
Step 6: If collected p-values truncate the 0.1 significance level, then the first truncation
will be the estimate, d̂1. If there is no such truncation, then select the minimum
p-value for the estimated d̂1 parameter.

As an example, we have obtained the estimates for Germany, Italy, Russia, Spain, Turkey,
and US in Fig. 4.

Therefore, using our new methodology, we can also provide the best procedure which
leads to the minimum information loss.

Let us now elaborate more on the information loss. One major drawback of differencing
is that it leads to information loss. In the most extreme case, by taking the first-order dif-
ference, that is, with d = 1 we lose valuable information contained in a series. Taking differ-
ences is in some ways analogous to differentiation. Before taking the first-order derivative
of the function we have information on its time path or the primitive function. By taking
the first-order derivative of the series with respect to time, we gain information about the
rate of change or growth of the series (or derived function) while passing this time path.
If the subject we want to examine includes the information of the time path, a first-order
derivative with respect to time will enable us to examine the series’ growth relationship.

In this sense, a researcher who wants to use the gross national product (GNP) of a coun-
try must consider its growth rate because GNP in levels is not stationary. As another ex-

3The results can be provided upon request.
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Figure 4 Graphical representation of the new difference estimator for unit-root test

ample, suppose we want to forecast the temperature, but the temperature data is not sta-
tionary. In order to make long-term forecasts, the series analyzed should be stationary.
Otherwise, the forecast error will grow so rapidly after the one step ahead forecast that
it will not allow the long-term forecast to be possible. From a forecasting perspective, it
may not be relevant for the researcher to predict the growth rate of GNP instead of its
level. When we take the difference from a lower order, valuable data including the growth
and time path of the series is retrieved. If the d parameter is close to 0, the series that we
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Figure 4 Continued

obtain contains more information about the time path of the series; otherwise (for d = 1)
it conveys the growth rate of the series. On the other hand, when the difference is taken
at order d = 0.5, an optimal mix of these two will be obtained. Figure 5 shows how the
primitive function converges to the derived function as the order of differencing changes.
It is obtained using the following data generation:

yt = 10 + 0.8yt–1 + ut , ut ∼ iidN(0, 1), y0 = 10.

Figure 6 visualizes the isomorphism among series with difference orders as the differ-
ence operator converges to 1.

While d = 0.1, the series still preserves almost all features of the original series or the
time path; that is, it preserves the information about the original state of the series (prim-
itive function) at the maximum level. However, when d = 0.5, the resultant series seem to
resemble the series’ rate of change, although still preserving some time path information.
This information has important implications in the time-series econometrics literature.
Suppose the series is stationary in the interval d = 0.1 – 0.5. In that case, we can continue
our work with the level of the series, i.e., time path, and obtain unbiased estimates with
respect to this level information. Moreover, the traditional distribution theory is still valid
while conducting regression analysis with this group of data or differenced series. But if
d > 0.5, the series obtained no longer contains information about its time path, and we
will have to comment on the rate of change. After this point, while the traditional asymp-
totic theory ceases to maintain its validity, we should also be careful about the different
integration orders.4

4Since the research of these topics is beyond the scope of the study, the subject is left at this maturity level. However, more
detailed discussions on these issues are considered for future studies.
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Figure 5 Stationary AR(1) process and different differencing order up to first difference

Figure 6 Stationary AR(1) process and different differencing order up to first difference with their mean
values

4 Empirical example
In this section, the daily infected case forecasts of the Coronavirus (Covid-19) pandemic,
which started as of 01/01/2020 and spread worldwide, will be performed. Since the Covid-
19 epidemic is on the agenda, many empirical and theoretical studies were conducted on
the subject. Empirical studies on the subject include in the literature [33–37], and [38]. In
addition, studies close to the theoretical structure of this article are [39–47], and [48]. The
Coronavirus daily infected case numbers are collected from the European Health Organi-
zation database for 204 countries. The newly proposed FFFFF-FI-ADF type of unit-root
test and the one developed in [17] were applied to the existing data of these countries. We
have investigated the fit of fractional and integer Fourier functions to the daily infected
case series for some selected countries by using the SSR estimates and graphed them be-
low in Fig. 7.5 The countries with a longer time span that exhibit different dynamics were
selected.

As Fig. 7 shows, the FFFFF method gives better results than the IFFFF method for all
selected countries using the SSR criterion. Thus, these results are not tabulated. It is clear
from Fig. 7 and the SSR results that the FFFFF method captures better the dynamics of the
daily infected cases due to its highly flexible structure. Therefore, the FFFFF methodology
can be used in obtaining the long-run forecasts of the daily Covid-19 cases. Of course, to
confirm this claim, it is necessary to look at the results of both tests, namely FFFFF-ADF
and FFFFF-FI-ADF.

As aforementioned, long-term forecasting is only possible with stationary data. Thus,
the FFFFF methods must be used when pretesting the stationarity of the daily infected

5The country codes of these countries are given in the Appendix.
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Figure 7 Daily infected cases and the nonlinear trends of FFFFF and IFFFF. The numbers are presenting the
selected countries in alphabetic order

cases. Moreover, since the daily cases were found stationary using both the FFFFF-ADF
and the newly proposed FFFFF-FI-ADF type of unit-root tests, a forecast model con-
structed for these daily cases must also include the FFFFF type of flexible function using
fractional integration.

Since it would take a lot of space to tabulate the unit-root test results for the entire
dataset of 240 countries, we preferred to visualize them using a world map in Fig. 8. Coun-
tries with nonstationary and stationary daily cases were colored with blue and red tones,
respectively. According to the FFFFF-ADF test, the daily infected cases of 124 (out of 240)
countries were found to be stationary. When we estimated the fractional frequency of the
Fourier functions for these countries, 91 countries’ fractional frequencies were found in
the interval 1.7 and 4.13. The high frequencies found in these countries can be attributed to
the random oscillations caused by irregular testing, wrong protection measures adopted,
and similar situations arising in these countries. In some countries extremely high case



Omay and Baleanu Advances in Difference Equations        (2021) 2021:167 Page 22 of 33

Figure 7 Continued

numbers are seen in one day, whereas the next day no tests are run, and no numbers are
announced. This behavior of the health authorities leads to the irregular distribution of
jump discontinuities. Despite these irregular oscillations, the fractional frequency Fourier
function captures the unknown deterministic functional forms extremely well. Besides,
fractional integration is also useful for capturing these random oscillations. Therefore, it
is better to use the FFFFF-FI-ADF test in countries where the unit-root null could not be
rejected. For this reason, we selected the ten countries with the highest daily case numbers
that were not found stationary with the FFFFF-ADF test.

As can be seen from Table 4, the FFFFF-FI-ADF test results demonstrate that the daily
cases of all countries, except Russia and Spain, are fractionally integrated and station-
ary. When it comes to Russia and Spain, their Covid-19 cases are found to be fractionally
integrated, mean-reverting but nonstationary. The AG method produced stationary test
results for Brazil, France, Germany, and the UK. The GPH method, which is the closest
method to the AG method, yielded similar results except for Germany and the UK. Be-
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Figure 7 Continued
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Figure 8 FFFFF-ADF test results with significance level tabulated on the World map

Table 4 The results of the FFFFF-FI-ADF (FFFFF-FI-ADF)

FFFFF-FI-ADF Brazil Chile France Germany Italy

AG d = 0.402 d = 0.633 d = 0.256 d = 0.405 d = 0.539
–6.688 (0.000) –5.343 (0.000) –5.617 (0.000) –3.313 (0.007) –2.257 (0.054)

New method. d = 0.401 d = 0.006 d = 0.170 d = 0.013 d = 0.378
–6.695 (0.000) –3.709 (0.000) –4.520 (0.000) –3.382 (0.007) –2.453 (0.034)

GPH d = 0.393 d = 0.621 d = 0.321 d = 0.522 d > 1.000
–6.713 (0.000) –5.350 (0.000) –5.671 (0.000) –3.252 (0.003)

RE d = 0.185 d = 0.325 d = 0.296 d = 0.583 d = 0.766
–7.225 (0.000) –5.404 (0.000) –5.652 (0.000) –3.213 (0.003) –1.986 (0.045)

Frac. Fre. 0.4 0.1 1.1 1.1 1.0

FFFFF-FI-ADF Russia Spain Turkey UK US

AG d = 0.183 d = 0.654 d = 0.904 d = 0.147 d > 1.000
–1.299 (0.679) –1.903 (0.065) –3.122 (0.001) –4.614 (0.003)

New method. d > 0.7 d = 0.556 d = 0.151 d = 0.139 d = 0.133
–1.955 (0.083) –2.893 (0.065) –5.339 (0.000) –3.208 (0.057)

GPH d = 0.289 d = 0.684 d = 0.922 d > 1.000 d > 1.000
–0.972 (0.687) –1.888 (0.064) –3.129 (0.002)

RE d = 0.876 d = 0.753 d = 0.817 d = 0.317 d = 0.608
0.232 (0.690) –1.856 (0.054) –3.087 (0.003) –5.549 (0.000) –3.076 (0.006)

Frac. Fre. 0.8 1.1 1.3 0.1 1.0

Note: Andrews and Guggenberger (2003) (AG), Robinson (1994) (RE) and Geweke and Porter-Hudak (1983) (GPH). For
fractional frequency, we have used the simplex methodology. The values in the parentheses are p-values for related test.

sides, the RP method leads to stationarity test results for Brazil, Chile, France, and the UK.
On the other hand, the newly proposed method seems to be the most efficient one when
compared to these other methods. It rejects the null hypothesis of unit root for Brazil,
Chile, France, Germany, Italy, Turkey, the UK, and the US. The fractional integration dy-
namics that the FFFFF-ADF could not represent were caught with different methods. The
oscillations that we mentioned in the introduction part was modeled correctly with FI. In
this sense, it will be beneficial to use the FFFFF-FI model to forecast Covid-19’s long-term
potentially infected number of cases. These efficient long-term forecasts will enable pol-
icy authorities to control the outbreak better. Moreover, we can also see that the method
we have just proposed provided the lowest difference order estimates. This obtained low-
est difference order allows us to perform the most accurate unit-root test with the lowest
information loss.
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5 Conclusion
In this study, we have proposed a fractional frequency flexible Fourier form fractionally
integrated ADF test. By implementing an extensive simulation study, we have showed that
the newly proposed test has good size and power properties. Moreover, we have demon-
strated that the best estimators for our unit-root testing procedure are both fractional fre-
quency and newly proposed fractional difference operator. The newly proposed fractional
difference estimator has shown to be the best estimator with respect to the minimum in-
formation loss criteria. Finally, the empirical study has demonstrated that not considering
the structural break and fractional integration simultaneously in the testing process may
lead to misleading results about the stochastic behavior of the series under investigation.
Therefore, our proposed FFFFF-FI-ADF test will help policy authorities to control any
natural disaster by providing an efficient method for pretesting the disaster’s long-term
predictability.

Moreover, the fractional frequency and fractional difference estimation methodologies
given in Sect. 3 shed light on the areas for future research. First of all, different functional
forms could be used for the structural breaks. In this study, we showed that fractional fre-
quency fits the structure of the Covid-19 epidemic quite well. However, another functional
form can be recommended for another data type. Furthermore, different methodologies
may be developed for implementing fractional difference estimation. Section 3.2 tried to
examine the fractional differencing meaning and suggested an estimator that minimizes
the information loss. The importance of taking differencing in different orders shows that
new estimators and difference operators can be developed for various purposes in future
studies.

Appendix A
This appendix provides asymptotic distribution of FFFFF-FI-ADF test statistics given in
the text.

Proof of Proposition 1 The proofs of (i) and (ii) are known (see Hamilton, 1994). By using
the continuous mapping theorem, we can obtain the proofs of (iii) and (iv) as follows:
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Proof of Theorem 1 Let sin(t) = sin(2πkfrt/T) and cos(t) = cos(2πkfrt/T). We first exam-
ine the demeaned case with β = 0 in Eq. (6). Let yμ

t denote the OLS residuals from the
demeaned case in the text with wt = (1, sin(t), cos(t))′

yμ
t = ω̄t – w′

t(θ̂ – θ ), (A.1)

where θ = (α0,α1,α2)′, θ̂ is the OLS estimator of θ . We let w = (w1, . . . , wT )′, ω̄ =
(ω̄1, . . . , ω̄T )′ and MT = diag(

√
T ,

√
T ,

√
T) to have

MT (θ̂ – θ ) =
[
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T

]–1M–1
T w′ω̄. (A.2)

Applying some algebra to (A.1) and (A.2),
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Depending on FCLT, the first term of (A.3) becomes

T–1/2ω̄[rT] = T–1/2
[rT]∑
t=1

ξt → σW (r). (A.4)
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where �1 = s2c2 – s2c2
0 – s2

0c2 – m2
0, a11 = s2c2 – m2
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0.
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Then

T–1w′
[rT]

[
M–1

T w′wM–1
T

]–1M–1
T w′ω̄

→ 1
�1

[
1 sin(2πkfrr) cos(2πkfrr)

]
⎡
⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦

⎡
⎢⎣

σ f1

σ f3

σ f4

⎤
⎥⎦ .

(A.7)

Finally, merging the outcomes in Eqs. (A.4) and (A.7), we obtain the demeaned Brownian
motion by

1
σ
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(
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⎤
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(A.8)

For the detrended case similar arguments follow so we skip the algebra. Using the above
given results, under the null we can obtain the demeaned Brownian’s. Now we can proceed
with the fractionally integrated part in the second step. Under the null hypothesis that ω̄t

is a random walk and applying Lemma 1 and Lemma 2 and results in [18] and in [15], we
obtain

tFF ,i
(
kfr , d1

) w→ ∫1
0 Wi,–d1 (kfr , r) dB(r)

(∫1
0 W 2

i,–d1
(kfr , r) dr)1/2

, i = μ, τ , if 0 ≤ d1 < 0.5. �

Appendix B: Critical values

Table B1 Critical values for FI models only intercept included in fractional frequency Fourier function
d = (0.1, 0.5)

T 100 250 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

k = 1.1
0.1 –4.269 –3.601 –3.265 –4.140 –3.508 –3.180 –4.078 –3.481 –3.166
0.2 –3.981 –3.303 –2.982 –3.829 –3.243 –2.916 –3.876 –3.232 –2.906
0.3 –3.693 –3.043 –2.728 –3.618 –2.995 –2.641 –3.522 –2.949 –2.623
0.4 –3.523 –2.808 –2.457 –3.450 –2.768 –2.402 –3.326 –2.703 –2.355
0.5 –3.295 –2.610 –2.232 –3.166 –2.485 –2.118 –3.097 –2.449 –2.079
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Table B1 (Continued)

T 100 250 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

k = 1.2
0.1 –4.166 –3.533 –3.179 –4.066 –3.442 –3.144 –4.103 –3.444 –3.108
0.2 –3.971 –3.259 –2.922 –3.816 –3.193 –2.852 –3.762 –3.188 –2.859
0.3 –3.650 –2.991 –2.675 –3.622 –2.970 –2.618 –3.644 –2.937 –2.601
0.4 –3.468 –2.774 –2.455 –3.337 –2.728 –2.373 –3.307 –2.663 –2.324
0.5 –3.292 –2.607 –2.211 –3.171 –2.486 –2.141 –3.105 –2.461 –2.071

k = 1.3
0.1 –4.119 –3.429 –3.083 –4.024 –3.377 –3.047 –4.042 –3.377 –3.058
0.2 –3.988 –3.271 –2.935 –3.844 –3.200 –2.854 –3.744 –3.155 –2.833
0.3 –3.687 –3.021 –2.682 –3.593 –2.942 –2.625 –3.542 –2.931 –2.575
0.4 –3.516 –2.834 –2.475 –3.437 –2.705 –2.355 –3.290 –2.667 –2.315
0.5 –3.304 –2.584 –2.245 –3.188 –2.505 –2.148 –3.074 –2.472 –2.109

k = 1.4
0.1 –4.091 –3.409 –3.046 –3.925 –3.352 –3.035 –3.942 –3.353 –3.004
0.2 –3.938 –3.234 –2.861 –3.805 –3.143 –2.782 –3.737 –3.151 –2.814
0.3 –3.625 –3.001 –2.649 –3.566 –2.936 –2.595 –3.529 –2.878 –2.561
0.4 –3.495 –2.760 –2.424 –3.409 –2.682 –2.371 –3.346 –2.677 –2.321
0.5 –3.302 –2.629 –2.263 –3.125 –2.474 –2.124 –3.117 –2.453 –2.091

k = 1.5
0.1 –4.045 –3.355 –3.011 –3.939 –3.299 –2.936 –3.895 –3.288 –2.939
0.2 –3.850 –3.130 –2.782 –3.738 –3.079 –2.740 –3.714 –3.065 –2.746
0.3 –3.580 –2.941 –2.604 –3.476 –2.857 –2.516 –3.535 –2.876 –2.512
0.4 –3.420 –2.736 –2.392 –3.394 –2.715 –2.358 –3.263 –2.609 –2.276
0.5 –3.260 –2.550 –2.199 –3.126 –2.460 –2.103 –3.062 –2.422 –2.065

k = 1.6
0.1 –3.991 –3.293 –2.923 –3.938 –3.254 –2.908 –3.929 –3.275 –2.920
0.2 –3.745 –3.105 –2.752 –3.711 –3.073 –2.737 –3.668 –3.065 –2.710
0.3 –3.619 –2.948 –2.573 –3.540 –2.857 –2.522 –3.440 –2.822 –2.482
0.4 –3.458 –2.740 –2.379 –3.337 –2.643 –2.293 –3.228 –2.608 –2.254
0.5 –3.208 –2.542 –2.169 –3.063 –2.445 –2.069 –3.079 –2.370 –2.030

k = 1.7
0.1 –3.884 –3.261 –2.899 –3.922 –3.230 –2.864 –3.792 –3.208 –2.878
0.2 –3.748 –3.112 –2.733 –3.634 –3.019 –2.689 –3.644 –3.010 –2.645
0.3 –3.573 –2.886 –2.537 –3.499 –2.837 –2.491 –3.504 –2.809 –2.469
0.4 –3.448 –2.689 –2.340 –3.283 –2.635 –2.283 –3.269 –2.571 –2.213
0.5 –3.199 –2.510 –2.137 –3.102 –2.423 –2.072 –3.019 –2.397 –1.999

k = 1.8
0.1 –3.870 –3.212 –2.856 –3.876 –3.194 –2.854 –3.817 –3.161 –2.825
0.2 –3.727 –3.058 –2.693 –3.672 –3.023 –2.669 –3.592 –2.992 –2.648
0.3 –3.524 –2.846 –2.497 –3.488 –2.845 –2.493 –3.406 –2.749 –2.413
0.4 –3.319 –2.685 –2.330 –3.294 –2.624 –2.261 –3.241 –2.589 –2.236
0.5 –3.225 –2.520 –2.149 –3.015 –2.398 –2.055 –3.017 –2.361 –2.008

k = 1.9
0.1 –3.894 –3.198 –2.814 –3.805 –3.164 –2.824 –3.771 –3.156 –2.807
0.2 –3.712 –3.016 –2.650 –3.642 –3.003 –2.651 –3.623 –2.962 –2.626
0.3 –3.480 –2.830 –2.484 –3.445 –2.818 –2.448 –3.458 –2.773 –2.415
0.4 –3.347 –2.678 –2.296 –3.178 –2.567 –2.231 –3.223 –2.540 –2.185
0.5 –3.179 –2.477 –2.122 –3.057 –2.415 –2.072 –3.002 –2.372 –2.016

k = 2.0
0.1 –3.852 –3.165 –2.797 –3.837 –3.119 –2.777 –3.737 –3.111 –2.770
0.2 –3.652 –3.030 –2.655 –3.604 –2.963 –2.634 –3.537 –2.930 –2.594
0.3 –3.533 –2.856 –2.472 –3.480 –2.782 –2.409 –3.361 –2.742 –2.414
0.4 –3.265 –2.636 –2.272 –3.263 –2.590 –2.221 –3.186 –2.556 –2.212
0.5 –3.215 –2.500 –2.143 –3.053 –2.379 –2.010 –2.941 –2.312 –1.965
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Table B2 Critical values for FI models only intercept included in fractional frequency Fourier function
d = (0.6, 0.9)

T 100 250 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

k = 1.1
0.6 –2.994 –2.367 –2.017 –2.925 –2.297 –1.915 –2.851 –2.182 –1.828
0.7 –2.836 –2.180 –1.829 –2.718 –2.057 –1.724 –2.667 –2.021 –1.656
0.8 –2.743 –2.074 –1.709 –2.649 –1.926 –1.575 –2.551 –1.877 –1.513
0.9 –2.643 –1.963 –1.579 –2.549 –1.824 –1.461 –2.512 –1.832 –1.436

k = 1.2
0.6 –3.055 –2.375 –2.027 –2.962 –2.279 –1.927 –2.819 –2.194 –1.843
0.7 –2.917 –2.172 –1.838 –2.787 –2.113 –1.723 –2.709 –2.035 –1.662
0.8 –2.847 –2.062 –1.704 –2.657 –1.988 –1.636 –2.575 –1.891 –1.520
0.9 –2.597 –1.920 –1.557 –2.545 –1.852 –1.480 –2.400 –1.796 –1.441

k = 1.3
0.6 –3.161 –2.431 –2.063 –2.962 –2.282 –1.928 –2.880 –2.208 –1.856
0.7 –2.909 –2.225 –1.845 –2.797 –2.114 –1.780 –2.712 –2.043 –1.690
0.8 –2.859 –2.131 –1.763 –2.704 –1.962 –1.611 –2.614 –1.908 –1.518
0.9 –2.678 –1.985 –1.610 –2.582 –1.880 –1.500 –2.465 –1.813 –1.449

k = 1.4
0.6 –3.074 –2.425 –2.075 –2.893 –2.260 –1.915 –2.837 –2.221 –1.866
0.7 –2.903 –2.190 –1.846 –2.816 –2.085 –1.744 –2.723 –2.079 –1.711
0.8 –2.786 –2.094 –1.742 –2.652 –1.984 –1.641 –2.676 –1.899 –1.545
0.9 –2.715 –1.984 –1.633 –2.623 –1.887 –1.527 –2.436 –1.777 –1.449

k = 1.5
0.6 –3.031 –2.417 –2.036 –2.865 –2.229 –1.901 –2.946 –2.181 –1.824
0.7 –2.875 –2.231 –1.883 –2.750 –2.116 –1.763 –2.765 –2.045 –1.692
0.8 –2.840 –2.113 –1.746 –2.724 –1.982 –1.615 –2.570 –1.917 –1.575
0.9 –2.699 –1.954 –1.608 –2.528 –1.868 –1.488 –2.469 –1.804 –1.456

k = 1.6
0.6 –3.078 –2.377 –2.016 –2.914 –2.247 –1.898 –2.875 –2.168 –1.840
0.7 –2.942 –2.219 –1.825 –2.755 –2.105 –1.746 –2.666 –1.990 –1.650
0.8 –2.760 –2.081 –1.718 –2.646 –2.010 –1.604 –2.580 –1.901 –1.537
0.9 –2.619 –1.974 –1.598 –2.497 –1.812 –1.468 –2.519 –1.797 –1.422

k = 1.7
0.6 –3.076 –2.382 –1.997 –2.923 –2.203 –1.863 –2.871 –2.215 –1.829
0.7 –2.898 –2.194 –1.828 –2.755 –2.086 –1.723 –2.654 –1.979 –1.633
0.8 –2.740 –2.064 –1.707 –2.712 –1.980 –1.620 –2.604 –1.899 –1.539
0.9 –2.698 –1.983 –1.614 –2.565 –1.846 –1.528 –2.470 –1.786 –1.431

k = 1.8
0.6 –3.054 –2.339 –1.988 –2.964 –2.237 –1.867 –2.837 –2.154 –1.796
0.7 –2.890 –2.185 –1.807 –2.781 –2.078 –1.715 –2.687 –2.004 –1.636
0.8 –2.828 –2.084 –1.697 –2.652 –1.990 –1.606 –2.532 –1.880 –1.503
0.9 –2.744 –1.976 –1.598 –2.545 –1.880 –1.511 –2.466 –1.811 –1.460

k = 1.9
0.6 –3.038 –2.300 –1.946 –2.897 –2.229 –1.865 –2.865 –2.165 –1.785
0.7 –2.832 –2.186 –1.808 –2.761 –2.109 –1.713 –2.602 –1.983 –1.645
0.8 –2.726 –2.028 –1.667 –2.595 –1.964 –1.591 –2.577 –1.872 –1.495
0.9 –2.634 –1.901 –1.568 –2.497 –1.852 –1.496 –2.477 –1.789 –1.446

Table B3 Critical values for FI models intercept and trend included in fractional frequency Fourier
function d = (0.1, 0.5)

T 100 250 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

k = 1.1
0.1 –4.813 –4.163 –3.830 –4.667 –4.078 –3.772 –4.587 –4.012 –3.733
0.2 –4.474 –3.866 –3.557 –4.353 –3.772 –3.436 –4.343 –3.728 –3.443
0.3 –4.261 –3.566 –3.234 –4.060 –3.434 –3.106 –3.958 –3.390 –3.067
0.4 –3.904 –3.253 –2.909 –3.718 –3.116 –2.783 –3.673 –3.035 –2.715
0.5 –3.656 –2.988 –2.636 –3.488 –2.827 –2.468 –3.376 –2.734 –2.411
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Table B3 (Continued)

T 100 250 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

k = 1.2
0.1 –4.737 –4.146 –3.811 –4.622 –4.018 –3.730 –4.530 –4.012 –3.729
0.2 –4.497 –3.853 –3.533 –4.367 –3.753 –3.429 –4.252 –3.712 –3.409
0.3 –4.185 –3.524 –3.200 –4.012 –3.407 –3.105 –3.954 –3.339 –3.036
0.4 –3.918 –3.251 –2.906 –3.706 –3.108 –2.786 –3.623 –3.037 –2.695
0.5 –3.639 –2.997 –2.616 –3.515 –2.811 –2.483 –3.350 –2.759 –2.393

k = 1.3
0.1 –4.720 –4.141 –3.821 –4.625 –4.072 –3.755 –4.565 –3.982 –3.708
0.2 –4.463 –3.859 –3.538 –4.316 –3.765 –3.455 –4.263 –3.686 –3.384
0.3 –4.168 –3.548 –3.213 –4.023 –3.417 –3.084 –3.993 –3.366 –3.032
0.4 –3.874 –3.223 –2.905 –3.695 –3.061 –2.750 –3.630 –3.036 –2.698
0.5 –3.610 –2.962 –2.615 –3.437 –2.815 –2.462 –3.310 –2.735 –2.404

k = 1.4
0.1 –4.720 –4.134 –3.814 –4.685 –4.012 –3.711 –4.570 –3.992 –3.683
0.2 –4.364 –3.785 –3.467 –4.258 –3.678 –3.375 –4.222 –3.669 –3.379
0.3 –4.172 –3.514 –3.189 –3.957 –3.373 –3.062 –3.906 –3.320 –2.992
0.4 –3.931 –3.228 –2.890 –3.685 –3.055 –2.717 –3.651 –3.015 –2.681
0.5 –3.618 –2.957 –2.591 –3.410 –2.781 –2.463 –3.298 –2.674 –2.375

k = 1.5
0.1 –4.638 –4.086 –3.750 –4.552 –3.986 –3.675 –4.509 –3.950 –3.631
0.2 –4.389 –3.769 –3.442 –4.223 –3.676 –3.348 –4.213 –3.654 –3.338
0.3 –4.116 –3.485 –3.161 –4.018 –3.364 –3.022 –3.906 –3.320 –3.001
0.4 –3.843 –3.206 –2.852 –3.704 –3.044 –2.726 –3.665 –3.036 –2.680
0.5 –3.626 –2.949 –2.587 –3.386 –2.764 –2.429 –3.309 –2.652 –2.307

k = 1.6
0.1 –4.739 –4.055 –3.749 –4.557 –3.965 –3.672 –4.476 –3.928 –3.624
0.2 –4.422 –3.736 –3.423 –4.207 –3.638 –3.312 –4.195 –3.599 –3.292
0.3 –4.157 –3.477 –3.134 –3.954 –3.361 –3.032 –3.893 –3.292 –2.954
0.4 –3.885 –3.147 –2.808 –3.710 –3.045 –2.699 –3.571 –2.973 –2.640
0.5 –3.594 –2.897 –2.559 –3.380 –2.764 –2.405 –3.367 –2.692 –2.335

k = 1.7
0.1 –4.651 –3.990 –3.653 –4.493 –3.905 –3.584 –4.447 –3.854 –3.560
0.2 –4.374 –3.776 –3.401 –4.323 –3.642 –3.313 –4.249 –3.557 –3.264
0.3 –4.078 –3.428 –3.088 –3.940 –3.319 –3.000 –3.858 –3.269 –2.975
0.4 –3.800 –3.159 –2.815 –3.694 –3.064 –2.687 –3.583 –2.987 –2.630
0.5 –3.480 –2.861 –2.523 –3.419 –2.754 –2.398 –3.297 –2.660 –2.317

k = 1.8
0.1 –4.580 –3.944 –3.633 –4.484 –3.890 –3.568 –4.469 –3.877 –3.555
0.2 –4.327 –3.710 –3.372 –4.225 –3.582 –3.296 –4.153 –3.561 –3.253
0.3 –4.037 –3.411 –3.068 –3.922 –3.279 –2.971 –3.846 –3.247 –2.929
0.4 –3.756 –3.161 –2.814 –3.643 –3.013 –2.670 –3.628 –2.955 –2.631
0.5 –3.595 –2.892 –2.547 –3.440 –2.754 –2.399 –3.326 –2.659 –2.315

k = 1.9
0.1 –4.644 –3.926 –3.587 –4.448 –3.811 –3.471 –4.367 –3.796 –3.490
0.2 –4.263 –3.670 –3.333 –4.071 –3.506 –3.226 –4.167 –3.520 –3.203
0.3 –4.079 –3.395 –3.067 –3.898 –3.275 –2.934 –3.838 –3.234 –2.900
0.4 –3.793 –3.105 –2.769 –3.663 –3.028 –2.679 –3.535 –2.916 –2.586
0.5 –3.635 –2.871 –2.517 –3.402 –2.741 –2.415 –3.305 –2.648 –2.308

k = 2.0
0.1 –4.537 –3.880 –3.531 –4.398 –3.815 –3.458 –4.318 –3.719 –3.429
0.2 –4.257 –3.632 –3.283 –4.210 –3.568 –3.235 –4.128 –3.463 –3.157
0.3 –4.055 –3.368 –3.003 –3.869 –3.261 –2.936 –3.776 –3.171 –2.841
0.4 –3.757 –3.086 –2.750 –3.573 –2.977 –2.652 –3.575 –2.914 –2.583
0.5 –3.512 –2.875 –2.499 –3.326 –2.706 –2.354 –3.259 –2.638 –2.313
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Table B4 Critical values for FI models intercept and trend included in fractional frequency Fourier
function d = (0.6, 0.9)

T 100 250 500

1% 5% 10% 1% 5% 10% 1% 5% 10%

k = 1.1
0.6 –3.405 –2.730 –2.373 –3.221 –2.558 –2.197 –3.076 –2.452 –2.103
0.7 –3.124 –2.496 –2.147 –2.979 –2.341 –1.977 –2.900 –2.184 –1.847
0.8 –3.037 –2.319 –1.944 –2.838 –2.163 –1.797 –2.738 –2.020 –1.665
0.9 –2.870 –2.164 –1.797 –2.722 –2.005 –1.614 –2.603 –1.897 –1.550

k = 1.2
0.6 –3.373 –2.730 –2.361 –3.215 –2.558 –2.209 –3.132 –2.475 –2.121
0.7 –3.168 –2.528 –2.164 –3.048 –2.320 –1.968 –2.950 –2.201 –1.852
0.8 –2.974 –2.318 –1.975 –2.859 –2.133 –1.789 –2.739 –2.075 –1.717
0.9 –2.927 –2.140 –1.759 –2.619 –2.018 –1.648 –2.523 –1.905 –1.565

k = 1.3
0.6 –3.346 –2.675 –2.342 –3.202 –2.545 –2.203 –3.028 –2.441 –2.083
0.7 –3.195 –2.487 –2.132 –3.042 –2.324 –1.957 –2.949 –2.243 –1.862
0.8 –3.027 –2.300 –1.937 –2.855 –2.139 –1.768 –2.659 –1.995 –1.650
0.9 –2.862 –2.147 –1.771 –2.702 –1.976 –1.604 –2.593 –1.880 –1.523

k = 1.4
0.6 –3.391 –2.717 –2.350 –3.200 –2.521 –2.167 –3.046 –2.440 –2.090
0.7 –3.167 –2.476 –2.103 –3.006 –2.321 –1.982 –2.909 –2.214 –1.852
0.8 –3.002 –2.283 –1.935 –2.780 –2.113 –1.769 –2.714 –2.013 –1.643
0.9 –2.802 –2.139 –1.773 –2.708 –1.978 –1.603 –2.637 –1.904 –1.537

k = 1.5
0.6 –3.401 –2.734 –2.357 –3.176 –2.514 –2.151 –3.038 –2.382 –2.037
0.7 –3.098 –2.461 –2.072 –2.970 –2.308 –1.922 –2.839 –2.155 –1.802
0.8 –2.982 –2.284 –1.917 –2.759 –2.105 –1.749 –2.665 –2.025 –1.665
0.9 –2.902 –2.172 –1.752 –2.667 –2.010 –1.623 –2.517 –1.889 –1.501

k = 1.6
0.6 –3.363 –2.667 –2.330 –3.117 –2.457 –2.111 –3.068 –2.415 –2.044
0.7 –3.137 –2.435 –2.089 –2.904 –2.245 –1.902 –2.829 –2.163 –1.813
0.8 –3.035 –2.268 –1.917 –2.801 –2.135 –1.772 –2.707 –2.023 –1.662
0.9 –2.827 –2.118 –1.752 –2.655 –1.945 –1.590 –2.577 –1.913 –1.542

k = 1.7
0.6 –3.350 –2.663 –2.302 –3.242 –2.531 –2.163 –3.118 –2.461 –2.069
0.7 –3.157 –2.442 –2.075 –2.988 –2.308 –1.944 –2.800 –2.164 –1.823
0.8 –2.985 –2.287 –1.917 –2.760 –2.095 –1.742 –2.651 –2.013 –1.653
0.9 –2.889 –2.142 –1.739 –2.601 –1.952 –1.597 –2.595 –1.878 –1.501

k = 1.8
0.6 –3.295 –2.623 –2.268 –3.177 –2.474 –2.145 –3.055 –2.394 –2.032
0.7 –3.102 –2.451 –2.105 –2.926 –2.250 –1.912 –2.866 –2.212 –1.824
0.8 –3.015 –2.289 –1.909 –2.793 –2.125 –1.745 –2.686 –1.965 –1.629
0.9 –2.831 –2.144 –1.756 –2.698 –1.973 –1.597 –2.628 –1.895 –1.537

k = 1.9
0.6 –3.273 –2.653 –2.293 –3.162 –2.497 –2.137 –3.096 –2.377 –2.019
0.7 –3.192 –2.473 –2.101 –3.014 –2.300 –1.942 –2.890 –2.196 –1.826
0.8 –2.893 –2.265 –1.907 –2.790 –2.103 –1.754 –2.694 –2.021 –1.673
0.9 –2.792 –2.127 –1.767 –2.633 –1.943 –1.582 –2.514 –1.853 –1.514
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