

Article **Fixed Point Results for Frum-Ketkov Type Contractions in b-Metric Spaces**

Cristian Chifu¹, Erdal Karapınar^{2,3,4,*} and Gabriela Petrusel¹

- ¹ Department of Business, Babeş-Bolyai University Cluj-Napoca, Horea Street, No. 7,
- 400000 Cluj-Napoca, Romania; cristian.chifu@ubbcluj.ro (C.C.); gabi.petrusel@ubbcluj.ro (G.P.)
- ² Division of Applied Mathematics, Thu Dau Mot University, Thu Dau Mot City 75000, Vietnam
 ³ Department of Mathematics, Cankaya University, Etimoscut 06790, Ankara Turkey
- Department of Mathematics, Çankaya University, Etimesgut 06790, Ankara, Turkey
- ⁴ Department of Medical Research, China Medical University, Taichung 40402, Taiwan
- Correspondence: erdalkarapinar@tdmu.edu.vn or erdalkarapinar@yahoo.com

Abstract: The purpose of this paper is to present some fixed point results for Frum-Ketkov type operators in complete *b*-metric spaces.

Keywords: *b*-metric space; Frum-Ketkov operators; *φ*-contractive mappings; weakly Picard operators

1. Introduction and Preliminaries

In [1], Frum-Ketkov obtained a fixed point theorem, which was later generalized by Nussbaum [2] and Buley [3]. Later, Park and Kim [4] obtained other forms of the Frum-Ketkov theorem. Recently, Petrusel, Rus and Serban [5] gave sufficient conditions ensuring that a Frum-Ketkov operator is a weakly Picard operator and studied also some generalized Frum-Ketkov operators, see also [6].

The purpose of this paper is to obtain similar results for generalized Frum-Ketkov operators in the context of *b*-metric spaces.

We start by recalling the definition of Frum-Ketkov operators and some notions given in [5].

Let (M, d) be a metric space. We denote by P(M) the family of all nonempty subsets of M, by $P_{cl}(M)$ the family of all nonempty closed subsets of M and by $P_{cp}(M)$ the family of all nonempty compact subsets of M.

The ω -limit set of $x \in M$ under the self-mapping f is defined as

$$\omega_f(x) = \bigcap_{n=0}^{+\infty} \overline{\{f^k(x) : k \ge n\}},$$

where f^k is the iterate of order k of f.

Remark 1. Ref. [5] $\omega_f(x) = \{x^* \in M : \text{ there exists } n_k \text{ such that } f^{n_k}(x) \to x^*\}.$

Definition 1. *Ref.* [5] *Let* (M, d) *be a metric space. A self-mapping* $f : M \to M$ *is called:*

- 1. *l-contraction if* $l \in (0,1)$ *and* $d(f(x), f(y)) \leq ld(x, y)$ *, for every* $x, y \in M$ *;*
- 2. Contractive if d(f(x), f(y)) < d(x, y), for every $x, y \in M$ with $x \neq y$;
- 3. Nonexpansive if $d(f(x), f(y)) \le d(x, y)$, for every $x, y \in M$;
- 4. Quasinonexpansive if $F_f \neq \emptyset$ and, if $x^* \in F_f$ then $d(f(x), x^*) \leq d(x, x^*)$, for every $x \in M$, where F_f is the set of fixed point of the mapping f;
- 5. Asymptotical regular in a point $x \in M$, if $d(f^n(x), f^{n+1}(x)) \to 0$, as $n \to +\infty$.

Definition 2. *Ref.* [7] *Let* $X \in P_{cl}(M)$ *and* $f : X \to X$. *f is called weakly Picard operator (WPO) if the sequence of successive approximation* $\{f^k(x)\}_{n \in \mathbb{N}}$ *converges for all* $x \in X$ *and its limit*

Citation: Chifu, C.; Karapınar, E.; Petrusel, G. Fixed Point Results for Frum-Ketkov Type Contractions in *b*-Metric Spaces. *Axioms* **2021**, *10*, 231. https://doi.org/10.3390/axioms 10030231

Academic Editors: Hsien-Chung Wu and Chris Goodrich

Received: 9 June 2021 Accepted: 15 September 2021 Published: 18 September 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). (which in general depends on x) is a fixed point of f. If f is a WPO with a unique fixed point, then f is called Picard operator (PO).

Definition 3. *Ref.* [5] *Let* (M, d) *be a metric space,* $X \in P_{cl}(M)$ *and* $K \in P_{cp}(M)$ *. A continuous operator* $f : X \to X$ *is said to be a Frum-Ketkov* (l, K)*-operator if* $l \in (0, 1)$ *and*

$$d(f(x), K) \leq ld(x, K)$$
, for every $x \in X$,

where

$$d(x,K) = \inf\{d(x,z) : z \in K\}.$$

In what follows, we recollect the definition of *b*-metric that was considered by several authors, including Bakhtin [8] and Czerwik [9].

Definition 4. *Let* M *be a nonempty set and let* $s \ge 1$ *be a given real number. A functional* $d: M \times M \rightarrow [0, +\infty)$ *is said to be a b-metric with constant s, if*

- 1. *d* is symmetric, that is, d(x, y) = d(y, x) for all x, y,
- 2. *d* is self-distance, that is, d(x, y) = 0 if and only if x = y,
- 3. *d provides s-weighted triangle inequality, that is*

$$d(x,z) \leq s[d(x,y) + d(y,z)], \text{ for all } x, y, z \in M.$$

In this case the triple (M, d, s) is called a b-metric space with constant $s \ge 1$.

It is evident that the notions of *b*-metric and standard metric coincide in case of s = 1. For more details on *b*-metric spaces see, e.g., [10–12] and corresponding references therein.

Example 1. Let $M = [0, +\infty)$ and $d : M \times M \rightarrow [0, +\infty)$ such that $d(x, y) = |x - y|^p$, p > 1. It's easy to see that d is a b-metric with $s = 2^{p-1}$, but is not a metric.

Definition 5. A mapping $\varphi : [0, +\infty) \to [0, +\infty)$ is called a comparison function if it is increasing and $\varphi^n(t) \to 0$, as $n \to +\infty$, for any $t \in [0, +\infty)$.

Lemma 1. *Ref.* [11] *If* φ : $[0, +\infty) \rightarrow [0, +\infty)$ *is a comparison function, then:*

- 1. Each iterate φ^k of φ , $k \ge 1$, is also a comparison function;
- 2. φ is continuous at 0;
- 3. $\varphi(t) < t$, for any t > 0.

Definition 6. A function $\varphi : [0, +\infty) \to [0, +\infty)$ is said to be a *c*-comparison function if

- 1. φ is increasing;
- 2. There exists $k_0 \in \mathbb{N}$, $a \in (0, 1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{+\infty} v_k$ such that $\varphi^{k+1}(t) < a\varphi^k(t) + v_k$, for $k > k_0$ and any $t \in [0, +\infty)$.

In order to give some fixed point results to the class of *b*-metric spaces, the notion of *c*-comparison function was extended to *b*-comparison function by V. Berinde [12].

Definition 7. *Ref.* [12] *Let* $s \ge 1$ *be a real number. A mapping* $\varphi : [0, +\infty) \rightarrow [0, +\infty)$ *is called a b-comparison function if the following conditions are fulfilled*

- 1. φ is monotone increasing;
- 2. There exist $k_0 \in \mathbb{N}$, $a \in (0,1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{+\infty} v_k$ such that $s^{k+1}\varphi^{k+1}(t) \leq as^k\varphi^k(t) + v_k$, for $k \geq k_0$ and any $t \in [0, +\infty)$.

The following lemma is very important in the proof of our results.

Lemma 2. *Ref.* [12] If φ : $[0, +\infty) \rightarrow [0, +\infty)$ *is a b-comparison function, then we have the following conclusions:*

- 1. The series $\sum_{k=0}^{+\infty} s^k \varphi^k(t)$ converges for any $t \in [0, +\infty)$;
- 2. The function $S_b : [0, +\infty) \to [0, +\infty)$ defined by $S_b(t) = \sum_{k=0}^{+\infty} s^k \varphi^k(t), t \in [0, +\infty)$, is increasing and continuous at 0.

Remark 2. Due to the Lemma 1.2, any b-comparison function is a comparison function.

2. Frum-Ketkov Operators in *b*-Metric Spaces

Definition 8. Let (M, d) be a b-metric space with constant $s \ge 1$, $X \in P_{cl}(M)$ and $K \in P_{cp}(M)$. A continuous function $f : X \to X$ is said to be a Frum-Ketkov (φ, K) -operator if there exists $\varphi : [0, +\infty) \to [0, +\infty)$ a b-comparison function such that

$$d(f(x), K) \leq \varphi(d(x, K))$$
, for every $x \in X$.

Example 2. Let $M = [0, +\infty), d: M \times M \to [0, +\infty), d(x, y) = (x - y)^2, s = 2$. From *Example 1.1. we have that* (M, d) *is a b-metric space. Let* $X = [0, 1], K = \{0\}, f: X \to X, f(x) = \frac{x}{x+2}, \varphi: [0, +\infty) \to [0, +\infty), \varphi(t) = \frac{t}{t+4}.$ *f is Frum-Ketkov operator.*

Theorem 1. Let (M, d) be a b-metric space with constant $s \ge 1$, $X \in P_{cl}(M)$, $K \in P_{cp}(M)$ and $f : X \to X$ a Frum-Ketkov (φ, K) -operator. Then the following conclusion hold:

- (i) $\omega_f(x) \neq \emptyset$ and $\omega_f(x) \subset X \cap K$, for every $x \in X$;
- (*ii*) $F_f \subset X \cap K$;
- (iii) $f(X \cap K) \subset X \cap K$;
- (iv) If f is asymptotically regular, then $\omega_f(x) \subset F_f$, for every $x \in X$. If, in addition, f is quasinonexpansive, then f is WPO.

Proof. (i) Let $x \in X$ arbitrary. Because $K \in P_{cp}(M)$, there exists (y_n) such that $d(f(x), K) = d(f(x), y_n)$

$$d(f(x), y_n) \le \varphi(d(x, y_n))$$

$$d(f^2(x), y_n) \le \varphi(d(f(x), y_n)) \le \varphi^2(d(x, y_n))$$

Inductively, we obtain

$$d(f^n(x), y_n) \le \varphi^n(d(x, y_n)) \to 0$$
, as $n \to +\infty$.

Hence, $d(f^n(x), y_n) \to 0$, as $n \to +\infty$.

As $K \in P_{cp}(M)$, there exists a subsequence (y_{n_k}) of (y_n) , such that $y_{n_k} \to y^*(x) \in K$, $n_k \to +\infty$.

Since $d(f^n(x), y_n) \to 0$, then $d(f^{n_k}(x), y^*(x)) \to 0$ and hence $f^{n_k}(x) \to y^*(x), n_k \to +\infty$, and thus $y^*(x) \in \omega_f(x)$.

In this way $\omega_f(x) \neq \emptyset$ and $\omega_f(x) \subset X \cap K$, for every $x \in X$. (ii) Let $x \in F$. Suppose $d(x, K) \neq 0$

(ii) Let $x \in F_f$. Suppose $d(x, K) \neq 0$.

$$d(x,K) = d(f(x),K) \le \varphi(d(x,K)) < d(x,K),$$

which is a contradiction.

Hence, d(x, K) = 0 which implies $x \in K$ and thus $F_f \subset X \cap K$. (iii) Let $x \in X \cap K$

$$d(f(x),K) \le \varphi(d(x,K)) = \varphi(0) = 0.$$

Hence, $f(x) \in K$.

(iv) From (i) we have that $\omega_f(x) \neq \emptyset$, for every $x \in X$. Let $x^*(x) \in \omega_f(x)$. There exists n_k such that $f^{n_k}(x) \to x^*(x)$ as $n_k \to +\infty$.

$$\begin{aligned} d(x^*, f(x^*)) &\leq sd(x^*, f^{n_k}(x^*)) + sd(f^{n_k}(x^*), f(x^*)) \\ &\leq sd(x^*, f^{n_k}(x^*)) + s^2d(f^{n_k}(x^*), f^{n_k+1}(x^*)) + s^2d(f^{n_k+1}(x^*), f(x^*)) \end{aligned}$$
(1)

From (i) and (iii) since $x^*(x) \in \omega_f(x)$ we have that

$$d(f^{2}(x^{*}), f(x^{*})) \le \varphi(d(x^{*}, f(x^{*}))).$$

Inductively, we obtain

$$d(f^{n_k}(x^*), f^{n_k+1}(x^*)) \le \varphi^{n_k}(d(x^*, f(x^*))).$$

Now, if in (1) we consider $n_k \to +\infty$, then we obtain $d(x^*, f(x^*))$, which implies that $x^* \in F_f$ and thus $\omega_f(x) \subset F_f$.

Consider now that, in addition, f is quasinonexpansive and let $x \in X$ and $f^{n_k}(x) \rightarrow y^*(x)$, $n_k \rightarrow +\infty$ (see (i)). Because f is asymptotically regular, $y^*(x) \in F_f$.

$$\begin{aligned} &d(f(x), y^*) \leq \varphi(d(x, y^*)) \\ &d(f^2(x), y^*) \leq \varphi(d(f(x), y^*)) < d(f(x), y^*) \end{aligned}$$

Hence the sequence $(d(f^n(x), y^*))$ is decreasing and since $(d(f^{n_k}(x), y^*)) \to 0$ as $n_k \to +\infty$, we obtain $d(f^n(x), y^*) \to 0$ as $n \to +\infty$ and thus f is WPO. \Box

3. Conclusions

Frum-Ketkov type contractions are an interesting topic that has been overlooked and has not attracted anyone's attention for many years. The very attractive recent publication of Petrusel–Rus–Serban [5] is the one that brought this shadowy concept to light. In this paper, we consider the Frum-Ketkov type contractions in the framework of b-metric space. For this reason, this paper should be considered as an initial paper that opens a new trend in metric fixed point theory.

Author Contributions: Writing—original draft, C.C.; Writing—review and editing, E.K. and G.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors are thankful to the reviewers for their suggestions to improve the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Frum-Ketkov, R.L. Mapping into a sphere of a Banach space (Russian). Dokl. Akad. Nauk SSSR 1967, 175, 1229–1231.
- 2. Nussbaum, R.D. Some asymptotic fixed point theorems. *Trans. Amer. Math. Soc.* **1972**, *171*, 349–375. [CrossRef]
- 3. Buley, H. Fixed point theorems of Rothe-type for Frum-Ketkov and 1-set-contractions. *Comment. Math. Univ. Carol.* **1978**, 19, 213–225.
- 4. Park, S.; Kim, W.K. On the Frum-Ketkov type fixed point theorems. Bull. Korean Math. Soc. 1983, 20, 5–8.
- 5. Petrusel, A.; Rus, I.A.; Serban, M.A. Frum-Ketkov operators which are weakly Picard. *Carpathian J. Math.* 2020, *36*, 295–302. [CrossRef]
- 6. Karapinar, E.; Petrusel, A.; Petrusel, G. Frum-Ketkov type multivalued operators. Carpathian J. Math. 2021, 37, 203–210. [CrossRef]

- 7. Rus, I.A. Relevant classes of weakly Picard operators. Ann. West Univ. Timis. Mat.-Inf. 2016, 54, 3–19. [CrossRef]
- 8. Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. *Funct. Anal.* **1989**, *30*, 26–37.
- 9. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Univ. Modena 1998, 46, 263–276.
- 10. Berinde, V. Generalized contractions in quasimetric spaces. *Semin. Fixed Point Theory* **1993**, *3*, 3–9.
- 11. Berinde, V. Contracții Generalizate și Aplicații; Editura Club Press 22: Baia Mare, Romania, 1997.
- 12. Berinde, V. Sequences of operators and fixed points in quasimetric spaces. Stud. Univ. Babes-Bolyai Math. 1996, 16, 23–27.