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Abstract
New mobile applications need to estimate user activities by using sensor data provided by
smart wearable devices and deliver context-aware solutions to users living in smart
environments. We propose a novel hybrid data fusion method to estimate three types of
daily user activities (being in a meeting, walking, and driving with a motorized vehicle)
using the accelerometer and gyroscope data acquired from a smart watch using a mobile
phone. The approach is based on the matrix time series method for feature fusion, and the
modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent
algorithm for construction of optimal decision trees for classification. For the estimation
of user activities, we adopted a statistical pattern recognition approach and used the k-
Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired
and used our own dataset of 354 min of data from 20 subjects for this study. We report a
classification performance of 98.32 % for SVM and 97.42 % for kNN.
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1 Introduction

Today, mobiles devices such as smartphones and tablet computers have powerful pro-
cessors, high memory capacities and other sophisticated features, which allow for the
development of intelligent context-aware services for smart environments such as smart
homes, smart cities, and smart mobility [49]. Activity identification and classification
using multi-sensor modalities can be successfully employed for user behaviour analysis,
ambient assisted living, elderly care, medical diagnostics, patient rehabilitation after
traumas, and surveillance [38, 10, 11, 28]. Fusing user data and information about
environment enables to develop context-aware applications for mobile devices. The
profile of the user, the information about the usage environment and usage time of the
application, and other information about the environment are known as “context”. The
applications, which use this contextual information, are defined as “context-aware”
applications [2]. Moreover, using data fusion may provide additional benefits such as
robustness against noise or external interference, increased reliability and confidence,
improved accuracy and reduced ambiguity [19].

Fusion of data from multiple sensors is widely used to aggregate data gathered by
heterogeneous devices or sensors [12]. Lower-level contextual spatial and temporal informa-
tion can be exploited by intelligent mobile applications to improve the quality and usability of
provided services. Specifically, the activity of users is one of the more important information
in context-aware services. User activities such as walking, standing, and transportation by
motorized vehicles provide useful information for the creation and provision of contextual
services. Correct determination of user activity enables high-level reasoning over the domain
of activities and services in order to create contextual rules such as “unmute my phone when
the meeting ends and I start walking”, “forward all the incoming calls if I am driving”, “ring
my phone loudly if I am walking”, etc. Such rules can be utilized by contextual reasoning
engines to provide support for upper-level applications that provide smart context-aware
services to its users. Using personalized context-aware models can significantly improve
system performance for users [51], however learning personalized models has high computa-
tional cost. Therefore, the development of new methods that use data fusion for the improve-
ment of context-awareness characteristics is of high importance now. Knowing current user
activity is of utmost importance to comprehend the users’ context as the user’s task is a key
element of the Dey’s notion of context [13]. Current approaches used for human activity
recognition (HAR) can be categorized into two groups: the approaches using dedicated devices
such as pedometer, and the approaches using smartphone sensors [43].

The contribution of this paper is as follows:
1) a novel hybrid data fusion method to estimate daily user activities using the accelerometer

and gyroscope data acquired from a mobile phone;
2) the application of the matrix time series method for feature fusion, and the modified

Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algo-
rithm for construction of optimal decision trees for classification;

3) a new dataset of the accelerometer and gyroscope signals acquired from a smartphone of
users performing three types of daily user activities (being in a meeting, walking, and
driving with a motorized vehicle);

4) classification of the fused accelerometer and gyroscope data using K-NN and SVM
classifiers.
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2 Related works

There are many studies in the literature dealing with activity recognition on smartphones. For
example, Reddy et al. [44] classified user transportation modes (standing still, walking,
running, cycling and transportation with a motorized vehicle) using smartphone accelerometer
and Global Positioning System (GPS) sensors and obtained an accuracy of 93.6 %. Zheng
et al. [53] suggested a method to classify walking, cycling, and motorized transportation
activities using only GPS data collected from 65 users and 76% performance was achieved.
Yang [52] classified six different user activities (sitting, walking, running, cycling, standing,
and motorized transportation) using the accelerometer data collected from 12 users and
achieved an accuracy of 90%. Martin et al. [33] proposed a study to recognize six activities
(slowly walking, fast walking, walking in normal way, running, sitting and standing) of users
using the accelerometer data collected from 16 different users, and obtained a correct classi-
fication rate of 88%. Liang et al. [32] classified 11 different activities (standing still, lying,
driving, sitting, walking, running, going up and down the stairs, cycling, and jumping) of
users, and they achieved 85% correct classification performance. Shafique and Hato [54]
achieved an overall accuracy of 99.96% when classifying smartphone accelerometer (along z-,
y- and z-axes) and orientation (roll and pitch) data among six travel categories (pedestrian
walk, bicycle riding, bus, subway, train). Cvetkovic et al. [9] achieved an 87% ± 5% average
accuracy for activity recognition using a fusion of data from smartphone and wristband
sensors. Shdefat et al. [45] performed recognition of 12 human activities using the acceleration
and gyroscope sensor data acquired from Android smartphones and reached the average
accuracy of 89.79% with SVM and 87.81% with k-NN. Ahmed et al. [1] suggested a hybrid
filter and wrapper method for feature selection that adopted a sequential floating forward
search (SFFS) to extract the most important features for recognition of 12 stationary, motion
and combined activities. Classification using multiclass SVM achieved an accuracy of
96.81%. Bragança et al. [6] used symbolic representation algorithms (Symbolic Aggregate
Approximation, Symbolic Fourier Approximation, Bag-of-Patterns) to encode sensor data time
series as symbolic sequences. The latter are classified by KNN classifier. Chen et al. [8] used
ensemble Extreme Learning Machine (ELM) approach and achieved an accuracy of 97.35%
on a dataset acquired from 12 subjects performing laying, standing, sitting, walking, walking
downstairs and upstairs. Jain & Kanhangad [22] adopted the descriptor-based approach for
activity classification smartphone sensor data. The histogram of gradient and centroid signa-
ture based Fourier descriptor were used to extract feature sets while feature and score level
fusion was applied. Classification was performed using multiclass SVM and k-NN classifiers,
and achieving 97.12 and 96.83% accuracy on the UCI HAR and physical activity sensor
datasets. A summary of some other studies can be found in the reviews [46, 47].

Recently, neural networks, including deep learning models, have begun to be used in the
HAR domain. Wan et al. [50] explored the use of convolutional neural networks (CNN), long
short-term memory (LSTM), and bi-directional LSTM (BiLSTM) models, and Multilayer
perceptron (MLP) for recognizing 18 daily physical activities for 9 subjects. Gjoreski et al.
[18] used a combination of classical and deep learning methods for recognition of eight
locomotion activities (bike, bus, car, run, still, subway, train, walk) using smartphone sensor
data and achieved 94.9% accuracy. Pires et al. [40] achieved the accuracy of 85.89% using
deep neural networks (DNN) for recognizing five activities (standing, walking, running,
walking upstairs and walking downstairs. Qi et al. [41] achieved 95.27% accuracy using a
custom DNN for recognizing 12 activities, including dynamical exercises (jogging, going
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upstairs and downstairs, jumping, walking,), six static postures (lying to the right and left side,
lying supine and prone, standing, sitting), and action transitions. Li et al. [30] used frequency
domain and temporal difference domain data from two sensors as inputs of the CNN, which
was used as a feature extractor. Then one-class SVM was used for user authentication,
achieving a 5.14% equal error rate (EER).

Most of the analysed works use the accelerometer data, and a few of them use gyroscope,
GPS, and Wi-Fi data in addition to accelerometer data. On the other hand, the features used in
these studies differ as follows: raw data [39]; statistical features [15], autoregressive coeffi-
cients, signal magnitudes, linear discriminant analysis (LDA) and Kernel discriminant analysis
[26]; average, variance, correlation coefficients, FFT (Fast Fourier Transformation) energy
coefficients and Fourier domain entropies [48]; average, standard deviation, zero crossing rate,
frequency domain entropy [52]. In case, when there is not enough data for training the
classifier, the data augmentation strategy is employed [29].

Fusion of data can be performed in several ways such as data-level, feature-level, and
decision-level [36]. For example, Li et al. [31] used serial feature fusion and parallel feature
fusion to aggregate features from three smartphone sensors (accelerometer, gyroscope, and
magnetometer). Most related works extract features from sensors and combine them to train a
prediction model. However, most of them use aggregation may not produce the desired result
as each sensors’ data have different statistical characteristics, which do not allow producing a
reliable classification model [16].

In this paper we propose a novel hybrid method to classify user activities of being in a
meeting, walking and transportation with a motorized vehicle using the data fusion of the
gyroscope and accelerometer data.

3 Proposed method

3.1 Outline of the methodology

In this study, a statistical pattern recognition approach was employed for activity classification,
which uses a typical classification scheme used by other authors (such as [22]) in the domain
of human activity recognition, too. In the training stage, the data whose classification results
are known are used. In the testing stage, the performance of the classifier is measured [23]. The
block diagram of the approach is given in Fig. 1.

Finally, the proposed method is summarized as a flow chart presented in Fig. 2. First, we
acquired data from the accelerometer and gyroscope sensors of the smartphone. Next, we
preprocess the data using Kalman filter and perform feature extraction. Next we apply data
fusion using matrix eigenvalue based feature fusion method and apply Better-than-the-Best
fusion on data originated from accelerometer and gyroscope sensors. Finally, we perform
classification using commonly used machine learning methods (K-NN and SVM). These
stages are described in more detail in the following subsections.

3.2 Raw data filtering

For data filtering, we applied the Kalman filter. The discrete Kalman filter estimates the state
of the system and then measures and corrects its estimation. We use Kalman filter, because it
has been successfully applied for denoising and state estimation of human activity signals
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before [21]. This is a cyclical process where one set of equations predicts the state of the
systembxt and the other set corrects the predictions. The time t update equations predict the state
and covariance estimates from the time t � 1 as follows:

bx�t ¼ Abxt�1 þ But�1 ð1Þ

P�
t ¼ APt�1AT þ Q ð2Þ

hereA is the state transition model,B is the control-input model applied to the control vector ut,
Pt is the estimate error covariance, and Q is the process noise that may change from one time
update to another, but is assumed to be constant for most calculations, andR is the observation
noise. The measurement update (correction) equations are:

Kt ¼ P�
t H

T ðHP�
t H

T þ RÞ�1 ð3Þ

bxt ¼ bx�t þ Ktðzt � Hbx�t Þ ð4Þ

Pt ¼ ðI � KtHÞP�
t ð5Þ

here H is the observation model, and I is the identity matrix.
First, the Kalman gainKt is calculated. Then Eq. 4. uses the sensor signal measurement zt to

generate a state estimate. Finally, Eq. 5 calculates the error covariance Pt .

3.3 Feature extraction

We have extracted 16 features from smartphone sensors as follows: average power of the
time window data, and minimum and maximum of signal power, and variance of signal
power (a total of 4 features for gyroscope and accelerometer data, separately), the
maximum values of each axis (3 features), the difference between the maximum and
minimum values of each axis (3 features, one feature for the x, y and z axis, respective-
ly), the variances of each axis (3 features), and entropies of axis (3 features). These
features were extracted for gyroscope and accelerometer data separately. A time window
of 1 s was used, as suggested by Reddy et al. (2010), as the time window size that
provided the best performance.

Fig. 1 Classification scheme used in this paper
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3.4 Feature fusion

In this stage, fusion was performed on the features derived from a single data source (an
accelerometer sensor or a gyroscope sensor). For feature fusion, we have applied the matrix
time series method [5]. Given two synchronous numerical time series xi; 8i ¼ 1; 2;…;N and

Fig. 2 Flow chart of the proposed method
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yi; 8i ¼ 1; 2;…;N, which are normalized to �1; 1ð Þ. Then the 2nd order matrix time series
Ai; 8i ¼ 1; 2;…;N is formed as follows:

Ai ¼ a11 a12
a21 a22

� �
¼ xi xi�1 � yi�1

xiþ1 � yiþ1 yi

� �
: ð6Þ

The features of this matrix time series can be calculated using various methods known from the
matrix analysis theory such as determinant. Here we use the eigenvalues of the matrices Ai; in
order to derive new fused features as follows:

xi � yi ¼ λþ
i

�� �� ð7Þ

here � is the fusion operation, and λþ
i

�� �� is the absolute value of the first eigenvalue calculated
from solving the equation detðAi � λiIÞ ¼ 0, here I is the identity matrix, as follows:

λ�
i ¼ 1

2
a11 þ a22ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a12a21 þ a11 � a22ð Þ2

q� �
ð8Þ

To evaluate the discriminating power of fused features, we used the absolute value of the two-
sample statistical t-test with pooled variance estimate, aka the Z-value. We calculate fused
features for each combination of any feature derived from accelerometer and gyroscope x, y
and z axis data, and select top three fused features with the largest Z-value for further
classification.

3.5 Data fusion

Data fusion was performed to fuse features obtained from both data sources (accelerometer
and gyroscope sensors). In this paper, we have adopted a modified Better-than-the-Best Fusion
(BB-Fus) algorithm [34]. The method fuses data from different sensors using an optimal
decision tree for classification. The optimal tree is created by consecutively discovering the
best class and the best sensor data to isolate it at each level of classification decision. The class
set is reduced each time a decision is made.

The method uses the confusion matricesMi; 8i ¼ 1;…;w; that are found by examining the
sensor-classifier pairs �i ¼ si; cið Þ; here si; 8i ¼ 1;…;w are sensors, and ci; 8i ¼ 1;…;w are
classifiers. The task of finding the best sensor-classifier combination � can be described
formally as

Γ� ¼ arg
�i; 8i ¼ 1;…;w
Tj; 8i ¼ 1;…; n max Tj; Tjj�i

� �
; ð9Þ

here Tj; Tjj�i
� �

is the accuracy metric of the sensor-classifier combination �i ¼ si; cið Þ, which
is used to separate class Tj from the remaining classes.

In the training stage, the method examines all possible combinations of sensors and
classifiers to get the best one-vs-all decision tree D* as follows:

D� ¼ argDv 2 Dmax Dvð Þ ð10Þ
here Dvð Þ is the fitness function, and Dv; 8v ¼ 1; 2;…;V are the decision trees.

To find the optimal decision tree D*, the original BB-Fus algorithm uses a greedy search
algorithm. We however modified the BB-Fus algorithm to use stochastic gradient descent
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algorithm that enables effective training with large datasets, which is relevant for the activity
recognition domain, which has to deal with large amounts of recorded data. We have adopted
an algorithm from [37]. This algorithm is not efficient for deep trees, especially as we need to
perform inference once for every stochastic gradient computation. However, this is not a
problem in our case, since we do not have many activities, therefore, decision trees are
shallow.

3.6 Classification

After data fusion, the next step was selecting the classifier. The classifiers were selected by
analysing the data type, data size, and computation time of the classifier. We have selected the
k-Nearest Neighbor (k-NN) and Support Vector Machines (SVM), which are general-purpose
classifiers commonly used for activity recognition [43, 7, 35, 20]. These classifiers are up to
now widely used in the human activity recognition (HAR) domain with good results (see, e.g.,
[17]).

3.7 Evaluation of accuracy

The error is computed by measuring the proportion between the incorrectly classified data and
the total number of data. For cross-validation, we use the Leave-One-Out Cross-Validation
(LOOCV) approach. For a total ofN data (fused feature vectors), theN � 1 data was employed
as the training set and the remaining data was utilized as the testing set. This was repeated
iteratively to select every data to be in the testing set once. As a result, every data is used as
both for training and testing. The correct classification rate (CCR) is computed as the total
number of correctly classified activities divided by the total number of activities. The F-
measure is computed as the harmonic mean of the precision and recall, where precision is the
ration of correct activities among the classified instances, while recall is the ratio of the total
amount of relevant activities with respect to the total count of activities.

4 Experimental validation and results

4.1 Implementation of mobile app

A user-friendly mobile application was developed for the gyroscope and accelerometer data
acquisition. A model of the application is given in Fig. 3. In the proposed system, the sensors
in a smart watch are used to collect the necessary data about the person in question. Moreover,
the smart watch is used as an agent for collecting data and transferring them to the cloud via a
wireless connection. Cloud service is implemented on as a web service. The uploaded data is
stored temporally on the web server and passed to the classifier. For classification, a supervised
machine learning approach is developed and implemented, whose details are presented in
Section 3.

Since smart watches have very limited battery power and running machine learning
algorithms on them would require high processing power, we opt for installing these methods
on a cloud server. We used Apache Web server and a PHP based web application is developed
in order to get sensor data from the smart watch, transfer the data to classifier, receive the
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predicted activity from the classifier, and to send modifications to the smart watch, if required.
The operation of the system is as follows: the accelerometer and gyroscope data of the person
in question are acquired by a smart watch application. The acquired data is transferred to the
Web Server in JSON format, and the sensor data is fed to the machine learning based classifier.
The classifier predicts the activity (note that many different kind of activities can be analysed
provided enough data from appropriate activities have been collected), and returns it to the web
server. The details of the smart watch used in this study are presented in Table 1. In this study
Sony SmartWatch 3 SWR50 is used as the smartwatch and a mobile application is developed
and installed on a Samsung Galaxy A7 smartphone to collect and transfer sensor data Via
Bluetooth connection and get modifications from the cloud server. Although, the smart watch
has several sensors, in this paper only accelerometer and gyroscope data are used for activity
recognition.

4.2 User activities

In this study, we included three daily user activities for classification using the accelerometer
and gyroscope data acquired from smartphones. These activities are being in a meeting,
walking, and transporting with a motorized vehicle. For each activity, a subset of sub-
activities, which can be different for each user, are defined. The reason to define these sub-
activities is to ensure the variability of the activities during data acquisition. The sub-activities
of being in a meeting are; keeping the phone in a fixed position (e.g., on a table), holding the
phone by hand while sitting, rotating to left or right on a swivel chair, standing still, moving
legs while sitting, crossing legs, standing up and sitting down. The sub-activities of walking
are walking with normal speed, walking quickly, and climbing up and down stairs. Participants

Fig. 3 The model of the developed application
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were given no instructions on walking with normal and fast speed. These speeds were decided
by the participants. The sub-activities of motorized transportation are transportation in a heavy
traffic with low speed, in a city centre with varying speeds, and on an express way with high
speed. Although data are acquired for each activity, in this study the classification is performed
for the main activities and classification of sub-activities are left for future work.

4.3 Data acquisition

The users used the developed mobile app for the collection of data. Firstly, the users selected
which activity they would perform. Three seconds after the confirmation of the selected
activity, the application automatically started recording data from the sensors. The users were
allowed to define the data acquisition time before the program starts recording data. The
sampling frequency of the data acquisition was set to 50 Hz. The amount of the data collected
for each activity (and sub-activity also) was given in Table 2.

The data was collected from 20 volunteers. Each participant was asked to record their
smartphone sensor data for 2 min while being in corresponding real-world situations
(i.e., while driving or participating in a meeting). However, in some cases they ended the
activities before the end of the time interval. For instance, when participants reached the
end of the stairs before 2 min, they ended that activity by pressing a corresponding
button. As a result, the total amount of collected data is different for each sub-activity,
which can be seen in Table 1. In total, 354 min of data were acquired in the data
acquisition phase. An example of sensor data acquired from the accelerometer and
gyroscope data are presented in Figs. 4 and 5, respectively. For processing and visual-
ization of data, and classification, we used MATLAB 9.6.0.1072779 (R2019a) on an
Intel (R) Core (TM) i5-8635U CPU (x64), running at 1.80 GHz with 8 GB of RAM in
Windows 10 operating system.

4.4 Measurement quality

For the acquisition of data, we have employed the participatory sensing approach [3].
The measurements were performed and sensor data was acquired by different subjects at
different locations and environments. As a result of low control for experimental
condition, the quality of acquired data may be a problem. The smartphone sensors data
is very much influenced by sensor imprecision and inaccuracy. We measure the bias and
variance parameters of acquired dataset following the methodology described in [27].
Sensor bias is an average of the sensor output that is assessed by averaging Nsamples of

Table 1 The specifications of Sony SmartWatch 3 SWR50

Property Capacity

CPU Quad ARM A7, 1.2 Ghz
Main Memory 512 MB RAM
Battery power / time 420 mA /up to 2 days for normal use
Water protected IP68
Android release Android 4.3 and onwards
Weight 45 g
Sensors Ambient light sensors, Accelerometer, Compass, Gyro, GPS
Connections Bluetooth® 4.0, NFC, Micro USB, Wi-Fi
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sensor signal as follows:

xbias ¼ 1

N

XN�1

i¼0
x i½ � ð11Þ

Characteristics of sensor noisiness can be analysed by calculating the Allan variance. First, the
successive estimates of sensor bias are calculated:

e m½ � ¼ 1

N

XN�1

i¼0
x iþ mN½ � ð12Þ

Fig. 4 Example of accelerometer sensor data for the meeting and walking activities

Table 2 Duration of data collected for each activity

Main Activity Sub-Activity Acquisition duration (s) Total duration (s)

Being in a meeting Moving the legs 682 6871
Moving the phone 1042
Phone is fixed 2242
Moving towards to right or left 828
Standing still 1105
Cross one’s legs 515
Standing up and sitting down back 457

Walking Walking in a normal way 3585 7162
Quick stepping 2262
Going down the stairs 564
Climbing up the stairs 751

Motorized Transportation Heavy traffic 921 7208
Being in a city centre 5589
Express way 698
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Next, the Allan variance is computed from a block of N signal samples as the mean squared
difference between the successive estimates of bias as follows [14]:

σ2A N½ � ¼ 1

2 M � 1ð Þ
XM

m¼1
e m½ � � e m� 1½ �ð Þ2 ð13Þ

The bias estimate and Allan variance values for the sensor measurement data are presented in
Figs. 6 and 7, respectively. Both results show that the quality of smartphone sensor data is
acceptable, although the gyroscope sensors may require additional calibration due to positive
bias estimate and larger than expected x and y axis values.

4.5 Feature fusion

Feature fusion was performed using the method described in subsection 2.3 and it yielded fused
features with a much higher discriminatory power as demonstrated by their Z-values as compared
with the corresponding features of the X, Y, and Z axis data of the accelerometer and gyroscope
sensors. See a comparison of the fused features and original features presented in Fig. 8.

4.6 Results obtained using accelerometer data only

Accelerometer sensor was used to measure the acceleration in X, Y, and Z axis of the device. If
speed in any axis increases, then accelerometer gives positive values for that axis. If speed
decreases, then it yields negative values. Classification was performed for a combination of
two activities (out of three) and lastly for all three activities using the k-NN and SVM
classifiers. Leave-one-out cross validation (LOOCV) was administered for error calculation.
The results (CCR and F-measure) obtained in these cases are presented in Table 3.

Fig. 5 Example of gyroscope sensor data for the meeting and walking activities
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As we can see from Table 3, the approach using SVM classifier and accelerometer data
gave the highest performance for meeting-walking and meeting-motorized transportation
activity combinations (98.23% and 99.23, respectively). On the other hand, the performance
was 83.51% for walking-motorized transportation activity combination. The accuracy of the
k-NN classifier was lower than that of SVM. It is concluded that meeting-walking and
meeting-motorized transportation activity combinations could be classified with a high-
performance rate, but the approach failed whenever walking-motorized transportation activity
combination was performed with accelerometer data.

4.7 Results obtained using gyroscope data only

The gyroscope captures the rotation of the sensor towards its own axis using the gravity of the
Earth. The rotation of the sensor in clockwise direction with respect to an axis yields a positive
value, whereas a counter-clockwise rotation provides a negative value. The performance

Fig. 6 Bias estimate values for accelerometer and gyroscope sensor data

Fig. 7 Allan variance values for accelerometer and gyroscope sensor data
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results (CCR and F-measure) of activity combination classifications and of all three activities
using the SVM and k-NN classifiers and gyroscope data is presented in Table 4. Leave-one-
out cross validation was employed for error calculation.

When only gyroscope data and SVMwere used, a correct classification rate of 93.70% was
obtained for the meeting-walking activity combination, and 99.28% performance was obtain-
ed for the walking-motorized transportation activity combination. On the other hand, 77.71%
performance was obtained for the meeting-motorized transportation activity combination,
which was lower than the performance observed in the other combinations.

The best performance for the k-NN classifier was 97.42%, which was obtained for the
walking-motorized transportation combination. The worst performance in this scenario was
69.53 % for the meeting-motorized transportation classification. The results presented in
Table 4 suggest that walking-motorized transportation activities could be classified with a
high correct rate, whereas the performance of other activity combinations were low when only
gyroscope data was used.

The activities of motorized transportation involved movements in a city centre with
frequent turns. These kinds of activities have been better recognized using the gyroscope
sensor than the accelerometer, because the gyroscope sensor captures orientation and angular
velocity.

4.8 Results obtained using fused accelerometer and gyroscope data

Classification for all the activities was performed using the proposed method and the results
(CCR and F-measure) are presented in Table 5. Leave one out cross validation (LOOCV) was
followed, i.e., the classifiers were tested on the data of users, which was not used for training.

The overall classification performance was 98.32% for the SVM classifier, and 97.42% for
the k-NN classifier. This shows that the SVM classifier gave approximately 1 % better
performance than the k-NN classifier. When the activities are analysed separately, it is seen
that the motorized transportation activity can be classified with a success rate of 99.35%. The
results obtained using both the SVM and k-NN classifiers are better than the ones given in the
literature.

4.9 Evaluation of results

In a statistical pattern recognition approach, it is difficult to estimate the best classifier to use
[23]. Due to this reason two different classifiers were used in the study, while fusion was
performed using the modified Better-than-the-Best Fusion (BB-Fus) algorithm with a stochas-
tic gradient descent algorithm. The performance of both classifiers (98.32% for SVM and

Table 3 Classification performance obtained using accelerometer data only

Activity combination Correct classification rate (%) /
F-measure of k-NN classifier

Correct classification rate (%) /
F-measure of SVM classifier

Meeting – Walking 95.53 / 0.9364 98.23 / 0.9721
Meeting – Motorized transportation 89.63 / 0.8593 99.23 / 0.9774
Walking – Motorized transportation 72.21 / 0.7042 83.51 / 0.8081
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97.42% for k-NN) was higher than the ones given in the literature. So, any of these classifiers
can be used. Moreover, the high performance of classification results obtained in this study
was as a result of the data fusion method, rather than due to the used classifier. The
performance of the current study can be compared with the performances of the existing
studies in the literature. A summary of these studies are given in Table 6. The performance of
the current work is higher than the existing studies. When the classified activities are
considered, there are only three studies similar to current work. In these studies, standing still,
walking and motorized transportation activities have been classified. As can be seen in the
results section, the performance of the current work is higher than performance of the other
studies. Moreover, the number of people that the data was collected in current work was also
higher than those studies, which increases the generalizability of the results of the current
study. However, note that those results are not directly comparable considering the different in
input dataset and the experiment setting or environment.

Fig. 8 Comparison of the discriminatory power of fused features with respect to original features of accelerom-
eter (a) and gyroscope (g) data

Table 4 Classification performance obtained using gyroscope data

Activity combination Correct classification rate (%) /
F-measure of k-NN classifier

Correct classification rate (%) /
F-measure of SVM classifier

Meeting – Walking 89.57 / 0.8674 93.70 / 0.9082
Meeting – Motorized transportation 69.53 / 0.6134 77.71 / 0.7349
Walking - Motorized transportation 97.42 / 0.9423 99.28 / 0.9863
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A higher number of activities were considered by Zheng et al. [53]. However,
increasing the number of activities may decrease the classification performance, so the
results of the current study can not be directly compared with other studies. Similar
(including accelerometer and gyroscope) data has been employed to separate static (such
as the meeting) activities from dynamic activities (such as walking or driving) by other
studies as well (see, e.g., [33, 25]). However, high performance obtained in this study

Table 5 Results of the proposed data fusion method

Activity Correct classification rate (%) /
F-measure of k-NN classifier

Correct classification rate (%) /
F-measure of SVM classifier (%)

Meeting 96.35 / 0.9376 97.60 / 0.9587
Walking 96.95 / 0.9401 97.55 / 0.9532
Motorized transportation 98.95 / 0.9684 99.35 / 0.9822
Overall performance 97.42 / 0.9529 98.32 / 0.9783

Table 6 Summary of activity classification studies found in the literature

Study Sensor Classified activities No. of
subjects

Accuracy
(%)

Reddy et al.
[44]

Accelerometer, GPS Standing still, walking, running, bicycling,
motorized transportation

16 93

Zheng et al.
[53]

GPS walking, bicycling, motorized transportation 65 76

Yang [52] Accelerometer Sitting, standing, walking, running, motorized
transportation, bicycling

12 90

Martin et al.
[33]

Accelerometer Slowly walking, normally walking, fast
walking, running, sitting, standing still

16 88

Kau and
Chen
[25]

Accelerometer Falling down 9 92

Liang et al.
[32]

Accelerometer Standing still, sitting, lying, motorized
transportation, walking, running, going
down and up to the stairs, bicycling,
jumping

24 85

Bayat et al.
[4]

Accelerometer Dancing, going down and up to the stairs,
slowly walking, walking, fast walking,
running

4 91

Ahmed
et al. [1]

accelerometer and
gyroscope

standing, sitting, lying, walking, walking
downstairs, walking upstairs; stand-to-sit,
sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie,
and lie-to-stand

30 96.81

Jansi et al.
[24]

accelerometer, gyroscope,
magnetometer and
orientation sensor

lie-down, jump, jog, sit, stand, walk, upstairs
and downstairs.

15 97.13

Quaid and
Jalal [42]

wrist worn accelerometer brush teeth, climb stairs, comb hairs, descend
stairs, drink glass, eat meat, eat soup, getup
bed, liedown bed, pour water, sitdown chair,
standup chair, use telephone, and walk

30 93.10

Jain and
Kanhan-
gad [22]

accelerometer and
gyroscope sensor

slow walking, normal walking, brisk walking,
jogging, sitting, normal upstairs, normal
downstairs, brisk upstairs and brisk
downstairs

16 96.83
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can be attributed by the application of the data fusion algorithm, which allowed for
achieving better accuracy of classification.

Another point that needs to be considered when the performances are compared
among different research is the bias, sensitivity and noise characteristics of sensors used
during data acquisition. However, there is no information about the sensitivity of the
sensors in the studies given in the literature, therefore, such comparison can not be
performed.

5 Conclusions

We presented a data-fusion approach based on the feature fusion using a matrix time
series method and the modified Better-than-the-Best Fusion (BB-Fus) algorithm with a
stochastic gradient descent algorithm for the construction of optimal decision trees for
classification. The approach was validated on three user activities using the accelerom-
eter and gyroscope data acquired from smartphone sensors by 20 subjects. The quality of
the measurement data was evaluated using the Allan variance method. For classification,
we have used the k-NN and SVM classifiers. The meeting-walking activity combinations
and meeting-motorized transportation activity combinations were classified with a high
correct classification rate (98.23 and 99.23 %, respectively) when accelerometer data was
used. On the other hand, when the gyroscope data was used, walking-motorized trans-
portation activities were classified with a 99.28 % correct classification rate. Future
studies will include user activity classification using a larger number of activities,
including more fine-grained sub-activities, and the use of data fused from a larger
number of sensors available on smartphones such as GPS, Wi-Fi, camera, and micro-
phone by using the proposed data fusion methodology.
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