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1. Introduction and preliminaries

Very recently, Suzuki proved the following fixed point theorem:

Theorem 1 (Suzuki [1]). Let (X, d) be a compact metric space and let T be a mapping on X. Assume 1
2d(x, Tx) < d(x, y) implies

d(Tx, Ty) < d(x, y) for all x, y ∈ X. Then T has a unique fixed point.

This result is based on the following two theorems:

Theorem 2 (Edelstein [2]). Let (X, d) be a compact metric space and let T be a mapping on X. Assume d(Tx, Ty) < d(x, y) for
all x, y ∈ X with x ≠ y. Then T has a unique fixed point.

Theorem 3 (Suzuki [3,4]). Define a nonincreasing function θ from [0, 1) onto (1/2, 1] by

θ(r) =

1 if 0 ≤ r ≤ (
√
5 − 1)/2,

(1 − r)r−2 if (
√
5 − 1)/2 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2
≤ r < 1.

Then for a metric space (X, d), the following are equivalent:

(1) X is complete.
(2) Every mapping T on X satisfying the following has a fixed point. There exists r ∈ [0, 1) such that θ(r)d(x, Tx) ≤ d(x, y)

implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.

A mapping T on a subset K of a Banach space E is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K .
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Definition 4 ([3,4]). Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy (C)-condition if

1
2
‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤ ‖x − y‖

for all x, y ∈ K .

Let F(T ) be the set of all fixed points of a mapping T . A mapping T on a subset K of a Banach space E is called a quasi-
nonexpansive mapping if ‖Tx − z‖ ≤ ‖x − z‖ for all x ∈ K and z ∈ F(T ).

We suggest new definitions which are modifications of Suzuki’s C-condition:

Definition 5. Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy Suzuki–Ćirić (C)-condition (in
short, (SCC)-condition) if

1
2
‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤ M(x, y)

where M(x, y) = max{‖x − y‖, ‖x − Tx‖, ‖Ty − y‖, ‖Tx − y‖, ‖x − Ty‖} for all x, y ∈ K .
Moreover, T is said to satisfy Suzuki–(KC)-condition (in short, (SKC)-condition) if

1
2
‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤ N(x, y)

where N(x, y) = max{‖x − y‖, 1
2 [‖x − Tx‖ + ‖Ty − y‖], 1

2 [‖Tx − y‖ + ‖x − Ty‖]} for all x, y ∈ K .

Definition 6. Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy (for all x, y ∈ K )

(i) Kannan–Suzuki–(C) condition (in short, (KSC)-condition) if
1
2
‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤

1
2
[‖Tx − x‖ + ‖y − Ty‖],

(ii) Chatterjea–Suzuki-(C) condition (in short, (CSC)-condition) if
1
2
‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤

1
2
[‖Tx − y‖ + ‖x − Ty‖].

In this manuscript, we modify some results of [3], Singh-Mishra [5], Karapınar [6] and suggest some new theorems.

2. Some basic observations

Proposition 7. Every nonexpansive mapping satisfies (SCC)-condition.

Proof. Let T be a nonexpansive mapping on a subset K of a Banach space E, that is, ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ K . Assume 1

2‖x − Tx‖ ≤ ‖x − y‖. For the case M(x, y) = ‖x − y‖, the condition (SCC) is satisfied trivially, that
is, ‖Tx − Ty‖ ≤ M(x, y) = ‖x − y‖. For the other case, that is, M(x, y) ≠ ‖x − y‖, we observe ‖x − y‖ ≤ M(x, y). Thus,
‖Tx − Ty‖ ≤ ‖x − y‖ ≤ M(x, y) which concludes that T satisfies (SCC)-condition. �

Corollary 8. Every nonexpansive mapping satisfies the following conditions:

(A1) 1
2‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤ A1(x, y)

where A1(x, y) = max{‖x − y‖, ‖Tx − x‖, ‖Ty − y‖}
(A2) 1

2‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤ A2(x, y)
where A2(x, y) = max{‖x − y‖, ‖Tx − y‖, ‖Ty − x‖}.

Regarding the analogy, we omit the proof of this Corollary.

Proposition 9. Every nonexpansive mapping satisfies (SKC)-condition.

Proof. Let T be a nonexpansive mapping on a subset K of a Banach space E, that is, ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K .
Assume 1

2‖x − Tx‖ ≤ ‖x − y‖. If the case N(x, y) = ‖x − y‖ happen, then ‖Tx − Ty‖ ≤ N(x, y) = ‖x − y‖ are satisfied
trivially. If not, that is, N(x, y) ≠ ‖x − y‖ then ‖x − y‖ ≤ N(x, y). Thus, ‖Tx − Ty‖ ≤ ‖x − y‖ ≤ N(x, y) which concludes
that T satisfies (SKC)-condition. �

Corollary 10. Every nonexpansive mapping satisfies the following conditions:

(A3) 1
2‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤ A3(x, y)

where A3(x, y) = max{‖x − y‖, 1
2 [‖Tx − x‖ + ‖Ty − y‖]}
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(A4) 1
2‖x − Tx‖ ≤ ‖x − y‖ implies that ‖Tx − Ty‖ ≤ A4(x, y)

where A4(x, y) = max{‖x − y‖, 1
2 [‖Tx − y‖ + ‖Ty − x‖]}.

Regarding the analogy, we omit the proof of this Corollary.

Proposition 11. If a mapping T satisfies (SKC)-condition and has a fixed point, then it is a quasi-nonexpansive mapping.

Proof. Let T be a mapping on a subset K of a Banach space E and satisfy (SKC)-condition. Suppose T has a fixed point, in
other words, z ∈ F(T ). Thus,

0 =
1
2
‖z − Tz‖ ≤ ‖z − y‖ implies that ‖Tz − Ty‖ ≤ N(z, y) (2.1)

where

N(z, y) = max

‖z − y‖,

1
2
[‖z − Tz‖ + ‖Ty − y‖],

1
2
[‖Tz − y‖ + ‖z − Ty‖]


= max


‖z − y‖,

1
2
‖Ty − y‖,

1
2
(‖z − y‖ + ‖z − Ty‖)


. (2.2)

If N(z, y) =
1
2 (‖z − y‖ + ‖z − Ty‖), then ‖z − Ty‖ = ‖Tz − Ty‖ ≤ N(z, y) =

1
2 (‖z − y‖ + ‖z − Ty‖) then we get

‖Tz − Ty‖ = ‖z − Ty‖ ≤ ‖z − y‖.
If N(z, y) = ‖z − y‖, then we are done.
If N(z, y) =

1
2‖Ty − y‖ ≤ [‖Ty − z‖ + ‖z − y‖], then

‖z − Ty‖ = ‖Tz − Ty‖ ≤ N(z, y) =
1
2
‖Ty − y‖ ≤

1
2
[‖Ty − z‖ + ‖z − y‖]

and thus ‖z − Ty‖ = ‖Tz − Ty‖ ≤ ‖z − y‖ which completes the proof. �

Corollary 12. If a mapping T satisfies one of the following:

(1) (A3)-condition,
(2) (A4)-condition,
(3) (KSC)-condition,
(4) (CSC)-condition,

and has a fixed point, then it is a quasi-nonexpansive mapping.

Example 13. Let S and T be mappings on [0, 4] such that

Tx =


0 if x ≠ 4
1 if x = 4 and Sx =


0 if x ≠ 4
3 if x = 4

then,

(i) T satisfies both (SCC)-condition and (SKC)-condition but T is not nonexpansive.
(ii) S is quasi-nonexpansive and F(S) ≠ ∅ but S does not satisfy (SKC)-condition.

Proof. (i) If x < y and (x, y) ∈ ([0, 4] × [0, 4]) \ ((3, 4) × {4}). Then ‖Tx − Ty‖ ≤ M(x, y) and ‖Tx − Ty‖ ≤ N(x, y) holds.
If x ∈ (3, 4) and y = 4, then

1
2
‖x − Tx‖ =

x
2

> 1 > ‖x − y‖ and
1
2
‖y − Ty‖ > 1 > ‖x − y‖

hold. Thus, T satisfies conditions (SCC) and (SKC). Since T is not continuous, T is not nonexpansive.
(ii) It is clear that F(S) = {0} ≠ ∅ and S is quasi-nonexpansive. Since,

1
2
‖4 − S4‖ =

1
2

≤ 1 = ‖4 − 3‖ and ‖S4 − S3‖ = 3 > 2 = M(4, 3)

where

M(4, 3) = max

‖4 − 3‖ = 1,

1
2
[‖4 − S4‖ + ‖S3 − 3‖] = 2,

1
2
[‖S3 − 4‖ + ‖3 − S4‖] = 2


= 2

hold, S does not satisfy (SKC)-condition. �

Proposition 14. Let T be a mapping on a closed subset K of a Banach space E. Assume that T satisfies (SKC)-condition. Then
F(T ) is closed. Moreover, E is strictly convex and K is convex, then F(T ) is also convex.
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Proof. Let {xn} be a sequence in F(T ) and converge to a point x ∈ K . It is clear that

1
2
‖xn − Txn‖ = 0 ≤ ‖xn − x‖ for n ∈ N.

Thus, we have

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

‖Txn − Tx‖ ≤ lim sup
n→∞

N(xn, x) (2.3)

where

N(xn, x) = max

‖xn − x‖,

1
2
[‖xn − Txn‖ + ‖Tx − x‖],

1
2
[‖Txn − x‖ + ‖xn − Tx‖]


≤ max


‖xn − x‖,

1
2
‖Tx − x‖,

1
2
[‖xn − x‖ + ‖xn − Tx‖]


.

If N(xn, x) =
1
2‖Tx − x‖ then, the expression (2.3) turns into

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

‖Txn − Tx‖ ≤ lim sup
n→∞

N(xn, x)

≤ lim sup
n→∞

1
2
‖Tx − x‖ =

1
2
‖x − Tx‖ (2.4)

which implies that ‖Tx − x‖ ≤
1
2‖Tx − x‖. This is a contradiction, so this cannot happen. For the case, N(xn, x) =

1
2 [‖xn − x‖ + ‖xn − Tx‖], the expression (2.3) yields that

lim sup
n→∞

‖xn − Tx‖ = lim sup
n→∞

‖Txn − Tx‖ ≤ lim sup
n→∞

N(xn, x)

≤ lim sup
n→∞

1
2
[‖xn − x‖ + ‖xn − Tx‖] ≤

1
2
‖x − Tx‖ (2.5)

which yields that ‖Tx − x‖ ≤
1
2‖Tx − x‖. This is also a contradiction, so this cannot happen either. If N(xn, x) = ‖xn − x‖

then, the expression (2.3) turns into

lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

‖Txn − Tx‖ ≤ lim sup
n→∞

‖xn − x‖ = 0. (2.6)

So, we are done. In other words, {xn} converges to Tx. Uniqueness of the limit implies that Tx = x and hence F(T ) is closed.
Suppose that E is strictly convex and K is convex. Take fixed points x, y ∈ K with x ≠ y and fix t ∈ (0, 1) and define

z := tx + (1 − t)y ∈ K . So we get

‖x − y‖ ≤ ‖x − Tz‖ + ‖Tz − y‖ = ‖Tx − Tz‖ + ‖Tz − Ty‖
≤ N(x, z) + N(y, z) (2.7)

where

N(x, z) = max

‖x − z‖,

1
2
[‖x − Tx‖ + ‖Tz − z‖],

1
2
[‖Tx − z‖ + ‖x − Tz‖]


= max


‖x − z‖,

1
2
‖Tz − z‖,

1
2
[‖x − z‖ + ‖x − Tz‖]


and

N(z, y) = max

‖z − y‖,

1
2
[‖z − Tz‖ + ‖Ty − y‖],

1
2
[‖Tz − y‖ + ‖z − Ty‖]


= max


‖z − y‖,

1
2
‖Tz − z‖,

1
2
[‖Tz − y‖ + ‖z − y‖]


.

Since E is strictly convex, there exists s ∈ [0, 1] such that Tz = sx + (1 − s)y. Observe that

(1 − s)‖x − y‖ = ‖Tx − Tz‖ ≤ N(x, z) (2.8)

where

N(x, z) = max

‖x − z‖,

1
2
[‖x − Tx‖ + ‖Tz − z‖],

1
2
[‖Tx − z‖ + ‖x − Tz‖]


= max


‖x − z‖,

1
2
‖Tz − z‖,

1
2
[‖x − z‖ + ‖x − Tz‖]


.
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If N(x, z) = ‖x − z‖, then the expression (2.8) becomes

(1 − s)‖x − y‖ = ‖Tx − Tz‖ ≤ N(x, z) = ‖x − z‖ = (1 − t)‖x − y‖. (2.9)

If N(x, z) =
1
2 [‖x − z‖ + ‖x − Tz‖], then the expression (2.8) turns into

(1 − s)‖x − y‖ = ‖Tx − Tz‖ ≤ N(x, z) =
1
2
[‖x − z‖ + ‖x − Tz‖] =

1
2
[(1 − t)‖x − y‖ + (1 − s)‖x − y‖]. (2.10)

For the last case N(x, z) =
1
2‖z − Tz‖, the expression (2.8) gives

(1 − s)‖x − y‖ = ‖Tx − Tz‖ ≤ N(x, z) =
1
2
[‖Tz − z‖]

≤
1
2
[‖x − z‖ + ‖x − Tz‖] =

1
2
[(1 − t)‖x − y‖ + (1 − s)‖x − y‖]. (2.11)

Thus, from (2.9)–(2.11) we conclude that (1 − s) ≤ (1 − t).
If we consider

s‖x − y‖ = ‖Ty − Tz‖ ≤ N(y, z), (2.12)

then proceeding as above we find that s ≤ t . Consequently s = t . Hence z ∈ F(T ). �

Corollary 15. Let T be a mapping on a closed subset K of a Banach space E. Assume that T satisfies one of the following:

(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Then F(T ) is closed. Moreover, E is strictly convex and K is convex, then F(T ) is also convex.

Proposition 16. If T satisfies the condition

1
2
‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤

1
4
[‖Tx − x‖ + ‖y − Ty‖],

for all x, y ∈ K , then T is nonexpansive.

Proof.

‖Tx − Ty‖ ≤
1
4
[‖Tx − x‖ + ‖y − Ty‖]

≤
1
4
[2‖y − x‖ + 2‖y − x‖] = ‖x − y‖. �

Proposition 17. If T satisfies the condition

1
2
‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤

1
5
[‖Tx − x‖ + ‖x − y‖ + ‖y − Ty‖],

for all x, y ∈ K , then T is nonexpansive.

Proof.

‖Tx − Ty‖ ≤
1
5
[‖Tx − x‖ + ‖x − y‖ + ‖y − Ty‖]

≤
1
5
[2‖y − x‖ + ‖x − y‖ + 2‖y − x‖] = ‖x − y‖. �

Proposition 18. Let T be a mapping on a closed subset K of a Banach space E that satisfies the condition (SKC). Then, for every
x, y ∈ K, the following hold:

(i) ‖Tx − T 2x‖ ≤ ‖x − Tx‖
(ii) either 1

2‖x − Tx‖ ≤ ‖x − y‖ or 1
2‖Tx − T 2x‖ ≤ ‖Tx − y‖

(iii) either ‖Tx − Ty‖ ≤ N(x, y) or ‖T 2x − Ty‖ ≤ N(Tx, y)
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where

N(x, y) = max

‖x − y‖,

1
2
[‖Tx − x‖ + ‖Ty − y‖],

1
2
[‖Tx − y‖ + ‖Ty − x‖]


and

N(Tx, y) = max

‖Tx − y‖,

1
2
[‖T 2x − Tx‖ + ‖Ty − y‖],

1
2
[‖T 2x − y‖ + ‖Ty − Tx‖]


.

Proof. The first statement follows from (SKC)-condition. Indeed, we always have 1
2‖x − Tx‖ ≤ ‖x − Tx‖ which yields that

‖Tx − T 2x‖ ≤ N(x, Tx) (2.13)

where

N(x, Tx) = max

‖x − Tx‖,

1
2
[‖Tx − x‖ + ‖T 2x − Tx‖],

1
2
[‖Tx − Tx‖ + ‖T 2x − x‖]


= max


‖x − Tx‖,

1
2
[‖Tx − x‖ + ‖T 2x − Tx‖],

1
2
‖T 2x − x‖


.

If N(x, Tx) = ‖x − Tx‖ we are done. If N(x, Tx) =
1
2 [‖Tx − x‖ + ‖T 2x − Tx‖] then the expression (2.13) turns into

‖Tx − T 2x‖ ≤ N(x, Tx) =
1
2
[‖Tx − x‖ + ‖T 2x − Tx‖]. (2.14)

By simplifying the expression (2.14), one can get (i). For the case N(x, Tx) =
1
2‖T

2x − x‖ the expression (2.13) turns into

‖Tx − T 2x‖ ≤ N(x, Tx) =
1
2
‖T 2x − x‖ ≤

1
2
[‖Tx − x‖ + ‖T 2x − Tx‖] (2.15)

which implies (i).
It is clear that (iii) is a consequence of (ii). To prove (ii), assume the contrary, that is,

1
2
‖x − Tx‖ > ‖x − y‖ and

1
2
‖Tx − T 2x‖ > ‖Tx − y‖

holds for all x, y ∈ K . Then by triangle inequality and (i), we have

‖x − Tx‖ ≤ ‖x − y‖ + ‖y − Tx‖

<
1
2
‖x − Tx‖ +

1
2
‖Tx − T 2x‖

≤
1
2
‖x − Tx‖ +

1
2
‖x − Tx‖ = ‖x − Tx‖ �

which is a contradiction. Thus, we have (ii).

3. Main results

Proposition 19. Let T be a mapping on a subset K of a Banach space E and satisfy (SKC)-condition. Then ‖x − Ty‖ ≤

5‖Tx − x‖ + ‖x − y‖ holds for all x, y ∈ K.

Proof. The proof is based on Proposition 18 which says that either

‖Tx − Ty‖ ≤ N(x, y) or ‖T 2x − Ty‖ ≤ N(Tx, y)

holds, where N(x, y) = max{‖x − y‖, 1
2 [‖Tx − x‖ + ‖Ty − y‖], 1

2 [‖Tx − y‖ + ‖Ty − x‖]} and

N(Tx, y) = max

‖Tx − y‖,

1
2
[‖T 2x − Tx‖ + ‖Ty − y‖],

1
2
[‖T 2x − y‖ + ‖Ty − Tx‖]


.

Consider the first case. If N(x, y) = ‖x − y‖ then we have

‖x − Ty‖ ≤ ‖x − Tx‖ + ‖Tx − Ty‖ ≤ ‖x − Tx‖ + ‖x − y‖. (3.1)

For N(x, y) =
1
2 [‖Tx − x‖ + ‖Ty − y‖] one can observe

‖x − Ty‖ ≤ ‖x − Tx‖ + ‖Tx − Ty‖ ≤ ‖x − Tx‖ +
1
2
[‖Tx − x‖ + ‖Ty − y‖]

≤
3
2
‖x − Tx‖ +

1
2
‖Ty − y‖ ≤

3
2
‖x − Tx‖ +

1
2
[‖Ty − x‖ + ‖x − y‖].
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Thus, we have

1
2
‖x − Ty‖ ≤

3
2
‖x − Tx‖ +

1
2
‖x − y‖ ⇔ ‖x − Ty‖ ≤ 3‖x − Tx‖ + ‖x − y‖. (3.2)

For N(x, y) =
1
2 [‖Tx − y‖ + ‖Ty − x‖] one can obtain

‖x − Ty‖ ≤ ‖x − Tx‖ + ‖Tx − Ty‖ ≤ ‖x − Tx‖ +
1
2
[‖Tx − y‖ + ‖Ty − x‖]

≤ ‖x − Tx‖ +
1
2
[‖Tx − x‖ + ‖x − y‖] +

1
2
‖Ty − x‖.

Thus, we have

1
2
‖x − Ty‖ ≤

3
2
‖x − Tx‖ +

1
2
‖x − y‖ ⇔ ‖x − Ty‖ ≤ 3‖x − Tx‖ + ‖x − y‖. (3.3)

Take the second case into account. For N(Tx, y) = ‖Tx − y‖, we have

‖x − Ty‖ ≤ ‖x − Tx‖ + ‖Tx − T 2x‖ + ‖T 2x − Ty‖
≤ ‖x − Tx‖ + ‖x − Tx‖ + ‖Tx − y‖
= 2‖x − Tx‖ + ‖Tx − y‖
≤ 2‖x − Tx‖ + ‖Tx − x‖ + ‖x − y‖ = 3‖Tx − x‖ + ‖x − y‖. (3.4)

If N(Tx, y) =
1
2 [‖T

2x − Tx‖ + ‖Ty − y‖] then we have

‖x − Ty‖ ≤ ‖x − Tx‖ + ‖Tx − T 2x‖ + ‖T 2x − Ty‖

≤ 2‖x − Tx‖ +
1
2
[‖T 2x − Tx‖ + ‖Ty − y‖]

≤
5
2
‖x − Tx‖ +

1
2
‖Ty − y‖

≤
5
2
‖x − Tx‖ +

1
2
[‖Ty − x‖ + ‖x − y‖].

Thus, we have

1
2
‖x − Ty‖ ≤

5
2
‖x − Tx‖ +

1
2
‖x − y‖ ⇔ ‖x − Ty‖ ≤ 5‖x − Tx‖ + ‖x − y‖. (3.5)

For the last case, N(Tx, y) =
1
2 [‖T

2x − y‖ + ‖Ty − Tx‖], we have

‖x − Ty‖ ≤ ‖x − Tx‖ + ‖Tx − T 2x‖ + ‖T 2x − Ty‖

≤ 2‖x − Tx‖ +
1
2
[‖T 2x − y‖ + ‖Ty − Tx‖]

≤ 2‖x − Tx‖ +
1
2
[‖T 2x − Tx‖ + ‖Tx − x‖ + ‖x − y‖] +

1
2
[‖Ty − x‖ + ‖x − Tx‖]

≤
7
2
‖x − Tx‖ +

1
2
‖Ty − x‖ +

1
2
‖x − y‖.

Thus, we have

1
2
‖x − Ty‖ ≤

5
2
‖x − Tx‖ +

1
2
‖x − y‖ ⇔ ‖x − Ty‖ ≤ 5‖x − Tx‖ + ‖x − y‖. (3.6)

Hence, the result follows from (3.1)–(3.6). �

Regarding the analogy, we omit the proof of the following Corollaries.

Corollary 20. Let T be a mapping on a subset K of a Banach space E and satisfy (A3)-condition. Then ‖x − Ty‖ ≤ 5‖Tx − x‖ +

‖x − y‖ holds for all x, y ∈ K.

Corollary 21. Let T be a mapping on a subset K of a Banach space E and satisfy (KSC)-condition. Then ‖x− Ty‖ ≤ 5‖Tx− x‖ +

‖x − y‖ holds for all x, y ∈ K.

Corollary 22. Let T be a mapping on a subset K of a Banach space E and satisfy (CSC)-condition. Then ‖x− Ty‖ ≤ 5‖Tx− x‖ +

‖x − y‖ holds for all x, y ∈ K.
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Theorem 23. Let T be a mapping on a compact convex subset K of a Banach space E and satisfy (SKC)-condition. Define a
sequence {xn} in K by x1 ∈ K and xn+1 = λTxn + (1 − λ)xn, for n ∈ N, where λ lies in [

1
2 , 1). Suppose limn→∞ ‖Txn − xn‖ = 0

holds. Then {xn} converge strongly to a fixed point of T .
Proof. Regarding that K is compact, one can conclude that {xn} has a subsequence {xnk} that converges to some number,
say z, in K . By Proposition 19, we have

‖xnk − Tz‖ ≤ 5‖Txnk − xnk‖ + ‖xnk − z‖, for all k ∈ N. (3.7)

Notice that limn→∞ ‖Txn − xn‖ = 0. Taking this fact into account together with (3.7), we conclude that {xnk} converges to
Tz which implies that Tz = z. In other words, z ∈ F(T ). On account of Proposition 11, we get

‖xn+1 − z‖ ≤ λ‖Txn − z‖ + (1 − λ)‖xn − z‖ ≤ ‖xn − z‖

for n ∈ N. Thus, {xn} converges to z. �

Corollary 24. Let T be a mapping on a compact convex subset K of a Banach space E. Define a sequence {xn} in K by x1 ∈ K and
xn+1 = λTxn + (1 − λ)xn, for n ∈ N, where λ lies in [

1
2 , 1). Suppose limn→∞ ‖Txn − xn‖ = 0 holds. If T satisfies one of the

following:
(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition,
then {xn} converge strongly to a fixed point of T .

Theorem 25. Let E be a Banach space and T , S be self-mappings on K such that T (K) ⊂ S(K) and S(K) is a compact convex
subset of E and T satisfies (SKC)-condition. Define a sequence {xn} in T (K) by x1 ∈ S(K) and Sxn+1 = λTxn + (1 − λ)Sxn, for
n ∈ N, where λ lies in [

1
2 , 1). Suppose limn→∞ ‖Txn − Sxn‖ = 0 holds. Then T and S have a coincidence point.

Proof. Let R : S(K) → S(K)where Ra = T (S−1a) for each a ∈ S(K). It is clear that R is well-defined. Indeed, take x, y ∈ S−1a
such that b = Tx and c = Ty. For x ∈ S−1a we obtain Ra = Tx and Ra ⊂ S(K) since T (K) ⊂ S(K). Since Sx = Sy we get
b = c. Thus, R is well-defined.

We claim that R satisfies all conditions of Theorem 23. Let a, b ∈ S(K) such that 1
2‖a − Ra‖ ≤ ‖a − b‖. In other words,

1
2
‖Sx − Tx‖ =

1
2
‖a − Ra‖ ≤ ‖a − b‖ = ‖Sx − Sy‖

for x ∈ S−1a and y ∈ S−1b. Since T satisfies (SKC)-condition, we get

‖Ra − Rb‖ = ‖Tx − Ty‖ ≤ N(Sx, Sy) = N(a, b)

where N(a, b) = N(Sx, Sy) = max{‖a − b‖ = ‖Sx − Sy‖, 1
2 [‖Ra − a‖ + ‖Rb − b‖] =

1
2 [‖Sx − Tx‖ + ‖Ty − Sy‖], 1

2 [‖Ra −

b‖ + ‖a − Rb‖] =
1
2 [‖Tx − Sy‖ + ‖Sx − Ty‖]}.

Thus,
1
2
‖a − Ra‖ ≤ ‖a − b‖ ⇒ ‖Ra − Rb‖ ≤ N(a, b).

Further, define a sequence {an} in S(K) by a1 ∈ S(K) and an+1 = λRan + (1 − λ)an, for n ∈ N, where λ lies in [
1
2 , 1). For

xi ∈ S−1ai we have

lim
n→∞

‖Ran − an‖ = lim
n→∞

‖Txn − Sxn‖ = 0.

Thus, all conditions of Theorem 23 are satisfied.
Hence, {an} converges to t . Then for any z ∈ S−1t , we have Tz = Rt = t = Sz. Therefore, S, T have a coincidence

point. �

Corollary 26. Let E be a Banach space and T , S : K → E such that T (K) ⊂ S(K) and S(K) is a compact convex subset of
E. Define a sequence {xn} in T (K) by x1 ∈ S(K) and Sxn+1 = λTxn + (1 − λ)Sxn, for n ∈ N, where λ lies in [

1
2 , 1). Suppose

limn→∞ ‖Txn − Sxn‖ = 0 holds. If S, T satisfy one of the following:

1
2
‖Sx − Tx‖ ≤ ‖Sx − Sy‖ ⇒ ‖Tx − Ty‖ ≤ max


‖Sx − Sy‖,

1
2
[‖Sx − Tx‖ + ‖Ty − Sy‖]


, (3.8)

1
2
‖Sx − Tx‖ ≤ ‖Sx − Sy‖ ⇒ ‖Tx − Ty‖ ≤

1
2
[‖Sx − Tx‖ + ‖Ty − Sy‖], (3.9)

1
2
‖Sx − Tx‖ ≤ ‖Sx − Sy‖ ⇒ ‖Tx − Ty‖ ≤

1
2
[‖Tx − Sy‖ + ‖Sx − Ty‖], (3.10)

then T and S have a coincidence point.
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Definition 27. Let E be a Banach space. E is said to have Opial property [7] if for each weakly convergent sequence {xn} in E
with weak limit z

lim inf
n→∞

‖xn − z‖ ≤ lim inf
n→∞

‖xn − y‖, for all y ∈ E with y ≠ z.

All Hilbert spaces, all finite dimensional Banach spaces and Banach sequence spaces ℓp(1 ≤ p < ∞) have the Opial
property (see [3]).

Proposition 28. Let T be a mapping on a subset K of a Banach space E with Opial property and satisfy (SKC)-condition. If {xn}
converges weakly to z and limn→∞ ‖Txn − xn‖ = 0, then Tz = z. That is I − T is demiclosed at zero.

Proof. Due to Proposition 19, we have

‖xn − Tz‖ ≤ 5‖Txn − xn‖ + ‖xn − z‖, for all n ∈ N.

Hence,

lim inf
n→∞

‖xn − Tz‖ ≤ lim inf
n→∞

‖xn − z‖.

Thus, Opial property implies that Tz = z. �

Corollary 29. Let T be a mapping on a subset K of a Banach space E with Opial property and satisfy one of the following:

(1) (A3)-conditions,
(2) (KSC)-condition,
(3) (CSC)-condition.

If {xn} converges weakly to z and limn→∞ ‖Txn − xn‖ = 0, then Tz = z. That is I − T is demiclosed at zero.

Theorem 30. Let T be a mapping on a weakly compact convex subset K of a Banach space E with Opial property and satisfy
(SKC)-condition. Define a sequence {xn} in K by x1 ∈ K and xn+1 = λTxn + (1− λ)xn, for n ∈ N, where λ lies in [

1
2 , 1). Suppose

limn→∞ ‖Txn − xn‖ = 0 holds. Then {xn} converge weakly to a fixed point of T .

Proof. We have limn→∞ ‖Txn − xn‖ = 0. Since K is weakly compact, one can conclude that {xn} has a subsequence {xnk}
which converges weakly to an element, say z, in E. On account of Proposition 28, we observe that z is a fixed point of T . Note
that {‖xn − z‖} is a nondecreasing sequence. Indeed,

‖xn+1 − z‖ ≤ λ‖Txn − z‖ + (1 − λ)‖xn − z‖.

We show {xn} converges to z. Assume the contrary, that is, {xn} does not converge to z. Then there exists a subsequence
{xnm} of {xn} and u ∈ K such that {xnm} converges weakly to u and u ≠ z. By Proposition 28, Tu = u. Since E has Opial
property,

lim
n→∞

‖xn − z‖ = lim
k→∞

‖xnk − z‖ < lim
k→∞

‖xnk − u‖ = lim
n→∞

‖xn − u‖

= lim
m→∞

‖xnm − u‖ < lim
m→∞

‖xnm − z‖ = lim
n→∞

‖xn − z‖ (3.11)

which is a contradiction. Hence, the proof is completed. �

Corollary 31. Let T be a mapping on a weakly compact convex subset K of a Banach space E with Opial property and satisfy one
of the following:

(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Define a sequence {xn} in K by x1 ∈ K and xn+1 = λTxn + (1 − λ)xn, for n ∈ N, where λ lies in [
1
2 , 1). Suppose

limn→∞ ‖Txn − xn‖ = 0 holds. Then {xn} converge weakly to a fixed point of T .

Theorem 32. Let E be a Banach space and T , S : K → E such that T (K) ⊂ S(K) and S(K) is a weakly compact convex subset of
E with Opial property. Assume for x, y ∈ K,

1
2
‖Sx − Tx‖ ≤ ‖Sx − Sy‖ ⇒ ‖Tx − Ty‖ ≤ N(Sx, Sy)

where N(Sx, Sy) = max{‖Sx − Sy‖, 1
2 [‖Sx − Tx‖ + ‖Ty − Sy‖], 1

2 [‖Tx − Sy‖ + ‖Sx − Ty‖]}. Define a sequence {xn} in T (K) by
x1 ∈ S(K) and Sxn+1 = λTxn + (1 − λ)Sxn, for n ∈ N, where λ lies in [

1
2 , 1). Suppose limn→∞ ‖Txn − Sxn‖ = 0 holds. Then T

and S have a coincidence point.
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Regarding the analogy with the proof of Theorem 25, we omit the proof.

Corollary 33. Let E be a Banach space and T , S : K → E such that T (K) ⊂ S(K) and S(K) is a weakly compact convex subset
of E with Opial property. Define a sequence {xn} in T (K) by x1 ∈ S(K) and Sxn+1 = λTxn + (1 − λ)Sxn, for n ∈ N, where λ lies
in [

1
2 , 1). Suppose limn→∞ ‖Txn − Sxn‖ = 0 holds. If S, T satisfy one of the following:

1
2
‖Sx − Tx‖ ≤ ‖Sx − Sy‖ ⇒ ‖Tx − Ty‖ ≤ max


‖Sx − Sy‖,

1
2
[‖Sx − Tx‖ + ‖Ty − Sy‖]


, (3.12)

1
2
‖Sx − Tx‖ ≤ ‖Sx − Sy‖ ⇒ ‖Tx − Ty‖ ≤

1
2
[‖Sx − Tx‖ + ‖Ty − Sy‖], (3.13)

1
2
‖Sx − Tx‖ ≤ ‖Sx − Sy‖ ⇒ ‖Tx − Ty‖ ≤

1
2
[‖Tx − Sy‖ + ‖Sx − Ty‖], (3.14)

then T and S have a coincidence point.

A Banach space E is called strictly convex if ‖x + y‖ < 2 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x ≠ y. A Banach
space E is called uniformly convex in every direction (in short, UCED) if for ε ∈ (0, 2] and z ∈ E with ‖z‖ = 1, there exists
δ := δ(ε, z) > 0 such that ‖x+y‖ ≤ 2(1−δ) for all x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and x−y ∈ {tz : t ∈ [−2, −ε]∪[ε, 2]}.

Lemma 34 (See [3]). For a Banach space E, the following are equivalent:

(1) E is UCED.
(2) If sequence {un} and {vn} in E satisfy limn→∞ ‖un‖ = 1 = limn→∞ ‖vn‖, limn→∞ ‖un + vn‖ and {un − vn} ⊂ {tw : t ∈ R}

for some w ∈ E with ‖w‖ = 1, then limn→∞ ‖un − vn‖ = 0 holds.

Lemma 35 (See [3]). For a Banach space E, the following are equivalent:

(1) E is UCED.
(2) If {xn} is a bounded sequence in E, then a function f on E defined by f (x) = lim supn→∞ ‖xn − x‖ is strictly quasi-convex,

that is,

f (tx + (1 − t)y) < max{f (x), f (y)}

for all t ∈ (0, 1) and x, y ∈ E with x ≠ y.

Theorem 36. Let T be a mapping on a weakly compact convex subset K of a UCED Banach space E and satisfy (SKC)-condition.
Define a sequence {xn} in K by x1 ∈ K and xn+1 = λTxn + (1 − λ)xn, for n ∈ N, where λ lies in [

1
2 , 1). Suppose

limn→∞ ‖Txn − xn‖ = 0 holds. Then T has a fixed point.

Proof. Set a sequence {xn} in K in such a way that xn+1 =
1
2Txn +

1
2xn for each n ∈ N where x1 ∈ K . Notice that

lim supn→∞ ‖Txn − xn‖ = 0. Define a continuous convex function f from K into [0, ∞) by f (x) = lim supn→∞ ‖xn − x‖, for
all x ∈ K . Since K is weakly compact and f is weakly lower semi-continuous, there exists z ∈ K such that f (z) = min{f (x) :

x ∈ K}. Regarding Proposition 19, we have ‖xn − Tz‖ ≤ 5‖Txn − xn‖ + ‖xn − z‖ and thus f (Tz) ≤ f (z). On account of
f (z) being the minimum, f (z) = f (Tz) holds. To show Tz = z we assume the contrary, that is Tz ≠ z. Since f is strictly
quasi-convex, we have

f (z) ≤ f

z + Tz

2


< max{f (z), f (Tz)} = f (z)

which is a contradiction. Thus, we get the desired result. �

Corollary 37. Let T be amapping on aweakly compact convex subset K of a UCEDBanach space E and satisfy one of the following:

(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Define a sequence {xn} in K by x1 ∈ K and xn+1 = λTxn + (1 − λ)xn, for n ∈ N, where λ lies in [
1
2 , 1). Suppose

limn→∞ ‖Txn − xn‖ = 0 holds. Then T has a fixed point.

Theorem 38. Let S be a family of commuting mappings on a weakly compact convex subset K of a Banach space E. Suppose each
mapping in S satisfy (SKC)-condition. Then S has a common fixed point.
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Proof. Let I = {1, 2, . . . , ν} be an index set. Let Ti ∈ S, i ∈ I . Due to Theorem 36, Ti has a fixed point in K , that is, F(Ti) ≠ ∅

for i ∈ I . Proposition 14 implies that each F(Ti) is closed and convex. Suppose that F := ∩
k−1
i=1 F(Ti) is non-empty, closed

and convex for some k ∈ N such that 1 < k ≤ ν. For x ∈ F and i ∈ I with 1 ≤ i < k, Tkx = Tk ◦ Tix = Ti ◦ Tkx since S is
commuting. Thus, Tkx is a fixed point of Ti which yields Tkx ∈ F . So, Tk(F) ⊂ F . In other words, Tk(F) ⊂ F . By Theorem 36, Tk
has a fixed point in F , that is, F ∩ F(Tk) = ∩

k
i=1 F(Ti) ≠ ∅.

Due to Proposition 14, this set is closed and convex. By induction, we obtain ∩
ν
i=1 F(Ti) ≠ ∅. That is equivalent to saying

{F(T ) : T ∈ S} has the finite intersection property. Since K is weakly compact and F(T ) is weakly closed for every T ∈ S,
then ∩T∈S F(T ) ≠ ∅. �

Corollary 39. Let S be a family of commuting mappings on a weakly compact convex subset K of a Banach space E. Suppose each
mapping in S satisfies one of the following:

(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Then S has a common fixed point.
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