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1. Introduction and preliminaries
Very recently, Suzuki proved the following fixed point theorem:

Theorem 1 (Suzuki[1]). Let (X, d) be a compact metric space and let T be a mapping on X. Assume %d(x, Tx) < d(x, y) implies
d(Tx, Ty) < d(x,y) forallx,y € X. Then T has a unique fixed point.
This result is based on the following two theorems:

Theorem 2 (Edelstein [2]). Let (X, d) be a compact metric space and let T be a mapping on X. Assume d(Tx, Ty) < d(x,y) for
allx,y € X withx # y. Then T has a unique fixed point.

Theorem 3 (Suzuki [3,4]). Define a nonincreasing function 6 from [0, 1) onto (1/2, 1] by

1 ifo<r<5-1)/2,
6 =30 —-nrr? ifW5-1/p2<r<27?
aA+n7' if2?<r<1.
Then for a metric space (X, d), the following are equivalent:

(1) X is complete.
(2) Every mapping T on X satisfying the following has a fixed point. There exists r € [0, 1) such that 6(r)d(x, Tx) < d(x,y)
implies d(Tx, Ty) < rd(x,y) forallx,y € X.

A mapping T on a subset K of a Banach space E is called nonexpansive if | Tx — Ty|| < ||x —y|| forallx, y € K.
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Definition 4 ([3,4]). Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy (C)-condition if
1
EIIX —Tx|l =[x —yll implies that [|Tx — Ty|| < [Ix — ||

forallx,y € K.

Let F(T) be the set of all fixed points of a mapping T. A mapping T on a subset K of a Banach space E is called a quasi-
nonexpansive mapping if ||/Tx — z|| < ||x — z|| forallx € K and z € F(T).
We suggest new definitions which are modifications of Suzuki’s C-condition:

Definition 5. Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy Suzuki-Ciri¢ (C)-condition (in
short, (SCC)-condition) if

1
EIIX —Tx| < lIx—yl implies that ||Tx — Ty|| < M(x,y)

where M(x, y) = max{[lx — yl|, lx — Ix|l, ITy — yIl, ITx — y|l, lIx — Ty||} for all x, y € K.
Moreover, T is said to satisfy Suzuki-(KC)-condition (in short, (SKC)-condition) if

1
SlIx = Txll = flx =yl implies that |Tx — Ty} < N(x.y)
where N(x, ) = max{||x — yll, 5 [lIx — x|l + [Ty — yll1, 3(ITx — y|l + llx — Ty||1} for all x, y € K.

Definition 6. Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy (for all x, y € K)
(i) Kannan-Suzuki-(C) condition (in short, (KSC)-condition) if

1 . 1
SlIx=Txll = flx =yl implies that | Tx — Ty|| < Z[ITx — x| + lly — Ty[l].

(ii) Chatterjea-Suzuki-(C) condition (in short, (CSC)-condition) if

1 o 1
EIIX —Tx|| < Ix —yll implies that [|Tx — Ty| < E[IITX =yl +llx =Tyl
In this manuscript, we modify some results of [3], Singh-Mishra [5], Karapinar [6] and suggest some new theorems.
2. Some basic observations

Proposition 7. Every nonexpansive mapping satisfies (SCC)-condition.

Proof. Let T be a nonexpansive mapping on a subset K of a Banach space E, that is, ||[Tx — Ty|| < |x — y|| for all
X,y € K. Assume %Hx — Tx|| < ||x — y||. For the case M(x,y) = ||x — y||, the condition (SCC) is satisfied trivially, that
is, |[Tx — Ty|| < M(x,y) = ||x — y||. For the other case, that is, M(x, y) # |x — y||, we observe ||x — y|| < M(x, y). Thus,
ITx — Ty|| < ||Ix —y|| < M(x,y) which concludes that T satisfies (SCC)-condition. O

Corollary 8. Every nonexpansive mapping satisfies the following conditions:

(A1) 3llx = Tx|| < |Ix — yll implies that | Tx — Ty|| < A;(x,y)
where Ay(x, y) = max{|lx — yll, [Tx — x|, ITy — y|I}
(A2) 3llx = Tx|| < |Ix — yll implies that | Tx — Ty|| < Ay(x,y)
where Ay(x, y) = max{|lx — yll, ITx — yIl, Ty — xII}.

Regarding the analogy, we omit the proof of this Corollary.

Proposition 9. Every nonexpansive mapping satisfies (SKC)-condition.

Proof. Let T be a nonexpansive mapping on a subset K of a Banach space E, that is, |Tx — Ty|| < ||x — y| forall x,y € K.
Assume %||x — Tx|| < |lx — y||. If the case N(x,y) = ||x — y|| happen, then ||Tx — Ty|| < N(x,y) = ||x — y|| are satisfied
trivially. If not, that is, N(x, y) # ||x — y|| then ||x — y|| < N(x,y). Thus, |Tx — Ty|| < ||x — y|| < N(x, y) which concludes
that T satisfies (SKC)-condition. O

Corollary 10. Every nonexpansive mapping satisfies the following conditions:
(A3) 3lx — Tx|| < [Ix — y|| implies that ||Tx — Ty|| < As(x,y)
where As(x, y) = max{||x — yll, 3 [ITx — x|l + ITy — y[I1}
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(A4) 5 llx — Tx|| < |Ix — y|| implies that || Tx — Ty|| < A4(x,y)

where A4(x, y) = max{l|lx — y|., 5 [ITx — |l + Ty — x[|1}.
Regarding the analogy, we omit the proof of this Corollary.

Proposition 11. If a mapping T satisfies (SKC)-condition and has a fixed point, then it is a quasi-nonexpansive mapping.

Proof. Let T be a mapping on a subset K of a Banach space E and satisfy (SKC)-condition. Suppose T has a fixed point, in
other words, z € F(T). Thus,

1
0= §||z —Tz|| < ||lz—y|| impliesthat ||Tz — Ty|| < N(z, y) (2.1)
where
1 1
N(z,y) = max1lz —yl, E[IIZ = Tz[ + Ty — ylll, E[IITZ =yl +llz—Tyll
1 1
= max iz —yll, illTy =yl E(IIZ =yl+lz=TyID¢- (2.2)
IfN(z,y) = 3(lz =yl + llz = Tyl), then |z — Ty|| = ||Tz — Tyl < N(z,y) = 5(llz — yll + l|lz — Ty||) then we get

1Tz =Tyl = llz—Tyll < llz—yl.
IfN(z,y) = ||z — y||, then we are done.
IfN(z,y) = 5Ty =yl < [ITy — zIl + [z — y|], then

1 1
lz =Tyl =Tz = Tyll =N(z,y) = EIITy -yl = E[IITy =zl +llz—yll
and thus ||z — Ty|| = ||ITz — Ty|| < ||z — y|| which completes the proof. O

Corollary 12. If a mapping T satisfies one of the following:

(1) (A3)-condition,
(2) (A4)-condition,
(3) (KSC)-condition,
(4) (CSC)-condition,

and has a fixed point, then it is a quasi-nonexpansive mapping.

Example 13. Let S and T be mappings on [0, 4] such that

_JOo ifx#4 _JOo ifx#4
T"—{1 ifx=4 and 5"—{3 ifx = 4
then,

(i) T satisfies both (SCC)-condition and (SKC)-condition but T is not nonexpansive.
(ii) S is quasi-nonexpansive and F(S) # @ but S does not satisfy (SKC)-condition.

Proof. (i) Ifx < yand (x,y) € ([0, 4] x [0, 4]) \ ((3,4) x {4}). Then ||Tx — Ty|| < M(x,y) and ||Tx — Ty|| < N(x, y) holds.
Ifx € (3,4) and y = 4, then

1 X 1
EIIX—TXII =35> 1> [x—yll and illy—Tyll >1> |x—yl

hold. Thus, T satisfies conditions (SCC) and (SKC). Since T is not continuous, T is not nonexpansive.
(ii) Itis clear that F(S) = {0} # @ and S is quasi-nonexpansive. Since,

1
§||4—S4||= <1=|4—-3|]| and ||S4—-S3||=3>2=M(4,3)

N | =

where

1 1
M(4, 3) = max { 4—3=1, 5[|I4 — 54 + 1S3 -3[1=2, 5[||53 —4)+13—-354l1= 2} =2
hold, S does not satisfy (SKC)-condition. O

Proposition 14. Let T be a mapping on a closed subset K of a Banach space E. Assume that T satisfies (SKC)-condition. Then
F(T) is closed. Moreover, E is strictly convex and K is convex, then F(T) is also convex.
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Proof. Let {x,} be a sequence in F(T) and converge to a point x € K. It is clear that
1
EHXH —Txy|| =0 < |lx, —x|| forn e N.

Thus, we have

lim sup ||x, — Tx|| < limsup ||Tx, — Tx|| < limsup N (x,, X) (2.3)
n—-oo n—oo n—oo
where

1 1
N(xn, %) = maX{len =l Slxn = Txall + 1T = X[, SUITxn = Xl + lIxa — TXII]}

1 1
= maX{IIXn =Xl SITx = X1l S Lixe = X[l + [1x0 = TXII]} :

If N(xp, x) = %||Tx — x|| then, the expression (2.3) turns into

limsup ||x, — Tx|| < limsup ||Tx, — Tx|| < limsup N (x,, X)
n—oo n—oo n—o0

1 1
< limsup 5||Tx —X| = 3 llx — Tx|| (2.4)

n—oo

which implies that ||Tx — x| < %HTX — X||. This is a contradiction, so this cannot happen. For the case, N(x,,x) =
%[Hxn — x| + |lx, — Tx||], the expression (2.3) yields that

limsup ||x, — Tx|| = limsup ||Tx, — Tx|| < lim sup N (x,, x)
n—o0o n—o0o n—oo
. 1 1
< limsup =[llx, — x| + [Ixn — Tx[|] < = [lx — Tx|| (2.5)
n—oo 2 2
which yields that ||Tx — x|| < %||Tx — x||. This is also a contradiction, so this cannot happen either. If N(x,, x) = ||x, — x||
then, the expression (2.3) turns into
lim sup ||x, — Tx|| < limsup ||Tx, — Tx|| < limsup ||x, — x|| = 0. (2.6)
n—oo n—oo n—oo

So, we are done. In other words, {x,} converges to Tx. Uniqueness of the limit implies that Tx = x and hence F(T) is closed.
Suppose that E is strictly convex and K is convex. Take fixed points x,y € K with x # y and fix t € (0, 1) and define
z =tx+ (1 —t)y € K.So we get

X =yl < lIx = Tzll + [ITz =yl = ITx = Tz|| + Tz — Ty||
=N 2 +N@y,2) (2.7)

where

1 1
N(x,z) = max{llx —z|, E[IIX — Ix|| + [ITz — z|I], E[IITX -zl +lIx - TZII]}

1 1
= max §[lx —z||, EIITZ —z|, E[IIX—ZII +llx = TZII]}
and

1 1
N(z,y) = max iz —yll, E[Ilz = Tz|| + ITy — yll1, E[IITZ =yl +llz— Tyll]}

1 1
= max llz =yl 21Tz = zll. STz =yl + llz —yll]} :

Since E is strictly convex, there exists s € [0, 1] such that Tz = sx + (1 — s)y. Observe that
(1 =9)llx =yl =Tx — Tz|| < N(x,2) (2.8)

where

1 1
N(x, z) = maX{IIX—ZII, Sl =Tl + 1Tz = z[l], ST — 2] + lIx = TZII]}

1 1
max{||x—z||, EllTZ—le, E[IIX—ZH + ||X—TZ||]}~
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If N(x, z) = ||x — z||, then the expression (2.8) becomes
(T=9)lx=yll=1Tx =Tzl =N, 2) = lx —zll = (1 = Dllx — yl. (2.9)

IfN(x,2) = %[llx — z|| + ||x — Tz||], then the expression (2.8) turns into
1 1
T =9)lx=yll =Tx = Tz|| < N(x,z) = E[IIX =zl + lIx—Tz||] = 5[(1 —Olx=yl+ A =9)lx—-yll. (2.10)
For the last case N(x, z) = %Ilz — Tz||, the expression (2.8) gives
1
(I =9)llx—yll = ITx — Tz|| = N(x,2) = E[IITZ —z|l]

1 1
= Slix =zl +lIx = Tzlll = SI(1 = Dlix =yl + A = 9)flx = ylll. (2.11)

Thus, from (2.9)-(2.11) we conclude that (1 —s) < (1 —t).
If we consider

slx =yl = 1Ty — Tz|| < N(, 2), (2.12)

then proceeding as above we find that s < t. Consequently s = t. Hencez € F(T). O

Corollary 15. Let T be a mapping on a closed subset K of a Banach space E. Assume that T satisfies one of the following:

(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Then F(T) is closed. Moreover, E is strictly convex and K is convex, then F(T) is also convex.
Proposition 16. If T satisfies the condition

1 1

EIIX —Ixl = lx—yll=ITx-Tyl < Z[IITX —xI+lly — Ty,

forallx,y € K, then T is nonexpansive.

Proof.

ITx = Tyll = —[ITx = xIl + lly = Tyl

IA
RSN

2y = X[ +2[ly = xllT =[x =yll. D

Proposition 17. If T satisfies the condition

1 1
Sl =Xl = fIx =yl = ITx = Tyll = ZLITx = X[ + lIx =yl + ly = Tyll],

forallx,y € K, then T is nonexpansive.

Proof.

ITx =Tyl <

UTx = x[| + lIx =yl + lly = Tyll]

IA
Ui = U] =

Iy = X[ + lx =yl +2lly = x[l] =[x =yll. O

Proposition 18. Let T be a mapping on a closed subset K of a Banach space E that satisfies the condition (SKC). Then, for every
X,y € K, the following hold:

(i) ITx — T°x|| < |Ix — Tx|
(ii) either 5 [Ix — Tx|| < Ilx — y|l or 3IITx — T?x|| < || Tx — y|
(iii) either | Tx — Tyl < N(x,y) or [ T?x — Ty|l < N(Tx, y)
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where

1 1
N(x,y) = maX{le =y, E[IITx—XII + 1Ty — ylll, E[IITx—yII + Ty —xll]} and
1 2 1 2
N(Tx, y) = max ||Tx—y||,5[||T x—Tx||+||Ty—y||],5[||T x=yl+ 11Ty —Tx|l1¢ .

Proof. The first statement follows from (SKC)-condition. Indeed, we always have %||x — Tx|| < ||x — Tx|| which yields that

ITx — T2x|| < N(x, Tx) (2.13)

where

N(x, Tx)

1 1
maX{llx = Txll, ST =X + (T%x — Tx||1, S UITx = Txll + IT?x — XII]}

1 1
= max { I = Txl, SITx = %] + 7% = Txl1, S IT°x = x||} :
If N(x, Tx) = ||x — Tx|| we are done. If N(x, Tx) = %[HTX — x|| + |IT?x — Tx||] then the expression (2.13) turns into

1
[ITx — T°x|| < N(x, Tx) = U=l + [IT%x — Tx||]. (2.14)

By simplifying the expression (2.14), one can get (i). For the case N(x, Tx) = %||T2x — x|| the expression (2.13) turns into

1 1
ITx — T2x|| < N(x, Tx) = 5||sz —x| = E[IITX—XII + 1T — Tx|l] (2.15)

which implies (i).
It is clear that (iii) is a consequence of (ii). To prove (ii), assume the contrary, that is,

1 1
EIIX —Tx| > [Ix —y|l and 5|ITX —T%|| > [|ITx — y||
holds for all x, y € K. Then by triangle inequality and (i), we have

Ix —Txll < llx —yll + lly — Tx|l

DX — Tl + 2 [1Te — T2
< —|lx—Tx || Tx — T*x
2 2
1 1
S Slx=Txl+ s lix = Tx|l = lIx — Tx|| O
2 2
which is a contradiction. Thus, we have (ii).

3. Main results

Proposition 19. Let T be a mapping on a subset K of a Banach space E and satisfy (SKC)-condition. Then ||x — Ty| <
5|Tx — x|| + ||x — y|| holds for allx,y € K.

Proof. The proof is based on Proposition 18 which says that either
ITx = Tyll < N(x,y) or [T?x—Ty| < N(Tx,y)
holds, where N(x, y) = max{||x — y|l, 5 [ITx — x|| + [ITy — y[I1. 3[ITx — || + [ITy — ||} and

1 1
N(Tx,y) = maX{IITx =y, E[IITZX = Tx|| + ITy — yll1, E[IIsz =yl + Ty — TXIIJ} .

Consider the first case. If N(x, y) = ||x — y|| then we have
x =Tyl < llx — Tx|l + ITx — Ty|l < lIx — Tx|[ + [Ix — yII. (3.1)
ForN(x,y) = %[||Tx — x|l + |ITy — y||] one can observe

1
X =Tyl < lIx = Tx|l + ITx — Ty|| < lIx — Tx|| + 5[IITX — x|+ 1Ty =yl

IA

3 1 3 1
—|lx — Tx —||Ty — < —||]x — Tx [Ty — x X — .
2|| ||+2|| y=yll = 2|| ||+2[|| y—x|+ lIx—=yll
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Thus, we have
1 3 1
EIIX -yl < EIIX —Tx|| + EIIX =yl & lIx =Tyl <3llx—Tx|| + lIx — yll. (32)

ForN(x,y) = %[HTX — y|| + ITy — x||] one can obtain
1
Ix =Tyl < lIx = Txll + ITx — Tyl < lIx — Tx|| + E[IITX =yl + 1Ty — x|
1 1
= llx—=Tx|l + 5[|ITX — X[+ lx=yll+ EIITy —X]|.

Thus, we have

1 3 1
5|IX - Tyl < EIIX— Tx|| + EIIX—J’H < lIx =Tyl < 3[lx = x| + [Ix = yII. (33)

Take the second case into account. For N(Tx, y) = ||[Tx — y||, we have
X =Tyl < [Ix = Tx|| + I Tx — T?x|| + | T>x — Ty||
lx = Tx|| + [lx — Tx|| + ITx — y|l
2|l = Tx[l + ITx — vl
2|l = Tx|l + ITx — x| + lIx — yIl = 3|ITx — x| + [Ix — yI|. (3.4)
IFN(Tx, y) = 3[IIT%x — Tx|| + | Ty — y|I] then we have

I IA

IA

lIx =Tyl < lIx = Txll + ITx = T?x|| + I T°x — Ty||

IA

1
2x = Tx|| + 5[||T2X— x|l + 11Ty =yl

IA

2 Jx = Tl + 2Ty — il
) ) y—=y

IA

5 1
EIIX — Tx|l + E[IITy — x|+ llx =yl

Thus, we have
1 5 1
EIIX -yl = EIIX —Ix|| + EIIX =yl < lIx =Tyl <5lx—Tx|| + lIx =yl (3.5)
For the last case, N(Tx, y) = %[||T2x —yll + Ty — Tx||], we have

lx =Tyl < llx = Txll + ITx = T°x|| + | T°x = Ty||

IA

1
2lx = Tx|l + 5[|IT2X =yl + 1Ty — Tx|[]

IA

1 1
2||Ix — Tx|| + 5[||T2x— Tl A+ WITx = Xl lix =yl + STy = xI + llx = Tx][]

IA

T lx =Tl + 211y = xl + 2 x— 1
—llx = Tx|| + =ITy — x|l + = [Ix — y||.
2 2 Y 2 4

Thus, we have

1 5 1
EIIX —Tyll < EIIX— x|l + QIIX—J/II < lIx =Tyl < 5lx — Ix| + [Ix — vl (3.6)

Hence, the result follows from (3.1)-(3.6). O

Regarding the analogy, we omit the proof of the following Corollaries.

Corollary 20. Let T be a mapping on a subset K of a Banach space E and satisfy (A3)-condition. Then ||x — Ty|| < 5||Tx — x|| +
|lx — y|| holds forallx,y € K.

Corollary 21. Let T be a mapping on a subset K of a Banach space E and satisfy (KSC)-condition. Then ||x — Ty|| < 5||Tx — x|| +
llx — y|| holds forallx,y € K.

Corollary 22. Let T be a mapping on a subset K of a Banach space E and satisfy (CSC)-condition. Then ||x — Ty|| < 5||Tx — x|| +
|lx — y|| holds forallx,y € K.
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Theorem 23. Let T be a mapping on a compact convex subset K of a Banach space E and satisfy (SKC)-condition. Define a
sequence {x,} in K by x; € K and x,11 = ATx, + (1 — A)xy, for n € N, where A lies in [%, 1). Suppose limy,_, o || Tx, — X,|| =0
holds. Then {x,} converge strongly to a fixed point of T.

Proof. Regarding that K is compact, one can conclude that {x,} has a subsequence {x,,} that converges to some number,
say z, in K. By Proposition 19, we have

X0, — Tz|l < 5[ Txp, — X, Il + X, — zll, forallk e N. (3.7)
Notice that lim,_. ||TX, — X;|| = 0. Taking this fact into account together with (3.7), we conclude that {x,, } converges to
Tz which implies that Tz = z. In other words, z € F(T). On account of Proposition 11, we get

Xn1 — zll < AllTxa — 2|l + (1 = X)X — 2|l < |0 — ||

for n € N. Thus, {x,} convergestoz. O

Corollary 24. Let T be a mapping on a compact convex subset K of a Banach space E. Define a sequence {x,} in K by x; € K and
Xne1 = ATxy + (1 — A)xy, for n € N, where A lies in [%, 1). Suppose lim,_, o || TX, — X,|| = O holds. If T satisfies one of the
following:

(1) (A3)-condition,

(2) (KSC)-condition,

(3) (€CSC)-condition,

then {x,} converge strongly to a fixed point of T.
Theorem 25. Let E be a Banach space and T, S be self-mappings on K such that T(K) C S(K) and S(K) is a compact convex

subset of E and T satisfies (SKC)-condition. Define a sequence {x,} in T(K) by x; € S(K) and Sxp,+1 = ATx, + (1 — X)Sx,, for
n € N, where A lies in [, 1). Suppose limy_, o || TXa — Sxn|| = 0 holds. Then T and S have a coincidence point.

Proof. LetR : S(K) — S(K) where Ra = T(S~'a) foreacha € S(K).Itis clear that R is well-defined. Indeed, take x, y € S~ 'a
such that b = Txand ¢ = Ty. For x € S~'a we obtain Ra = Tx and Ra C S(K) since T(K) C S(K). Since Sx = Sy we get
b = c. Thus, R is well-defined.

We claim that R satisfies all conditions of Theorem 23. Let a, b € S(K) such that %||a — Ra|| < |la — b]|. In other words,

1 1
SISx = Ixll = —lla — Ra|| < Jla — bl = |ISx — Sy|

forx € S~'aandy € S~'b. Since T satisfies (SKC)-condition, we get
[Ra — Rb|| = ||Tx — Ty|l < N(Sx, Sy) = N(a, b)
where N(a, b) = N(Sx, Sy) = max{|la — b|| = ||Sx — Sy||, 3[|IRa — a|| + [[Rb — b||] = 3[|ISx — Tx|| + [Ty — Sy|l1 5 [|IRa —
bl + lla — Rb||] = 3[IITx — Sy|| + [|Sx — Ty|[1}.
Thus,

1
5 lla—Ral| = fla— bl = [IRa — Rb|| < N(a, b).

Further, define a sequence {a,} in S(K) by a; € S(K) and a,+1 = ARa, + (1 — X)ay,, for n € N, where X lies in [%, 1). For
x; € S 'a; we have

lim ||Ra, — ay|| = lim ||Tx,, — Sx,|| = 0.

n—oo n—oo
Thus, all conditions of Theorem 23 are satisfied.

Hence, {a,} converges to t. Then for any z € S~'t, we have Tz = Rt = t = Sz. Therefore, S, T have a coincidence
point. 0O

Corollary 26. Let E be a Banach space and T,S : K — E such that T(K) C S(K) and S(K) is a compact convex subset of
E. Define a sequence {x,} in T(K) by x; € S(K) and Sx,11 = ATx, + (1 — X)Sx,, for n € N, where X lies in [%, 1). Suppose
limy_ o0 || TX, — SXu|| = O holds. If S, T satisfy one of the following:

1 1

IS¢ = Txll < ||Sx — Syll = [|Tx — Ty|| < max { 1% = Syl S TiSx = Txll + |ITy — 5y||]} , (3.8)
1 1

SIS = Ixll = lISx = Syll = [I1Tx = Tyll = SLIsx = x|l + [Ty — Syll], (3.9)
1 1

SISx = Txll < [ISx = Syll = [ITx = Tyll = SLlITx = Syll + [ISx — Tyll]. (3.10)

then T and S have a coincidence point.
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Definition 27. Let E be a Banach space. E is said to have Opial property [7] if for each weakly convergent sequence {x,} in E
with weak limit z

liminf||x, — z|| <liminf|x, —y||, forally € E withy # z.
n—oo n—oo

All Hilbert spaces, all finite dimensional Banach spaces and Banach sequence spaces £,(1 < p < 00) have the Opial
property (see [3]).

Proposition 28. Let T be a mapping on a subset K of a Banach space E with Opial property and satisfy (SKC)-condition. If {x,}
converges weakly to z and lim,,_, o || Tx, — X,|| = O, then Tz = z. That is I — T is demiclosed at zero.
Proof. Due to Proposition 19, we have
|%n — Tz|| < 5||Txp — xnll + ||xn — 2], foralln e N.
Hence,

liminf||x, — Tz|| < liminf|x, — z]||.
n—oo n—oo
Thus, Opial property implies that Tz =z. O

Corollary 29. Let T be a mapping on a subset K of a Banach space E with Opial property and satisfy one of the following:

(1) (A3)-conditions,
(2) (KSC)-condition,
(3) (CSC)-condition.

If {x,} converges weakly to z and lim,_, », ||Tx, — x,|| = O, then Tz = z. That is I — T is demiclosed at zero.

Theorem 30. Let T be a mapping on a weakly compact convex subset K of a Banach space E with Opial property and satisfy
(SKC)-condition. Define a sequence {x,} in K by x; € K and x,11 = ATx, + (1 — L)Xy, for n € N, where X lies in [%, 1). Suppose
lim,_, o || T, — X, || = O holds. Then {x,} converge weakly to a fixed point of T.

Proof. We have lim,_. [|Tx, — x|l = 0. Since K is weakly compact, one can conclude that {x,} has a subsequence {x,, }
which converges weakly to an element, say z, in E. On account of Proposition 28, we observe that z is a fixed point of T. Note
that {||x, — z||} is a nondecreasing sequence. Indeed,

Xn+1 =zl < AllTxn — z|| + (1 = M) %, — 2]

We show {x,} converges to z. Assume the contrary, that is, {x,,} does not converge to z. Then there exists a subsequence
{Xn,,} of {x;} and u € K such that {x,,,} converges weakly to u and u # z. By Proposition 28, Tu = u. Since E has Opial
property,

lim [|x, —z|| = lim [|xp, — z|| < lim X, — ul| = lim ||x, — u]|
n— 00 k— o0 k— o0 n—o00
= lim ||xn, —u|l < lim |x,, —z| = lim ||x, —z|| (3.11)
m— 00 m— 00 n—oo

which is a contradiction. Hence, the proof is completed. O

Corollary 31. Let T be a mapping on a weakly compact convex subset K of a Banach space E with Opial property and satisfy one
of the following:

(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Define a sequence {x,} in K by x; € K and x,n1 = ATx, + (1 — A)x,, for n € N, where A lies in [%, 1). Suppose
limy,_, o || T, — X, || = O holds. Then {x,} converge weakly to a fixed point of T.

Theorem 32. Let E be a Banach space and T, S : K — E such that T(K) C S(K) and S(K) is a weakly compact convex subset of
E with Opial property. Assume for x,y € K,

1
EIISX —Tx|l = ISx = Syll = ITx — Ty|l = N(Sx, Sy)
where N (Sx, Sy) = max{||Sx — Sy||, %[||Sx — Tx|| + ||Ty — Sy||], %[||Tx — Sy|l + |ISx — Ty||]}. Define a sequence {x,} in T (K) by

X1 € S(K) and Sx;,11 = ATxy + (1 — X)Sxy, for n € N, where A lies in [%, 1). Suppose lim,,_, , ||Tx, — Sx,|| = O holds. Then T
and S have a coincidence point.
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Regarding the analogy with the proof of Theorem 25, we omit the proof.
Corollary 33. Let E be a Banach space and T, S : K — E such that T(K) C S(K) and S(K) is a weakly compact convex subset

of E with Opial property. Define a sequence {x,} in T(K) by x; € S(K) and Sx,+1 = ATx, + (1 — X)Sx,, for n € N, where A lies
in [%, 1). Suppose lim,,_, o, || Tx, — Sx,|| = O holds. If S, T satisfy one of the following:

1 1
EIISX —Ix|l = ISx = Syll = ITx — Ty|| < max { 1Sx — Syll, E[IISX — Il + Ty — Syll]} ) (3.12)
1 1
EIISX —Ixl = ISx = Syll = ITx = Tyl < E[IISX = Ix|l + 1Ty — Syl (3.13)
1 1
EIISX — x|l = ISx = Syll = ITx — Tyl < E[IITX = Syll + 115x = Ty|l], (3.14)
then T and S have a coincidence point.
A Banach space E is called strictly convex if ||x + y|| < 2 for all x,y € E with ||x|| = |lyll = 1and x # y. A Banach
space E is called uniformly convex in every direction (in short, UCED) if for ¢ € (0, 2] and z € E with ||z|| = 1, there exists

6 :=68(e,z) > Osuchthat |[x+y| <2(1-§)forallx,y € Ewith |x|| <1, |yl <landx—y e {tz:t € [-2, —¢]U[e, 2]}.

Lemma 34 (See [3]). For a Banach space E, the following are equivalent:

(1) E is UCED.
(2) Ifsequence {u,} and {v,} in E satisfy lim,_. » ||ux]| = 1 = limy_ oo |[Vn]l, liMy—s oo ||t + va|| and {u, — vy} C {tw : t € R}
forsome w € E with |w|| = 1, then lim,_, » ||ty — vy|| = O holds.

Lemma 35 (See [3]). For a Banach space E, the following are equivalent:

(1) E is UCED.
(2) If {xn} is a bounded sequence in E, then a function f on E defined by f(x) = limsup,_, ., l|x, — x|| is strictly quasi-convex,
that is,

fltx+ (1 —1t)y) < max{f(x), f(y)}
forallt € (0,1)andx,y € E withx # y.

Theorem 36. Let T be a mapping on a weakly compact convex subset K of a UCED Banach space E and satisfy (SKC)-condition.
Define a sequence {x,} in K by x; € K and x,o 1 = ATx, + (1 — A)xy, for n € N, where A lies in [%, 1). Suppose
lim,_ oo ||TX;, — X || = O holds. Then T has a fixed point.

Proof. Set a sequence {x,} in K in such a way that x,.; = %Tx,, + %xn for each n € N where x; € K. Notice that
limsup,_, o, [|Tx, — x,|| = 0. Define a continuous convex function f from K into [0, co) by f (x) = lim sup,,_, o, ||x, — x]|, for
all x € K. Since K is weakly compact and f is weakly lower semi-continuous, there exists z € K such that f (z) = min{f (x) :
x € K}. Regarding Proposition 19, we have ||x, — Tz|| < 5||Tx, — x|l + ||x» — z|| and thus f(Tz) < f(z). On account of
f(2) being the minimum, f(z) = f(Tz) holds. To show Tz = z we assume the contrary, that is Tz # z. Since f is strictly
quasi-convex, we have

z+1Tz
2

f@ §f< ) < max{f(2), f(T2)} = f(2)

which is a contradiction. Thus, we get the desired result. O

Corollary 37. Let T be a mapping on a weakly compact convex subset K of a UCED Banach space E and satisfy one of the following:

(1) (A3)-condition,

(2) (KSC)-condition,

(3) (€CSC)-condition.

Define a sequence {x,} in K by x; € K and x,p 1 = ATx, + (1 — A)x,, for n € N, where A lies in [%, 1). Suppose
lim,_, o || T, — X, || = O holds. Then T has a fixed point.

Theorem 38. Let § be a family of commuting mappings on a weakly compact convex subset K of a Banach space E. Suppose each
mapping in & satisfy (SKC)-condition. Then $ has a common fixed point.
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Proof. Let] = {1,2,...,v}beanindexset.Let T; € 4, i € I. Due to Theorem 36, T; has a fixed point in K, that is, F(T;) # @
fori € I. Proposition 14 implies that each F(T;) is closed and convex. Suppose that F := ﬂ!‘;ﬂ F(T;) is non-empty, closed
and convex for some k € Nsuchthat1 < k < v.Forx € Fandi € Iwith1 <i < k, Tyx = T, o Tix = T; o Tyx since S is
commuting. Thus, Tyx is a fixed point of T; which yields Tyx € F. So, Ty (F) C F.In other words, T;(F) C F. By Theorem 36, T
has a fixed point in F, thatis, F N F(Ty) = NE_, F(Ty) # ¢.

Due to Proposition 14, this set is closed and convex. By induction, we obtain N}_; F(T;) # . That is equivalent to saying
{F(T) : T € 4} has the finite intersection property. Since K is weakly compact and F(T) is weakly closed for every T € 4,
thenNres F(T) 0. O

Corollary 39. Let $ be a family of commuting mappings on a weakly compact convex subset K of a Banach space E. Suppose each
mapping in & satisfies one of the following:

(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Then § has a common fixed point.

References

[1] K. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory, Methods Appl. 71 (11) (2009) 5313-5317.

[2] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962) 74-79.

[3] K. Suzuki, Fixed point theorems and convergence theorems for some generalized non expansive mappings, J. Math. Anal. Appl. 340 (2008) 1088-1095.

[4] K.Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861-1869.

[5] S.L.Singh, S.N Mishra, Remarks on recent fixed point theorems, Fixed Point Theory Appl. 2010 (2010) 18 pages. Article ID 452905.

[6] E.Karapinar, Remarks on Suzuki (C)-condition, in: Albert Luo, ].A. Tenreiro Machado and Dumitru Baleanu (Eds.), Nonlinear Systems and Methods For
Mechanical, Electrical and Biosystems.

[7] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.



	Generalized  (C) -conditions and related fixed point theorems
	Introduction and preliminaries
	Some basic observations
	Main results
	References


