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Abstract: The purpose of this paper is to present some fixed point results for Frum-Ketkov type
operators in complete b-metric spaces.
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1. Introduction and Preliminaries

In [1], Frum-Ketkov obtained a fixed point theorem, which was later generalized
by Nussbaum [2] and Buley [3]. Later, Park and Kim [4] obtained other forms of the
Frum-Ketkov theorem. Recently, Petrusel, Rus and Serban [5] gave sufficient conditions
ensuring that a Frum-Ketkov operator is a weakly Picard operator and studied also some
generalized Frum-Ketkov operators, see also [6].

The purpose of this paper is to obtain similar results for generalized Frum-Ketkov
operators in the context of b-metric spaces.

We start by recalling the definition of Frum-Ketkov operators and some notions given
in [5].

Let (M, d) be a metric space. We denote by P(M) the family of all nonempty subsets
of M, by Pcl(M) the family of all nonempty closed subsets of M and by Pcp(M) the family
of all nonempty compact subsets of M.

The ω-limit set of x ∈ M under the self-mapping f is defined as

ω f (x) =
+∞⋂
n=0

{
f k(x) : k ≥ n

}
,

where f k is the iterate of order k of f .

Remark 1. Ref. [5] ω f (x) = {x∗ ∈ M : there exists nk such that f nk (x)→ x∗}.

Definition 1. Ref. [5] Let (M, d) be a metric space. A self-mapping f : M→ M is called:

1. l-contraction if l ∈ (0, 1) and d( f (x), f (y)) ≤ ld(x, y), for every x, y ∈ M;
2. Contractive if d( f (x), f (y)) < d(x, y), for every x, y ∈ M with x 6= y;
3. Nonexpansive if d( f (x), f (y)) ≤ d(x, y), for every x, y ∈ M;
4. Quasinonexpansive if Ff 6= ∅ and, if x∗ ∈ Ff then d( f (x), x∗) ≤ d(x, x∗), for every x ∈ M,

where Ff is the set of fixed point of the mapping f ;
5. Asymptotical regular in a point x ∈ M, if d

(
f n(x), f n+1(x)

)
→ 0, as n→ +∞.

Definition 2. Ref. [7] Let X ∈ Pcl(M) and f : X → X. f is called weakly Picard operator (WPO)
if the sequence of successive approximation

{
f k(x)

}
n∈N

converges for all x ∈ X and its limit
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(which in general depends on x) is a fixed point of f . If f is a WPO with a unique fixed point, then
f is called Picard operator (PO).

Definition 3. Ref. [5] Let (M, d) be a metric space, X ∈ Pcl(M) and K ∈ Pcp(M). A continuous
operator f : X → X is said to be a Frum-Ketkov (l, K)-operator if l ∈ (0, 1) and

d( f (x), K) ≤ ld(x, K), for every x ∈ X,

where
d(x, K) = inf{d(x, z) : z ∈ K}.

In what follows, we recollect the definition of b-metric that was considered by several
authors, including Bakhtin [8] and Czerwik [9].

Definition 4. Let M be a nonempty set and let s ≥ 1 be a given real number. A functional
d : M×M→ [0,+∞) is said to be a b-metric with constant s, if

1. d is symmetric, that is, d(x, y) = d(y, x) for all x, y,
2. d is self-distance, that is, d(x, y) = 0 if and only if x = y,
3. d provides s-weighted triangle inequality, that is

d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ M.

In this case the triple (M, d, s) is called a b-metric space with constant s ≥ 1.

It is evident that the notions of b-metric and standard metric coincide in case of s = 1.
For more details on b-metric spaces see, e.g., [10–12] and corresponding references therein.

Example 1. Let M = [0,+∞) and d : M×M→ [0,+∞) such that d(x, y) = |x− y|p, p > 1.
It’s easy to see that d is a b-metric with s = 2p−1, but is not a metric.

Definition 5. A mapping ϕ : [0,+∞)→ [0,+∞) is called a comparison function if it is increas-
ing and ϕn(t)→ 0, as n→ +∞, for any t ∈ [0,+∞).

Lemma 1. Ref. [11] If ϕ : [0,+∞)→ [0,+∞) is a comparison function, then:

1. Each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;
2. ϕ is continuous at 0;
3. ϕ(t) < t, for any t > 0.

Definition 6. A function ϕ : [0,+∞)→ [0,+∞) is said to be a c-comparison function if

1. ϕ is increasing;

2. There exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
+∞
∑

k=1
vk such that

ϕk+1(t) ≤ aϕk(t) + vk, for k ≥ k0 and any t ∈ [0,+∞).

In order to give some fixed point results to the class of b-metric spaces, the notion of
c-comparison function was extended to b-comparison function by V. Berinde [12].

Definition 7. Ref. [12] Let s ≥ 1 be a real number. A mapping ϕ : [0,+∞)→ [0,+∞) is called
a b-comparison function if the following conditions are fulfilled

1. ϕ is monotone increasing;

2. There exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
+∞
∑

k=1
vk such that

sk+1 ϕk+1(t) ≤ ask ϕk(t) + vk, for k ≥ k0 and any t ∈ [0,+∞).
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The following lemma is very important in the proof of our results.

Lemma 2. Ref. [12] If ϕ : [0,+∞) → [0,+∞) is a b-comparison function, then we have the
following conclusions:

1. The series
+∞
∑

k=0
sk ϕk(t) converges for any t ∈ [0,+∞);

2. The function Sb : [0,+∞) → [0,+∞) defined by Sb(t) =
+∞
∑

k=0
sk ϕk(t), t ∈ [0,+∞), is

increasing and continuous at 0.

Remark 2. Due to the Lemma 1.2, any b-comparison function is a comparison function.

2. Frum-Ketkov Operators in b-Metric Spaces

Definition 8. Let (M, d) be a b-metric space with constant s ≥ 1, X ∈ Pcl(M) and K ∈ Pcp(M).
A continuous function f : X → X is said to be a Frum-Ketkov (ϕ, K)-operator if there exists
ϕ : [0,+∞)→ [0,+∞) a b-comparison function such that

d( f (x), K) ≤ ϕ(d(x, K)), for every x ∈ X.

Example 2. Let M = [0,+∞), d : M × M → [0,+∞), d(x, y) = (x− y)2, s = 2. From
Example 1.1. we have that (M, d) is a b-metric space. Let X = [0, 1], K = {0}, f : X → X,
f (x) = x

x+2 , ϕ : [0,+∞)→ [0,+∞), ϕ(t) = t
t+4 . f is Frum-Ketkov operator.

Theorem 1. Let (M, d) be a b-metric space with constant s ≥ 1, X ∈ Pcl(M), K ∈ Pcp(M) and
f : X → X a Frum-Ketkov (ϕ, K)-operator. Then the following conclusion hold:

(i) ω f (x) 6= ∅ and ω f (x) ⊂ X ∩ K, for every x ∈ X;
(ii) Ff ⊂ X ∩ K;
(iii) f (X ∩ K) ⊂ X ∩ K;
(iv) If f is asymptotically regular, then v f (x) ⊂ Ff , for every x ∈ X. If, in addition, f is

quasinonexpansive, then f is WPO.

Proof. (i) Let x ∈ X arbitrary. Because K ∈ Pcp(M), there exists (yn) such that d( f (x), K) =
d( f (x), yn)

d( f (x), yn) ≤ ϕ(d(x, yn))
d
(

f 2(x), yn
)
≤ ϕ(d( f (x), yn)) ≤ ϕ2(d(x, yn))

Inductively, we obtain

d( f n(x), yn) ≤ ϕn(d(x, yn))→ 0, as n→ +∞.

Hence, d( f n(x), yn)→ 0, as n→ +∞.
As K ∈ Pcp(M), there exists a subsequence

(
ynk

)
of (yn), such that ynk → y∗(x) ∈ K,

nk → +∞.
Since d( f n(x), yn) → 0, then d( f nk (x), y∗(x)) → 0 and hence f nk (x) → y∗(x), nk →

+∞, and thus y∗(x) ∈ ω f (x).
In this way ω f (x) 6= ∅ and ω f (x) ⊂ X ∩ K, for every x ∈ X.
(ii) Let x ∈ Ff . Suppose d(x, K) 6= 0.

d(x, K) = d( f (x), K) ≤ ϕ(d(x, K)) < d(x, K),

which is a contradiction.
Hence, d(x, K) = 0 which implies x ∈ K and thus Ff ⊂ X ∩ K.
(iii) Let x ∈ X ∩ K

d( f (x), K) ≤ ϕ(d(x, K)) = ϕ(0) = 0.
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Hence, f (x) ∈ K.
(iv) From (i) we have that ω f (x) 6= ∅, for every x ∈ X. Let x∗(x) ∈ ω f (x). There

exists nk such that f nk (x)→ x∗(x) as nk → +∞.

d(x∗, f (x∗)) ≤ sd(x∗, f nk (x∗)) + sd( f nk (x∗), f (x∗))
≤ sd(x∗, f nk (x∗)) + s2d

(
f nk (x∗), f nk+1(x∗)

)
+ s2d

(
f nk+1(x∗), f (x∗)

) (1)

From (i) and (iii) since x∗(x) ∈ ω f (x) we have that

d
(

f 2(x∗), f (x∗)
)
≤ ϕ(d(x∗, f (x∗))).

Inductively, we obtain

d
(

f nk (x∗), f nk+1(x∗)
)
≤ ϕnk (d(x∗, f (x∗))).

Now, if in (1) we consider nk → +∞, then we obtain d(x∗, f (x∗)), which implies that
x∗ ∈ Ff and thus v f (x) ⊂ Ff .

Consider now that, in addition, f is quasinonexpansive and let x ∈ X and f nk (x)→
y∗(x), nk → +∞ (see (i)). Because f is asymptotically regular, y∗(x) ∈ Ff .

d( f (x), y∗) ≤ ϕ(d(x, y∗))
d
(

f 2(x), y∗
)
≤ ϕ(d( f (x), y∗)) < d( f (x), y∗).

Hence the sequence (d( f n(x), y∗)) is decreasing and since (d( f nk (x), y∗)) → 0 as
nk → +∞, we obtain d( f n(x), y∗)→ 0 as n→ +∞ and thus f is WPO.

3. Conclusions

Frum-Ketkov type contractions are an interesting topic that has been overlooked and
has not attracted anyone’s attention for many years. The very attractive recent publication
of Petrusel–Rus–Serban [5] is the one that brought this shadowy concept to light. In this
paper, we consider the Frum-Ketkov type contractions in the framework of b-metric space.
For this reason, this paper should be considered as an initial paper that opens a new trend
in metric fixed point theory.
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