

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

Computers S. mathematics with applications.

journal homepage: www.elsevier.com/locate/camwa

Generalized (C)-conditions and related fixed point theorems

Erdal Karapınar ^{a,*}, Kenan Taş ^b

- ^a Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey
- b Department of Mathematics and Computer Science, Cankaya University 06530, Yuzuncuyil, Ankara, Turkey

ARTICLE INFO

Article history: Received 24 November 2010 Received in revised form 14 April 2011 Accepted 14 April 2011

Keywords: Contraction mapping Fixed point theory Opial property Suzuki C-conditions

ABSTRACT

In this manuscript, the notion of *C*-condition [K. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008) 1088–1095] is generalized. Some new fixed point theorems are obtained. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Very recently, Suzuki proved the following fixed point theorem:

Theorem 1 (Suzuki [1]). Let (X, d) be a compact metric space and let T be a mapping on X. Assume $\frac{1}{2}d(x, Tx) < d(x, y)$ implies d(Tx, Ty) < d(x, y) for all $x, y \in X$. Then T has a unique fixed point.

This result is based on the following two theorems:

Theorem 2 (Edelstein [2]). Let (X, d) be a compact metric space and let T be a mapping on X. Assume d(Tx, Ty) < d(x, y) for all $x, y \in X$ with $x \neq y$. Then T has a unique fixed point.

Theorem 3 (Suzuki [3,4]). Define a nonincreasing function θ from [0, 1) onto (1/2, 1] by

$$\theta(r) = \begin{cases} 1 & \text{if } 0 \le r \le (\sqrt{5} - 1)/2, \\ (1 - r)r^{-2} & \text{if } (\sqrt{5} - 1)/2 \le r \le 2^{-1/2}, \\ (1 + r)^{-1} & \text{if } 2^{-1/2} \le r < 1. \end{cases}$$

Then for a metric space (X, d), the following are equivalent:

- (1) *X* is complete.
- (2) Every mapping T on X satisfying the following has a fixed point. There exists $r \in [0, 1)$ such that $\theta(r)d(x, Tx) \le d(x, y)$ implies $d(Tx, Ty) \le rd(x, y)$ for all $x, y \in X$.

A mapping T on a subset K of a Banach space E is called *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in K$.

^{*} Corresponding author. Tel.: +90 3125868239.

E-mail addresses: erdalkarapinar@yahoo.com, ekarapinar@atilim.edu.tr (E. Karapınar), kenan@cankaya.edu.tr (K. Taş).

Definition 4 ([3,4]). Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy (C)-condition if

$$\frac{1}{2}\|x-Tx\|\leq \|x-y\|\quad \text{implies that } \|Tx-Ty\|\leq \|x-y\|$$

for all $x, y \in K$.

Let F(T) be the set of all fixed points of a mapping T. A mapping T on a subset K of a Banach space E is called a *quasi-nonexpansive mapping* if $||Tx - z|| \le ||x - z||$ for all $x \in K$ and $z \in F(T)$.

We suggest new definitions which are modifications of Suzuki's *C*-condition:

Definition 5. Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy Suzuki-Ćirić (C)-condition (in short. (SCC)-condition) if

$$\frac{1}{2}\|x - Tx\| \le \|x - y\| \quad \text{implies that } \|Tx - Ty\| \le M(x, y)$$

where $M(x, y) = \max\{\|x - y\|, \|x - Tx\|, \|Ty - y\|, \|Tx - y\|, \|x - Ty\|\}$ for all $x, y \in K$. Moreover, T is said to satisfy Suzuki–(KC)-condition (in short, (SKC)-condition) if

$$\frac{1}{2}||x - Tx|| \le ||x - y||$$
 implies that $||Tx - Ty|| \le N(x, y)$

where $N(x, y) = \max\{\|x - y\|, \frac{1}{2}[\|x - Tx\| + \|Ty - y\|], \frac{1}{2}[\|Tx - y\| + \|x - Ty\|]\}$ for all $x, y \in K$.

Definition 6. Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy (for all $x, y \in K$)

(i) Kannan–Suzuki–(C) condition (in short, (KSC)-condition) if

$$\frac{1}{2}\|x - Tx\| \le \|x - y\| \quad \text{implies that } \|Tx - Ty\| \le \frac{1}{2}[\|Tx - x\| + \|y - Ty\|],$$

(ii) Chatterjea-Suzuki-(C) condition (in short, (CSC)-condition) if

$$\frac{1}{2}\|x - Tx\| \le \|x - y\| \quad \text{implies that } \|Tx - Ty\| \le \frac{1}{2}[\|Tx - y\| + \|x - Ty\|].$$

In this manuscript, we modify some results of [3], Singh-Mishra [5], Karapınar [6] and suggest some new theorems.

2. Some basic observations

Proposition 7. Every nonexpansive mapping satisfies (SCC)-condition.

Proof. Let T be a nonexpansive mapping on a subset K of a Banach space E, that is, $\|Tx - Ty\| \le \|x - y\|$ for all $x, y \in K$. Assume $\frac{1}{2}\|x - Tx\| \le \|x - y\|$. For the case $M(x, y) = \|x - y\|$, the condition (SCC) is satisfied trivially, that is, $\|Tx - Ty\| \le M(x, y) = \|x - y\|$. For the other case, that is, $M(x, y) \ne \|x - y\|$, we observe $\|x - y\| \le M(x, y)$. Thus, $\|Tx - Ty\| \le \|x - y\| \le M(x, y)$ which concludes that T satisfies (SCC)-condition. \square

Corollary 8. Every nonexpansive mapping satisfies the following conditions:

(A1)
$$\frac{1}{2}\|x - Tx\| \le \|x - y\|$$
 implies that $\|Tx - Ty\| \le A_1(x, y)$ where $A_1(x, y) = \max\{\|x - y\|, \|Tx - x\|, \|Ty - y\|\}$ (A2) $\frac{1}{2}\|x - Tx\| \le \|x - y\|$ implies that $\|Tx - Ty\| \le A_2(x, y)$ where $A_2(x, y) = \max\{\|x - y\|, \|Tx - y\|, \|Ty - x\|\}$.

Regarding the analogy, we omit the proof of this Corollary.

Proposition 9. Every nonexpansive mapping satisfies (SKC)-condition.

Proof. Let T be a nonexpansive mapping on a subset K of a Banach space E, that is, $\|Tx - Ty\| \le \|x - y\|$ for all $x, y \in K$. Assume $\frac{1}{2}\|x - Tx\| \le \|x - y\|$. If the case $N(x, y) = \|x - y\|$ happen, then $\|Tx - Ty\| \le N(x, y) = \|x - y\|$ are satisfied trivially. If not, that is, $N(x, y) \ne \|x - y\|$ then $\|x - y\| \le N(x, y)$. Thus, $\|Tx - Ty\| \le \|x - y\| \le N(x, y)$ which concludes that T satisfies (SKC)-condition. \square

Corollary 10. Every nonexpansive mapping satisfies the following conditions:

(A3)
$$\frac{1}{2} \|x - Tx\| \le \|x - y\|$$
 implies that $\|Tx - Ty\| \le A_3(x, y)$ where $A_3(x, y) = \max\{\|x - y\|, \frac{1}{2}[\|Tx - x\| + \|Ty - y\|]\}$

(A4)
$$\frac{1}{2}\|x - Tx\| \le \|x - y\|$$
 implies that $\|Tx - Ty\| \le A_4(x, y)$ where $A_4(x, y) = \max\{\|x - y\|, \frac{1}{2}[\|Tx - y\| + \|Ty - x\|]\}$.

Regarding the analogy, we omit the proof of this Corollary.

Proposition 11. If a mapping T satisfies (SKC)-condition and has a fixed point, then it is a quasi-nonexpansive mapping.

Proof. Let T be a mapping on a subset K of a Banach space E and satisfy (SKC)-condition, Suppose T has a fixed point, in other words, $z \in F(T)$. Thus,

$$0 = \frac{1}{2} ||z - Tz|| \le ||z - y|| \quad \text{implies that } ||Tz - Ty|| \le N(z, y)$$
 (2.1)

where

$$N(z, y) = \max \left\{ \|z - y\|, \frac{1}{2} [\|z - Tz\| + \|Ty - y\|], \frac{1}{2} [\|Tz - y\| + \|z - Ty\|] \right\}$$

$$= \max \left\{ \|z - y\|, \frac{1}{2} \|Ty - y\|, \frac{1}{2} (\|z - y\| + \|z - Ty\|) \right\}. \tag{2.2}$$

If $N(z,y) = \frac{1}{2}(\|z-y\| + \|z-Ty\|)$, then $\|z-Ty\| = \|Tz-Ty\| \le N(z,y) = \frac{1}{2}(\|z-y\| + \|z-Ty\|)$ then we get $\|Tz-Ty\| = \|z-Ty\| \le \|z-y\|$. If $N(z,y) = \|z-y\|$, then we are done. If $N(z,y) = \frac{1}{2}\|Ty-y\| \le [\|Ty-z\| + \|z-y\|]$, then

$$||z - Ty|| = ||Tz - Ty|| \le N(z, y) = \frac{1}{2}||Ty - y|| \le \frac{1}{2}[||Ty - z|| + ||z - y||]$$

and thus ||z - Ty|| = ||Tz - Ty|| < ||z - y|| which completes the proof. \Box

Corollary 12. If a mapping T satisfies one of the following:

- (1) (A3)-condition,
- (2) (A4)-condition,
- (3) (KSC)-condition,
- (4) (CSC)-condition,

and has a fixed point, then it is a quasi-nonexpansive mapping.

Example 13. Let *S* and *T* be mappings on [0, 4] such that

$$Tx = \begin{cases} 0 & \text{if } x \neq 4 \\ 1 & \text{if } x = 4 \end{cases} \text{ and } Sx = \begin{cases} 0 & \text{if } x \neq 4 \\ 3 & \text{if } x = 4 \end{cases}$$

then,

- (i) T satisfies both (SCC)-condition and (SKC)-condition but T is not nonexpansive.
- (ii) S is quasi-nonexpansive and $F(S) \neq \emptyset$ but S does not satisfy (SKC)-condition.

Proof. (i) If x < y and $(x, y) \in ([0, 4] \times [0, 4]) \setminus ((3, 4) \times \{4\})$. Then $||Tx - Ty|| \le M(x, y)$ and $||Tx - Ty|| \le N(x, y)$ holds. If $x \in (3, 4)$ and y = 4, then

$$\frac{1}{2}||x - Tx|| = \frac{x}{2} > 1 > ||x - y|| \quad \text{and} \quad \frac{1}{2}||y - Ty|| > 1 > ||x - y||$$

hold. Thus, T satisfies conditions (SCC) and (SKC). Since T is not continuous, T is not nonexpansive.

(ii) It is clear that $F(S) = \{0\} \neq \emptyset$ and S is quasi-nonexpansive. Since,

$$\frac{1}{2}||4 - S4|| = \frac{1}{2} \le 1 = ||4 - 3||$$
 and $||S4 - S3|| = 3 > 2 = M(4, 3)$

where

$$M(4,3) = \max \left\{ \|4 - 3\| = 1, \ \frac{1}{2} [\|4 - S4\| + \|S3 - 3\|] = 2, \frac{1}{2} [\|S3 - 4\| + \|3 - S4\|] = 2 \right\} = 2$$

hold, S does not satisfy (SKC)-condition.

Proposition 14. Let T be a mapping on a closed subset K of a Banach space E. Assume that T satisfies (SKC)-condition. Then F(T) is closed. Moreover, E is strictly convex and K is convex, then F(T) is also convex.

Proof. Let $\{x_n\}$ be a sequence in F(T) and converge to a point $x \in K$. It is clear that

$$\frac{1}{2}\|x_n - Tx_n\| = 0 \le \|x_n - x\| \quad \text{for } n \in \mathbb{N}.$$

Thus, we have

$$\limsup_{n \to \infty} \|x_n - Tx\| \le \limsup_{n \to \infty} \|Tx_n - Tx\| \le \limsup_{n \to \infty} N(x_n, x)$$
(2.3)

where

$$N(x_n, x) = \max \left\{ \|x_n - x\|, \frac{1}{2} [\|x_n - Tx_n\| + \|Tx - x\|], \frac{1}{2} [\|Tx_n - x\| + \|x_n - Tx\|] \right\}$$

$$\leq \max \left\{ \|x_n - x\|, \frac{1}{2} \|Tx - x\|, \frac{1}{2} [\|x_n - x\| + \|x_n - Tx\|] \right\}.$$

If $N(x_n, x) = \frac{1}{2} ||Tx - x||$ then, the expression (2.3) turns into

$$\limsup_{n \to \infty} \|x_n - Tx\| \le \limsup_{n \to \infty} \|Tx_n - Tx\| \le \limsup_{n \to \infty} N(x_n, x)$$

$$\le \limsup_{n \to \infty} \frac{1}{2} \|Tx - x\| = \frac{1}{2} \|x - Tx\| \tag{2.4}$$

which implies that $||Tx - x|| \le \frac{1}{2}||Tx - x||$. This is a contradiction, so this cannot happen. For the case, $N(x_n, x) = \frac{1}{2}[||x_n - x|| + ||x_n - Tx||]$, the expression (2.3) yields that

$$\limsup_{n \to \infty} \|x_n - Tx\| = \limsup_{n \to \infty} \|Tx_n - Tx\| \le \limsup_{n \to \infty} N(x_n, x)$$

$$\le \limsup_{n \to \infty} \frac{1}{2} [\|x_n - x\| + \|x_n - Tx\|] \le \frac{1}{2} \|x - Tx\|$$
(2.5)

which yields that $||Tx - x|| \le \frac{1}{2}||Tx - x||$. This is also a contradiction, so this cannot happen either. If $N(x_n, x) = ||x_n - x||$ then, the expression (2.3) turns into

$$\limsup_{n \to \infty} \|x_n - Tx\| \le \limsup_{n \to \infty} \|Tx_n - Tx\| \le \limsup_{n \to \infty} \|x_n - x\| = 0.$$

$$(2.6)$$

So, we are done. In other words, $\{x_n\}$ converges to Tx. Uniqueness of the limit implies that Tx = x and hence F(T) is closed. Suppose that E is strictly convex and E is convex. Take fixed points E0, E1 with E2 and fix E3 and define E3 is trictly convex and E4. So we get

$$||x - y|| \le ||x - Tz|| + ||Tz - y|| = ||Tx - Tz|| + ||Tz - Ty||$$

$$\le N(x, z) + N(y, z)$$
(2.7)

where

$$N(x, z) = \max \left\{ \|x - z\|, \frac{1}{2} [\|x - Tx\| + \|Tz - z\|], \frac{1}{2} [\|Tx - z\| + \|x - Tz\|] \right\}$$
$$= \max \left\{ \|x - z\|, \frac{1}{2} \|Tz - z\|, \frac{1}{2} [\|x - z\| + \|x - Tz\|] \right\}$$

and

$$N(z, y) = \max \left\{ \|z - y\|, \frac{1}{2} [\|z - Tz\| + \|Ty - y\|], \frac{1}{2} [\|Tz - y\| + \|z - Ty\|] \right\}$$
$$= \max \left\{ \|z - y\|, \frac{1}{2} \|Tz - z\|, \frac{1}{2} [\|Tz - y\| + \|z - y\|] \right\}.$$

Since *E* is strictly convex, there exists $s \in [0, 1]$ such that Tz = sx + (1 - s)y. Observe that

$$(1-s)\|x-y\| = \|Tx-Tz\| \le N(x,z) \tag{2.8}$$

where

$$N(x,z) = \max \left\{ \|x - z\|, \frac{1}{2} [\|x - Tx\| + \|Tz - z\|], \frac{1}{2} [\|Tx - z\| + \|x - Tz\|] \right\}$$
$$= \max \left\{ \|x - z\|, \frac{1}{2} \|Tz - z\|, \frac{1}{2} [\|x - z\| + \|x - Tz\|] \right\}.$$

If N(x, z) = ||x - z||, then the expression (2.8) becomes

$$(1-s)\|x-y\| = \|Tx-Tz\| < N(x,z) = \|x-z\| = (1-t)\|x-y\|.$$
(2.9)

If $N(x, z) = \frac{1}{2} [\|x - z\| + \|x - Tz\|]$, then the expression (2.8) turns into

$$(1-s)\|x-y\| = \|Tx-Tz\| \le N(x,z) = \frac{1}{2}[\|x-z\| + \|x-Tz\|] = \frac{1}{2}[(1-t)\|x-y\| + (1-s)\|x-y\|].$$
 (2.10)

For the last case $N(x, z) = \frac{1}{2} ||z - Tz||$, the expression (2.8) gives

$$(1-s)\|x-y\| = \|Tx - Tz\| \le N(x,z) = \frac{1}{2} [\|Tz - z\|]$$

$$\le \frac{1}{2} [\|x - z\| + \|x - Tz\|] = \frac{1}{2} [(1-t)\|x - y\| + (1-s)\|x - y\|]. \tag{2.11}$$

Thus, from (2.9)–(2.11) we conclude that $(1 - s) \le (1 - t)$.

If we consider

$$s||x - y|| = ||Ty - Tz|| \le N(y, z), \tag{2.12}$$

then proceeding as above we find that $s \le t$. Consequently s = t. Hence $z \in F(T)$. \square

Corollary 15. Let T be a mapping on a closed subset K of a Banach space E. Assume that T satisfies one of the following:

- (1) (A3)-condition,
- (2) (KSC)-condition,
- (3) (CSC)-condition.

Then F(T) is closed. Moreover, E is strictly convex and K is convex, then F(T) is also convex.

Proposition 16. *If T satisfies the condition*

$$\frac{1}{2}\|x - Tx\| \le \|x - y\| \Rightarrow \|Tx - Ty\| \le \frac{1}{4}[\|Tx - x\| + \|y - Ty\|],$$

for all $x, y \in K$, then T is nonexpansive.

Proof.

$$||Tx - Ty|| \le \frac{1}{4} [||Tx - x|| + ||y - Ty||]$$

$$\le \frac{1}{4} [2||y - x|| + 2||y - x||] = ||x - y||. \quad \Box$$

Proposition 17. *If T satisfies the condition*

$$\frac{1}{2}\|x - Tx\| \le \|x - y\| \Rightarrow \|Tx - Ty\| \le \frac{1}{5}[\|Tx - x\| + \|x - y\| + \|y - Ty\|],$$

for all $x, y \in K$, then T is nonexpansive.

Proof.

$$||Tx - Ty|| \le \frac{1}{5} [||Tx - x|| + ||x - y|| + ||y - Ty||]$$

$$\le \frac{1}{5} [2||y - x|| + ||x - y|| + 2||y - x||] = ||x - y||. \quad \Box$$

Proposition 18. Let T be a mapping on a closed subset K of a Banach space E that satisfies the condition (SKC). Then, for every $x, y \in K$, the following hold:

- (i) $||Tx T^2x|| \le ||x Tx||$
- (ii) either $\frac{1}{2}||x Tx|| \le ||x y||$ or $\frac{1}{2}||Tx T^2x|| \le ||Tx y||$
- (iii) either ||Tx Ty|| < N(x, y) or $||T^2x Ty|| < N(Tx, y)$

where

$$N(x,y) = \max \left\{ \|x - y\|, \frac{1}{2} [\|Tx - x\| + \|Ty - y\|], \frac{1}{2} [\|Tx - y\| + \|Ty - x\|] \right\} \quad and$$

$$N(Tx,y) = \max \left\{ \|Tx - y\|, \frac{1}{2} [\|T^2x - Tx\| + \|Ty - y\|], \frac{1}{2} [\|T^2x - y\| + \|Ty - Tx\|] \right\}.$$

Proof. The first statement follows from (SKC)-condition. Indeed, we always have $\frac{1}{2}||x-Tx|| \le ||x-Tx||$ which yields that

$$||Tx - T^2x|| \le N(x, Tx)$$
 (2.13)

where

$$N(x, Tx) = \max \left\{ \|x - Tx\|, \frac{1}{2} [\|Tx - x\| + \|T^2x - Tx\|], \frac{1}{2} [\|Tx - Tx\| + \|T^2x - x\|] \right\}$$
$$= \max \left\{ \|x - Tx\|, \frac{1}{2} [\|Tx - x\| + \|T^2x - Tx\|], \frac{1}{2} \|T^2x - x\| \right\}.$$

If N(x, Tx) = ||x - Tx|| we are done. If $N(x, Tx) = \frac{1}{2}[||Tx - x|| + ||T^2x - Tx||]$ then the expression (2.13) turns into

$$||Tx - T^2x|| \le N(x, Tx) = \frac{1}{2} [||Tx - x|| + ||T^2x - Tx||].$$
(2.14)

By simplifying the expression (2.14), one can get (i). For the case $N(x, Tx) = \frac{1}{2} ||T^2x - x||$ the expression (2.13) turns into

$$||Tx - T^2x|| \le N(x, Tx) = \frac{1}{2}||T^2x - x|| \le \frac{1}{2}[||Tx - x|| + ||T^2x - Tx||]$$
(2.15)

which implies (i).

It is clear that (iii) is a consequence of (ii). To prove (ii), assume the contrary, that is,

$$\frac{1}{2}||x - Tx|| > ||x - y||$$
 and $\frac{1}{2}||Tx - T^2x|| > ||Tx - y||$

holds for all $x, y \in K$. Then by triangle inequality and (i), we have

$$||x - Tx|| \le ||x - y|| + ||y - Tx||$$

$$< \frac{1}{2}||x - Tx|| + \frac{1}{2}||Tx - T^2x||$$

$$\le \frac{1}{2}||x - Tx|| + \frac{1}{2}||x - Tx|| = ||x - Tx|| \quad \Box$$

which is a contradiction. Thus, we have (ii).

3. Main results

Proposition 19. Let T be a mapping on a subset K of a Banach space E and satisfy (SKC)-condition. Then $\|x - Ty\| \le 5\|Tx - x\| + \|x - y\|$ holds for all $x, y \in K$.

Proof. The proof is based on Proposition 18 which says that either

$$||Tx - Ty|| \le N(x, y)$$
 or $||T^2x - Ty|| \le N(Tx, y)$

holds, where $N(x, y) = \max\{\|x - y\|, \frac{1}{2}[\|Tx - x\| + \|Ty - y\|], \frac{1}{2}[\|Tx - y\| + \|Ty - x\|]\}$ and

$$N(Tx, y) = \max \left\{ \|Tx - y\|, \frac{1}{2} [\|T^2x - Tx\| + \|Ty - y\|], \frac{1}{2} [\|T^2x - y\| + \|Ty - Tx\|] \right\}.$$

Consider the first case. If N(x, y) = ||x - y|| then we have

$$||x - Ty|| \le ||x - Tx|| + ||Tx - Ty|| \le ||x - Tx|| + ||x - y||.$$
(3.1)

For $N(x, y) = \frac{1}{2} [\|Tx - x\| + \|Ty - y\|]$ one can observe

$$||x - Ty|| \le ||x - Tx|| + ||Tx - Ty|| \le ||x - Tx|| + \frac{1}{2}[||Tx - x|| + ||Ty - y||]$$

$$\le \frac{3}{2}||x - Tx|| + \frac{1}{2}||Ty - y|| \le \frac{3}{2}||x - Tx|| + \frac{1}{2}[||Ty - x|| + ||x - y||].$$

Thus, we have

$$\frac{1}{2}\|x - Ty\| \le \frac{3}{2}\|x - Tx\| + \frac{1}{2}\|x - y\| \Leftrightarrow \|x - Ty\| \le 3\|x - Tx\| + \|x - y\|. \tag{3.2}$$

For $N(x, y) = \frac{1}{2}[\|Tx - y\| + \|Ty - x\|]$ one can obtain

$$||x - Ty|| \le ||x - Tx|| + ||Tx - Ty|| \le ||x - Tx|| + \frac{1}{2}[||Tx - y|| + ||Ty - x||]$$

$$\le ||x - Tx|| + \frac{1}{2}[||Tx - x|| + ||x - y||] + \frac{1}{2}||Ty - x||.$$

Thus, we have

$$\frac{1}{2}\|x - Ty\| \le \frac{3}{2}\|x - Tx\| + \frac{1}{2}\|x - y\| \Leftrightarrow \|x - Ty\| \le 3\|x - Tx\| + \|x - y\|. \tag{3.3}$$

Take the second case into account. For N(Tx, y) = ||Tx - y||, we have

$$||x - Ty|| \le ||x - Tx|| + ||Tx - T^{2}x|| + ||T^{2}x - Ty||$$

$$\le ||x - Tx|| + ||x - Tx|| + ||Tx - y||$$

$$= 2||x - Tx|| + ||Tx - y||$$

$$\le 2||x - Tx|| + ||Tx - x|| + ||x - y|| = 3||Tx - x|| + ||x - y||.$$
(3.4)

If $N(Tx, y) = \frac{1}{2}[||T^2x - Tx|| + ||Ty - y||]$ then we have

$$||x - Ty|| \le ||x - Tx|| + ||Tx - T^2x|| + ||T^2x - Ty||$$

$$\le 2||x - Tx|| + \frac{1}{2}[||T^2x - Tx|| + ||Ty - y||]$$

$$\le \frac{5}{2}||x - Tx|| + \frac{1}{2}||Ty - y||$$

$$\le \frac{5}{2}||x - Tx|| + \frac{1}{2}[||Ty - x|| + ||x - y||].$$

Thus, we have

$$\frac{1}{2}\|x - Ty\| \le \frac{5}{2}\|x - Tx\| + \frac{1}{2}\|x - y\| \Leftrightarrow \|x - Ty\| \le 5\|x - Tx\| + \|x - y\|. \tag{3.5}$$

For the last case, $N(Tx, y) = \frac{1}{2} [\|T^2x - y\| + \|Ty - Tx\|]$, we have

$$\begin{split} \|x - Ty\| &\leq \|x - Tx\| + \|Tx - T^2x\| + \|T^2x - Ty\| \\ &\leq 2\|x - Tx\| + \frac{1}{2}[\|T^2x - y\| + \|Ty - Tx\|] \\ &\leq 2\|x - Tx\| + \frac{1}{2}[\|T^2x - Tx\| + \|Tx - x\| + \|x - y\|] + \frac{1}{2}[\|Ty - x\| + \|x - Tx\|] \\ &\leq \frac{7}{2}\|x - Tx\| + \frac{1}{2}\|Ty - x\| + \frac{1}{2}\|x - y\|. \end{split}$$

Thus, we have

$$\frac{1}{2}\|x - Ty\| \le \frac{5}{2}\|x - Tx\| + \frac{1}{2}\|x - y\| \Leftrightarrow \|x - Ty\| \le 5\|x - Tx\| + \|x - y\|. \tag{3.6}$$

Hence, the result follows from (3.1)–(3.6).

Regarding the analogy, we omit the proof of the following Corollaries.

Corollary 20. Let T be a mapping on a subset K of a Banach space E and satisfy (A3)-condition. Then $||x - Ty|| \le 5||Tx - x|| + ||x - y||$ holds for all $x, y \in K$.

Corollary 21. Let T be a mapping on a subset K of a Banach space E and satisfy (KSC)-condition. Then $||x - Ty|| \le 5||Tx - x|| + ||x - y||$ holds for all $x, y \in K$.

Corollary 22. Let T be a mapping on a subset K of a Banach space E and satisfy (CSC)-condition. Then $||x - Ty|| \le 5||Tx - x|| + ||x - y||$ holds for all $x, y \in K$.

Theorem 23. Let T be a mapping on a compact convex subset K of a Banach space E and satisfy (SKC)-condition. Define a sequence $\{x_n\}$ in K by $x_1 \in K$ and $x_{n+1} = \lambda Tx_n + (1-\lambda)x_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n \to \infty} \|Tx_n - x_n\| = 0$ holds. Then $\{x_n\}$ converge strongly to a fixed point of T.

Proof. Regarding that K is compact, one can conclude that $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ that converges to some number, say z, in K. By Proposition 19, we have

$$||x_{n_{\nu}} - Tz|| \le 5||Tx_{n_{\nu}} - x_{n_{\nu}}|| + ||x_{n_{\nu}} - z||, \quad \text{for all } k \in \mathbb{N}.$$
(3.7)

Notice that $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$. Taking this fact into account together with (3.7), we conclude that $\{x_{n_k}\}$ converges to Tz which implies that Tz = z. In other words, $z \in F(T)$. On account of Proposition 11, we get

$$||x_{n+1} - z|| < \lambda ||Tx_n - z|| + (1 - \lambda)||x_n - z|| < ||x_n - z||$$

for $n \in \mathbb{N}$. Thus, $\{x_n\}$ converges to z. \square

Corollary 24. Let T be a mapping on a compact convex subset K of a Banach space E. Define a sequence $\{x_n\}$ in K by $x_1 \in K$ and $x_{n+1} = \lambda Tx_n + (1-\lambda)x_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n \to \infty} \|Tx_n - x_n\| = 0$ holds. If T satisfies one of the following:

- (1) (A3)-condition,
- (2) (KSC)-condition,
- (3) (CSC)-condition,

then $\{x_n\}$ converge strongly to a fixed point of T.

Theorem 25. Let E be a Banach space and T, S be self-mappings on K such that $T(K) \subset S(K)$ and S(K) is a compact convex subset of E and T satisfies (SKC)-condition. Define a sequence $\{x_n\}$ in T(K) by $x_1 \in S(K)$ and $Sx_{n+1} = \lambda Tx_n + (1-\lambda)Sx_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n \to \infty} ||Tx_n - Sx_n|| = 0$ holds. Then T and S have a coincidence point.

Proof. Let $R: S(K) \to S(K)$ where $Ra = T(S^{-1}a)$ for each $a \in S(K)$. It is clear that R is well-defined. Indeed, take $x, y \in S^{-1}a$ such that b = Tx and c = Ty. For $x \in S^{-1}a$ we obtain Ra = Tx and $Ra \subset S(K)$ since $T(K) \subset S(K)$. Since Sx = Sy we get b = c. Thus, R is well-defined.

We claim that R satisfies all conditions of Theorem 23. Let $a, b \in S(K)$ such that $\frac{1}{2}||a - Ra|| \le ||a - b||$. In other words,

$$\frac{1}{2}||Sx - Tx|| = \frac{1}{2}||a - Ra|| \le ||a - b|| = ||Sx - Sy||$$

for $x \in S^{-1}a$ and $y \in S^{-1}b$. Since T satisfies (SKC)-condition, we get

$$||Ra - Rb|| = ||Tx - Ty|| < N(Sx, Sy) = N(a, b)$$

where $N(a, b) = N(Sx, Sy) = \max\{\|a - b\| = \|Sx - Sy\|, \frac{1}{2}[\|Ra - a\| + \|Rb - b\|] = \frac{1}{2}[\|Sx - Tx\| + \|Ty - Sy\|], \frac{1}{2}[\|Ra - b\| + \|a - Rb\|] = \frac{1}{2}[\|Tx - Sy\| + \|Sx - Ty\|]\}.$ Thus,

$$\frac{1}{2}||a-Ra|| \le ||a-b|| \Rightarrow ||Ra-Rb|| \le N(a,b).$$

Further, define a sequence $\{a_n\}$ in S(K) by $a_1 \in S(K)$ and $a_{n+1} = \lambda Ra_n + (1 - \lambda)a_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. For $x_i \in S^{-1}a_i$ we have

$$\lim_{n\to\infty} \|Ra_n - a_n\| = \lim_{n\to\infty} \|Tx_n - Sx_n\| = 0.$$

Thus, all conditions of Theorem 23 are satisfied.

Hence, $\{a_n\}$ converges to t. Then for any $z \in S^{-1}t$, we have Tz = Rt = t = Sz. Therefore, S, T have a coincidence point. \Box

Corollary 26. Let E be a Banach space and T, S: $K \to E$ such that $T(K) \subset S(K)$ and S(K) is a compact convex subset of E. Define a sequence $\{x_n\}$ in T(K) by $x_1 \in S(K)$ and $Sx_{n+1} = \lambda Tx_n + (1-\lambda)Sx_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n \to \infty} \|Tx_n - Sx_n\| = 0$ holds. If S, T satisfy one of the following:

$$\frac{1}{2}\|Sx - Tx\| \le \|Sx - Sy\| \Rightarrow \|Tx - Ty\| \le \max\left\{\|Sx - Sy\|, \frac{1}{2}[\|Sx - Tx\| + \|Ty - Sy\|]\right\},\tag{3.8}$$

$$\frac{1}{2}\|Sx - Tx\| \le \|Sx - Sy\| \Rightarrow \|Tx - Ty\| \le \frac{1}{2}[\|Sx - Tx\| + \|Ty - Sy\|],\tag{3.9}$$

$$\frac{1}{2}||Sx - Tx|| \le ||Sx - Sy|| \Rightarrow ||Tx - Ty|| \le \frac{1}{2}[||Tx - Sy|| + ||Sx - Ty||], \tag{3.10}$$

then T and S have a coincidence point.

Definition 27. Let *E* be a Banach space. *E* is said to have Opial property [7] if for each weakly convergent sequence $\{x_n\}$ in *E* with weak limit *z*

$$\liminf_{n\to\infty} \|x_n - z\| \le \liminf_{n\to\infty} \|x_n - y\|, \quad \text{for all } y \in E \text{ with } y \neq z.$$

All Hilbert spaces, all finite dimensional Banach spaces and Banach sequence spaces $\ell_p(1 \le p < \infty)$ have the Opial property (see [3]).

Proposition 28. Let T be a mapping on a subset K of a Banach space E with Opial property and satisfy (SKC)-condition. If $\{x_n\}$ converges weakly to z and $\lim_{n\to\infty} ||Tx_n-x_n||=0$, then Tz=z. That is I-T is demiclosed at zero.

Proof. Due to Proposition 19, we have

$$||x_n - Tz|| \le 5||Tx_n - x_n|| + ||x_n - z||, \text{ for all } n \in \mathbb{N}.$$

Hence.

$$\liminf_{n\to\infty}\|x_n-Tz\|\leq \liminf_{n\to\infty}\|x_n-z\|.$$

Thus, Opial property implies that Tz = z. \square

Corollary 29. Let T be a mapping on a subset K of a Banach space E with Opial property and satisfy one of the following:

- (1) (A3)-conditions,
- (2) (KSC)-condition.
- (3) (CSC)-condition.

If $\{x_n\}$ converges weakly to z and $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$, then Tz = z. That is I - T is demiclosed at zero.

Theorem 30. Let T be a mapping on a weakly compact convex subset K of a Banach space E with Opial property and satisfy (SKC)-condition. Define a sequence $\{x_n\}$ in K by $x_1 \in K$ and $x_{n+1} = \lambda Tx_n + (1-\lambda)x_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n\to\infty} \|Tx_n - x_n\| = 0$ holds. Then $\{x_n\}$ converge weakly to a fixed point of T.

Proof. We have $\lim_{n\to\infty} \|Tx_n - x_n\| = 0$. Since K is weakly compact, one can conclude that $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ which converges weakly to an element, say z, in E. On account of Proposition 28, we observe that z is a fixed point of T. Note that $\{\|x_n - z\|\}$ is a nondecreasing sequence. Indeed,

$$||x_{n+1} - z|| \le \lambda ||Tx_n - z|| + (1 - \lambda)||x_n - z||.$$

We show $\{x_n\}$ converges to z. Assume the contrary, that is, $\{x_n\}$ does not converge to z. Then there exists a subsequence $\{x_{n_m}\}$ of $\{x_n\}$ and $u \in K$ such that $\{x_{n_m}\}$ converges weakly to u and $u \neq z$. By Proposition 28, Tu = u. Since E has Opial property,

$$\lim_{n \to \infty} \|x_n - z\| = \lim_{k \to \infty} \|x_{n_k} - z\| < \lim_{k \to \infty} \|x_{n_k} - u\| = \lim_{n \to \infty} \|x_n - u\|
= \lim_{m \to \infty} \|x_{n_m} - u\| < \lim_{m \to \infty} \|x_{n_m} - z\| = \lim_{n \to \infty} \|x_n - z\|
(3.11)$$

which is a contradiction. Hence, the proof is completed. \Box

Corollary 31. Let T be a mapping on a weakly compact convex subset K of a Banach space E with Opial property and satisfy one of the following:

- (1) (A3)-condition,
- (2) (KSC)-condition,
- (3) (CSC)-condition.

Define a sequence $\{x_n\}$ in K by $x_1 \in K$ and $x_{n+1} = \lambda Tx_n + (1 - \lambda)x_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n\to\infty} \|Tx_n - x_n\| = 0$ holds. Then $\{x_n\}$ converge weakly to a fixed point of T.

Theorem 32. Let *E* be a Banach space and $T, S : K \to E$ such that $T(K) \subset S(K)$ and S(K) is a weakly compact convex subset of *E* with Opial property. Assume for $x, y \in K$,

$$\frac{1}{2}||Sx - Tx|| \le ||Sx - Sy|| \Rightarrow ||Tx - Ty|| \le N(Sx, Sy)$$

where $N(Sx, Sy) = \max\{\|Sx - Sy\|, \frac{1}{2}[\|Sx - Tx\| + \|Ty - Sy\|], \frac{1}{2}[\|Tx - Sy\| + \|Sx - Ty\|]\}$. Define a sequence $\{x_n\}$ in T(K) by $x_1 \in S(K)$ and $Sx_{n+1} = \lambda Tx_n + (1 - \lambda)Sx_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n \to \infty} \|Tx_n - Sx_n\| = 0$ holds. Then T and S have a coincidence point.

Regarding the analogy with the proof of Theorem 25, we omit the proof.

Corollary 33. Let E be a Banach space and T, $S: K \to E$ such that $T(K) \subset S(K)$ and S(K) is a weakly compact convex subset of E with Opial property. Define a sequence $\{x_n\}$ in T(K) by $x_1 \in S(K)$ and $Sx_{n+1} = \lambda Tx_n + (1-\lambda)Sx_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n \to \infty} ||Tx_n - Sx_n|| = 0$ holds. If S, T satisfy one of the following:

$$\frac{1}{2}\|Sx - Tx\| \le \|Sx - Sy\| \Rightarrow \|Tx - Ty\| \le \max\left\{\|Sx - Sy\|, \frac{1}{2}[\|Sx - Tx\| + \|Ty - Sy\|]\right\},\tag{3.12}$$

$$\frac{1}{2}\|Sx - Tx\| \le \|Sx - Sy\| \Rightarrow \|Tx - Ty\| \le \frac{1}{2}[\|Sx - Tx\| + \|Ty - Sy\|], \tag{3.13}$$

$$\frac{1}{2}\|Sx - Tx\| \le \|Sx - Sy\| \Rightarrow \|Tx - Ty\| \le \frac{1}{2}[\|Tx - Sy\| + \|Sx - Ty\|], \tag{3.14}$$

then T and S have a coincidence point.

A Banach space *E* is called *strictly convex* if ||x + y|| < 2 for all $x, y \in E$ with ||x|| = ||y|| = 1 and $x \neq y$. A Banach space *E* is called *uniformly convex in every direction* (in short, UCED) if for $\varepsilon \in (0, 2]$ and $z \in E$ with ||z|| = 1, there exists $\delta := \delta(\varepsilon, z) > 0$ such that $||x + y|| < 2(1 - \delta)$ for all $x, y \in E$ with ||x|| < 1, ||y|| < 1 and $x - y \in \{tz : t \in [-2, -\varepsilon] \cup [\varepsilon, 2]\}$.

Lemma 34 (See [3]). For a Banach space E, the following are equivalent:

- (1) E is UCED.
- (2) If sequence $\{u_n\}$ and $\{v_n\}$ in E satisfy $\lim_{n\to\infty} \|u_n\| = 1 = \lim_{n\to\infty} \|v_n\|$, $\lim_{n\to\infty} \|u_n + v_n\|$ and $\{u_n v_n\} \subset \{tw : t \in \mathbb{R}\}$ for some $w \in E$ with $\|w\| = 1$, then $\lim_{n\to\infty} \|u_n v_n\| = 0$ holds.

Lemma 35 (See [3]). For a Banach space E, the following are equivalent:

- (1) E is UCED.
- (2) If $\{x_n\}$ is a bounded sequence in E, then a function f on E defined by $f(x) = \limsup_{n \to \infty} \|x_n x\|$ is strictly quasi-convex, that is.

$$f(tx + (1-t)y) < \max\{f(x), f(y)\}$$

for all $t \in (0, 1)$ and $x, y \in E$ with $x \neq y$.

Theorem 36. Let T be a mapping on a weakly compact convex subset K of a UCED Banach space E and satisfy (SKC)-condition. Define a sequence $\{x_n\}$ in K by $x_1 \in K$ and $x_{n+1} = \lambda Tx_n + (1-\lambda)x_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n\to\infty} \|Tx_n - x_n\| = 0$ holds. Then T has a fixed point.

Proof. Set a sequence $\{x_n\}$ in K in such a way that $x_{n+1} = \frac{1}{2}Tx_n + \frac{1}{2}x_n$ for each $n \in \mathbb{N}$ where $x_1 \in K$. Notice that $\limsup_{n \to \infty} \|Tx_n - x_n\| = 0$. Define a continuous convex function f from K into $[0, \infty)$ by $f(x) = \limsup_{n \to \infty} \|x_n - x\|$, for all $x \in K$. Since K is weakly compact and f is weakly lower semi-continuous, there exists $z \in K$ such that $f(z) = \min\{f(x) : x \in K\}$. Regarding Proposition 19, we have $\|x_n - Tz\| \le 5\|Tx_n - x_n\| + \|x_n - z\|$ and thus $f(Tz) \le f(z)$. On account of f(z) being the minimum, f(z) = f(Tz) holds. To show Tz = z we assume the contrary, that is $Tz \ne z$. Since f is strictly quasi-convex, we have

$$f(z) \le f\left(\frac{z + Tz}{2}\right) < \max\{f(z), f(Tz)\} = f(z)$$

which is a contradiction. Thus, we get the desired result. \Box

Corollary 37. Let T be a mapping on a weakly compact convex subset K of a UCED Banach space E and satisfy one of the following:

- (1) (A3)-condition,
- (2) (KSC)-condition,
- (3) (CSC)-condition.

Define a sequence $\{x_n\}$ in K by $x_1 \in K$ and $x_{n+1} = \lambda Tx_n + (1-\lambda)x_n$, for $n \in \mathbb{N}$, where λ lies in $[\frac{1}{2}, 1)$. Suppose $\lim_{n\to\infty} \|Tx_n - x_n\| = 0$ holds. Then T has a fixed point.

Theorem 38. Let & be a family of commuting mappings on a weakly compact convex subset K of a Banach space E. Suppose each mapping in & satisfy (SKC)-condition. Then & has a common fixed point.

Proof. Let $I = \{1, 2, ..., v\}$ be an index set. Let $T_i \in \mathcal{S}$, $i \in I$. Due to Theorem 36, T_i has a fixed point in K, that is, $F(T_i) \neq \emptyset$ for $i \in I$. Proposition 14 implies that each $F(T_i)$ is closed and convex. Suppose that $F := \bigcap_{i=1}^{k-1} F(T_i)$ is non-empty, closed and convex for some $k \in \mathbb{N}$ such that $1 < k \le v$. For $x \in F$ and $i \in I$ with $1 \le i < k$, $T_k x = T_k \circ T_i x = T_i \circ T_k x$ since S is commuting. Thus, $T_k x$ is a fixed point of T_i which yields $T_k x \in F$. So, $T_k(F) \subset F$. In other words, $T_k(F) \subset F$. By Theorem 36, T_k has a fixed point in F, that is, $F \cap F(T_k) = \bigcap_{i=1}^k F(T_i) \neq \emptyset$.

has a fixed point in F, that is, $F \cap F(T_k) = \bigcap_{i=1}^k F(T_i) \neq \emptyset$. Due to Proposition 14, this set is closed and convex. By induction, we obtain $\bigcap_{i=1}^{\nu} F(T_i) \neq \emptyset$. That is equivalent to saying $\{F(T): T \in \mathcal{S}\}$ has the finite intersection property. Since K is weakly compact and F(T) is weakly closed for every $T \in \mathcal{S}$, then $\bigcap_{T \in \mathcal{S}} F(T) \neq \emptyset$. \square

Corollary 39. Let & be a family of commuting mappings on a weakly compact convex subset K of a Banach space E. Suppose each mapping in & satisfies one of the following:

- (1) (A3)-condition,
- (2) (KSC)-condition,
- (3) (CSC)-condition.

Then 8 has a common fixed point.

References

- [1] K. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory, Methods Appl. 71 (11) (2009) 5313-5317.
- [2] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962) 74-79.
- [3] K. Suzuki, Fixed point theorems and convergence theorems for some generalized non expansive mappings, J. Math. Anal. Appl. 340 (2008) 1088-1095.
- [4] K. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861–1869.
- [5] S.L. Singh, S.N Mishra, Remarks on recent fixed point theorems, Fixed Point Theory Appl. 2010 (2010) 18 pages. Article ID 452905.
- [6] E. Karapinar, Remarks on Suzuki (C)-condition, in: Albert Luo, J.A. Tenreiro Machado and Dumitru Baleanu (Eds.), Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems.
- [7] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591–597.