Generalized (C)-conditions and related fixed point theorems

Erdal Karapınar ${ }^{\text {a,* }}$, Kenan Taş ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Cankaya University 06530, Yuzuncuyil, Ankara, Turkey

ARTICLE INFO

Article history:

Received 24 November 2010
Received in revised form 14 April 2011
Accepted 14 April 2011

Keywords:

Contraction mapping
Fixed point theory
Opial property
Suzuki C-conditions

Abstract

In this manuscript, the notion of C-condition [K. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008) 1088-1095] is generalized. Some new fixed point theorems are obtained.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Very recently, Suzuki proved the following fixed point theorem:
Theorem 1 (Suzuki [1]). Let (X, d) be a compact metric space and let T be a mapping on X. Assume $\frac{1}{2} d(x, T x)<d(x, y)$ implies $d(T x, T y)<d(x, y)$ for all $x, y \in X$. Then T has a unique fixed point.

This result is based on the following two theorems:
Theorem 2 (Edelstein [2]). Let (X, d) be a compact metric space and let T be a mapping on X. Assume $d(T x, T y)<d(x, y)$ for all $x, y \in X$ with $x \neq y$. Then T has a unique fixed point.

Theorem 3 (Suzuki $[3,4]$). Define a nonincreasing function θ from $[0,1)$ onto $(1 / 2,1]$ by

$$
\theta(r)= \begin{cases}1 & \text { if } 0 \leq r \leq(\sqrt{5}-1) / 2 \\ (1-r) r^{-2} & \text { if }(\sqrt{5}-1) / 2 \leq r \leq 2^{-1 / 2} \\ (1+r)^{-1} & \text { if } 2^{-1 / 2} \leq r<1\end{cases}
$$

Then for a metric space (X, d), the following are equivalent:
(1) X is complete.
(2) Every mapping T on X satisfying the following has a fixed point. There exists $r \in[0,1)$ such that $\theta(r) d(x, T x) \leq d(x, y)$ implies $d(T x, T y) \leq r d(x, y)$ for all $x, y \in X$.

A mapping T on a subset K of a Banach space E is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in K$.

[^0]Definition 4 ([3,4]). Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy (C)-condition if

$$
\frac{1}{2}\|x-T x\| \leq\|x-y\| \quad \text { implies that }\|T x-T y\| \leq\|x-y\|
$$

for all $x, y \in K$.
Let $F(T)$ be the set of all fixed points of a mapping T. A mapping T on a subset K of a Banach space E is called a quasinonexpansive mapping if $\|T x-z\| \leq\|x-z\|$ for all $x \in K$ and $z \in F(T)$.

We suggest new definitions which are modifications of Suzuki's C-condition:
Definition 5. Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy Suzuki-Ćirić (C)-condition (in short, (SCC)-condition) if

$$
\frac{1}{2}\|x-T x\| \leq\|x-y\| \quad \text { implies that }\|T x-T y\| \leq M(x, y)
$$

where $M(x, y)=\max \{\|x-y\|,\|x-T x\|,\|T y-y\|,\|T x-y\|,\|x-T y\|\}$ for all $x, y \in K$.
Moreover, T is said to satisfy Suzuki-(KC)-condition (in short, (SKC)-condition) if

$$
\frac{1}{2}\|x-T x\| \leq\|x-y\| \quad \text { implies that }\|T x-T y\| \leq N(x, y)
$$

where $N(x, y)=\max \left\{\|x-y\|, \frac{1}{2}[\|x-T x\|+\|T y-y\|], \frac{1}{2}[\|T x-y\|+\|x-T y\|]\right\}$ for all $x, y \in K$.
Definition 6. Let T be a mapping on a subset K of a Banach space E. Then T is said to satisfy (for all $x, y \in K$)
(i) Kannan-Suzuki-(C) condition (in short, (KSC)-condition) if

$$
\frac{1}{2}\|x-T x\| \leq\|x-y\| \quad \text { implies that }\|T x-T y\| \leq \frac{1}{2}[\|T x-x\|+\|y-T y\|]
$$

(ii) Chatterjea-Suzuki-(C) condition (in short, (CSC)-condition) if

$$
\frac{1}{2}\|x-T x\| \leq\|x-y\| \quad \text { implies that }\|T x-T y\| \leq \frac{1}{2}[\|T x-y\|+\|x-T y\|]
$$

In this manuscript, we modify some results of [3], Singh-Mishra [5], Karapınar [6] and suggest some new theorems.

2. Some basic observations

Proposition 7. Every nonexpansive mapping satisfies (SCC)-condition.
Proof. Let T be a nonexpansive mapping on a subset K of a Banach space E, that is, $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in K$. Assume $\frac{1}{2}\|x-T x\| \leq\|x-y\|$. For the case $M(x, y)=\|x-y\|$, the condition (SCC) is satisfied trivially, that is, $\|T x-T y\| \leq M(x, y)=\|x-y\|$. For the other case, that is, $M(x, y) \neq\|x-y\|$, we observe $\|x-y\| \leq M(x, y)$. Thus, $\|T x-T y\| \leq\|x-y\| \leq M(x, y)$ which concludes that T satisfies (SCC)-condition.

Corollary 8. Every nonexpansive mapping satisfies the following conditions:
(A1) $\frac{1}{2}\|x-T x\| \leq\|x-y\|$ implies that $\|T x-T y\| \leq A_{1}(x, y)$
where $A_{1}(x, y)=\max \{\|x-y\|,\|T x-x\|,\|T y-y\|\}$
(A2) $\frac{1}{2}\|x-T x\| \leq\|x-y\|$ implies that $\|T x-T y\| \leq A_{2}(x, y)$

$$
\text { where } A_{2}(x, y)=\max \{\|x-y\|,\|T x-y\|, \overline{\| T y}-x \|\}
$$

Regarding the analogy, we omit the proof of this Corollary.
Proposition 9. Every nonexpansive mapping satisfies (SKC)-condition.
Proof. Let T be a nonexpansive mapping on a subset K of a Banach space E, that is, $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in K$. Assume $\frac{1}{2}\|x-T x\| \leq\|x-y\|$. If the case $N(x, y)=\|x-y\|$ happen, then $\|T x-T y\| \leq N(x, y)=\|x-y\|$ are satisfied trivially. If not, that is, $N(x, y) \neq\|x-y\|$ then $\|x-y\| \leq N(x, y)$. Thus, $\|T x-T y\| \leq\|x-y\| \leq N(x, y)$ which concludes that T satisfies (SKC)-condition.

Corollary 10. Every nonexpansive mapping satisfies the following conditions:
(A3) $\frac{1}{2}\|x-T x\| \leq\|x-y\|$ implies that $\|T x-T y\| \leq A_{3}(x, y)$
where $A_{3}(x, y)=\max \left\{\|x-y\|, \frac{1}{2}[\|T x-x\|+\|T y-y\|]\right\}$
(A4) $\frac{1}{2}\|x-T x\| \leq\|x-y\|$ implies that $\|T x-T y\| \leq A_{4}(x, y)$

$$
\text { where } A_{4}(x, y)=\max \left\{\|x-y\|, \frac{1}{2}[\|T x-y\|+\|T y-x\|]\right\} \text {. }
$$

Regarding the analogy, we omit the proof of this Corollary.
Proposition 11. If a mapping T satisfies (SKC)-condition and has a fixed point, then it is a quasi-nonexpansive mapping.
Proof. Let T be a mapping on a subset K of a Banach space E and satisfy (SKC)-condition. Suppose T has a fixed point, in other words, $z \in F(T)$. Thus,

$$
\begin{equation*}
0=\frac{1}{2}\|z-T z\| \leq\|z-y\| \quad \text { implies that }\|T z-T y\| \leq N(z, y) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
N(z, y) & =\max \left\{\|z-y\|, \frac{1}{2}[\|z-T z\|+\|T y-y\|], \frac{1}{2}[\|T z-y\|+\|z-T y\|]\right\} \\
& =\max \left\{\|z-y\|, \frac{1}{2}\|T y-y\|, \frac{1}{2}(\|z-y\|+\|z-T y\|)\right\} . \tag{2.2}
\end{align*}
$$

If $N(z, y)=\frac{1}{2}(\|z-y\|+\|z-T y\|)$, then $\|z-T y\|=\|T z-T y\| \leq N(z, y)=\frac{1}{2}(\|z-y\|+\|z-T y\|)$ then we get $\|T z-T y\|=\|z-T y\| \leq\|z-y\|$.

If $N(z, y)=\|z-y\|$, then we are done.
If $N(z, y)=\frac{1}{2}\|T y-y\| \leq[\|T y-z\|+\|z-y\|]$, then

$$
\|z-T y\|=\|T z-T y\| \leq N(z, y)=\frac{1}{2}\|T y-y\| \leq \frac{1}{2}[\|T y-z\|+\|z-y\|]
$$

and thus $\|z-T y\|=\|T z-T y\| \leq\|z-y\|$ which completes the proof.
Corollary 12. If a mapping T satisfies one of the following:
(1) (A3)-condition,
(2) (A4)-condition,
(3) (KSC)-condition,
(4) (CSC)-condition,
and has a fixed point, then it is a quasi-nonexpansive mapping.
Example 13. Let S and T be mappings on $[0,4]$ such that

$$
T x=\left\{\begin{array}{ll}
0 & \text { if } x \neq 4 \\
1 & \text { if } x=4
\end{array} \text { and } S x= \begin{cases}0 & \text { if } x \neq 4 \\
3 & \text { if } x=4\end{cases}\right.
$$

then,
(i) T satisfies both (SCC)-condition and (SKC)-condition but T is not nonexpansive.
(ii) S is quasi-nonexpansive and $F(S) \neq \emptyset$ but S does not satisfy (SKC)-condition.

Proof. (i) If $x<y$ and $(x, y) \in([0,4] \times[0,4]) \backslash((3,4) \times\{4\})$. Then $\|T x-T y\| \leq M(x, y)$ and $\|T x-T y\| \leq N(x, y)$ holds. If $x \in(3,4)$ and $y=4$, then

$$
\frac{1}{2}\|x-T x\|=\frac{x}{2}>1>\|x-y\| \quad \text { and } \quad \frac{1}{2}\|y-T y\|>1>\|x-y\|
$$

hold. Thus, T satisfies conditions (SCC) and (SKC). Since T is not continuous, T is not nonexpansive.
(ii) It is clear that $F(S)=\{0\} \neq \emptyset$ and S is quasi-nonexpansive. Since,

$$
\frac{1}{2}\|4-S 4\|=\frac{1}{2} \leq 1=\|4-3\| \quad \text { and } \quad\|S 4-S 3\|=3>2=M(4,3)
$$

where

$$
M(4,3)=\max \left\{\|4-3\|=1, \frac{1}{2}[\|4-S 4\|+\|S 3-3\|]=2, \frac{1}{2}[\|S 3-4\|+\|3-S 4\|]=2\right\}=2
$$

hold, S does not satisfy (SKC)-condition.
Proposition 14. Let T be a mapping on a closed subset K of a Banach space E. Assume that T satisfies (SKC)-condition. Then $F(T)$ is closed. Moreover, E is strictly convex and K is convex, then $F(T)$ is also convex.

Proof. Let $\left\{x_{n}\right\}$ be a sequence in $F(T)$ and converge to a point $x \in K$. It is clear that

$$
\frac{1}{2}\left\|x_{n}-T x_{n}\right\|=0 \leq\left\|x_{n}-x\right\| \quad \text { for } n \in \mathbb{N}
$$

Thus, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|x_{n}-T x\right\| \leq \limsup _{n \rightarrow \infty}\left\|T x_{n}-T x\right\| \leq \limsup _{n \rightarrow \infty} N\left(x_{n}, x\right) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
N\left(x_{n}, x\right) & =\max \left\{\left\|x_{n}-x\right\|, \frac{1}{2}\left[\left\|x_{n}-T x_{n}\right\|+\|T x-x\|\right], \frac{1}{2}\left[\left\|T x_{n}-x\right\|+\left\|x_{n}-T x\right\|\right]\right\} \\
& \leq \max \left\{\left\|x_{n}-x\right\|, \frac{1}{2}\|T x-x\|, \frac{1}{2}\left[\left\|x_{n}-x\right\|+\left\|x_{n}-T x\right\|\right]\right\} .
\end{aligned}
$$

If $N\left(x_{n}, x\right)=\frac{1}{2}\|T x-x\|$ then, the expression (2.3) turns into

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\|x_{n}-T x\right\| & \leq \limsup _{n \rightarrow \infty}\left\|T x_{n}-T x\right\| \leq \limsup _{n \rightarrow \infty} N\left(x_{n}, x\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{2}\|T x-x\|=\frac{1}{2}\|x-T x\| \tag{2.4}
\end{align*}
$$

which implies that $\|T x-x\| \leq \frac{1}{2}\|T x-x\|$. This is a contradiction, so this cannot happen. For the case, $N\left(x_{n}, x\right)=$ $\frac{1}{2}\left[\left\|x_{n}-x\right\|+\left\|x_{n}-T x\right\|\right]$, the expression (2.3) yields that

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\|x_{n}-T x\right\| & =\limsup _{n \rightarrow \infty}\left\|T x_{n}-T x\right\| \leq \limsup _{n \rightarrow \infty} N\left(x_{n}, x\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{2}\left[\left\|x_{n}-x\right\|+\left\|x_{n}-T x\right\|\right] \leq \frac{1}{2}\|x-T x\| \tag{2.5}
\end{align*}
$$

which yields that $\|T x-x\| \leq \frac{1}{2}\|T x-x\|$. This is also a contradiction, so this cannot happen either. If $N\left(x_{n}, x\right)=\left\|x_{n}-x\right\|$ then, the expression (2.3) turns into

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|x_{n}-T x\right\| \leq \limsup _{n \rightarrow \infty}\left\|T x_{n}-T x\right\| \leq \limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0 \tag{2.6}
\end{equation*}
$$

So, we are done. In other words, $\left\{x_{n}\right\}$ converges to $T x$. Uniqueness of the limit implies that $T x=x$ and hence $F(T)$ is closed.
Suppose that E is strictly convex and K is convex. Take fixed points $x, y \in K$ with $x \neq y$ and fix $t \in(0,1)$ and define $z:=t x+(1-t) y \in K$. So we get

$$
\begin{align*}
\|x-y\| & \leq\|x-T z\|+\|T z-y\|=\|T x-T z\|+\|T z-T y\| \\
& \leq N(x, z)+N(y, z) \tag{2.7}
\end{align*}
$$

where

$$
\begin{aligned}
N(x, z) & =\max \left\{\|x-z\|, \frac{1}{2}[\|x-T x\|+\|T z-z\|], \frac{1}{2}[\|T x-z\|+\|x-T z\|]\right\} \\
& =\max \left\{\|x-z\|, \frac{1}{2}\|T z-z\|, \frac{1}{2}[\|x-z\|+\|x-T z\|]\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
N(z, y) & =\max \left\{\|z-y\|, \frac{1}{2}[\|z-T z\|+\|T y-y\|], \frac{1}{2}[\|T z-y\|+\|z-T y\|]\right\} \\
& =\max \left\{\|z-y\|, \frac{1}{2}\|T z-z\|, \frac{1}{2}[\|T z-y\|+\|z-y\|]\right\}
\end{aligned}
$$

Since E is strictly convex, there exists $s \in[0,1]$ such that $T z=s x+(1-s) y$. Observe that

$$
\begin{equation*}
(1-s)\|x-y\|=\|T x-T z\| \leq N(x, z) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
N(x, z) & =\max \left\{\|x-z\|, \frac{1}{2}[\|x-T x\|+\|T z-z\|], \frac{1}{2}[\|T x-z\|+\|x-T z\|]\right\} \\
& =\max \left\{\|x-z\|, \frac{1}{2}\|T z-z\|, \frac{1}{2}[\|x-z\|+\|x-T z\|]\right\}
\end{aligned}
$$

If $N(x, z)=\|x-z\|$, then the expression (2.8) becomes

$$
\begin{equation*}
(1-s)\|x-y\|=\|T x-T z\| \leq N(x, z)=\|x-z\|=(1-t)\|x-y\| . \tag{2.9}
\end{equation*}
$$

If $N(x, z)=\frac{1}{2}[\|x-z\|+\|x-T z\|]$, then the expression (2.8) turns into

$$
\begin{equation*}
(1-s)\|x-y\|=\|T x-T z\| \leq N(x, z)=\frac{1}{2}[\|x-z\|+\|x-T z\|]=\frac{1}{2}[(1-t)\|x-y\|+(1-s)\|x-y\|] . \tag{2.10}
\end{equation*}
$$

For the last case $N(x, z)=\frac{1}{2}\|z-T z\|$, the expression (2.8) gives

$$
\begin{align*}
(1-s)\|x-y\|=\|T x-T z\| & \leq N(x, z)=\frac{1}{2}[\|T z-z\|] \\
& \leq \frac{1}{2}[\|x-z\|+\|x-T z\|]=\frac{1}{2}[(1-t)\|x-y\|+(1-s)\|x-y\|] . \tag{2.11}
\end{align*}
$$

Thus, from (2.9)-(2.11) we conclude that $(1-s) \leq(1-t)$.
If we consider

$$
\begin{equation*}
s\|x-y\|=\|T y-T z\| \leq N(y, z), \tag{2.12}
\end{equation*}
$$

then proceeding as above we find that $s \leq t$. Consequently $s=t$. Hence $z \in F(T)$.
Corollary 15. Let T be a mapping on a closed subset K of a Banach space E. Assume that T satisfies one of the following:
(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Then $F(T)$ is closed. Moreover, E is strictly convex and K is convex, then $F(T)$ is also convex.
Proposition 16. If T satisfies the condition

$$
\frac{1}{2}\|x-T x\| \leq\|x-y\| \Rightarrow\|T x-T y\| \leq \frac{1}{4}[\|T x-x\|+\|y-T y\|]
$$

for all $x, y \in K$, then T is nonexpansive.

Proof.

$$
\begin{aligned}
\|T x-T y\| & \leq \frac{1}{4}[\|T x-x\|+\|y-T y\|] \\
& \leq \frac{1}{4}[2\|y-x\|+2\|y-x\|]=\|x-y\| .
\end{aligned}
$$

Proposition 17. If T satisfies the condition

$$
\frac{1}{2}\|x-T x\| \leq\|x-y\| \Rightarrow\|T x-T y\| \leq \frac{1}{5}[\|T x-x\|+\|x-y\|+\|y-T y\|],
$$

for all $x, y \in K$, then T is nonexpansive.

Proof.

$$
\begin{aligned}
\|T x-T y\| & \leq \frac{1}{5}[\|T x-x\|+\|x-y\|+\|y-T y\|] \\
& \leq \frac{1}{5}[2\|y-x\|+\|x-y\|+2\|y-x\|]=\|x-y\| .
\end{aligned}
$$

Proposition 18. Let T be a mapping on a closed subset K of a Banach space E that satisfies the condition (SKC). Then, for every $x, y \in K$, the following hold:
(i) $\left\|T x-T^{2} x\right\| \leq\|x-T x\|$
(ii) either $\frac{1}{2}\|x-T x\| \leq\|x-y\|$ or $\frac{1}{2}\left\|T x-T^{2} x\right\| \leq\|T x-y\|$
(iii) either $\|T x-T y\| \leq N(x, y)$ or $\left\|T^{2} x-T y\right\| \leq N(T x, y)$
where

$$
\begin{aligned}
& N(x, y)=\max \left\{\|x-y\|, \frac{1}{2}[\|T x-x\|+\|T y-y\|], \frac{1}{2}[\|T x-y\|+\|T y-x\|]\right\} \text { and } \\
& N(T x, y)=\max \left\{\|T x-y\|, \frac{1}{2}\left[\left\|T^{2} x-T x\right\|+\|T y-y\|\right], \frac{1}{2}\left[\left\|T^{2} x-y\right\|+\|T y-T x\|\right]\right\} .
\end{aligned}
$$

Proof. The first statement follows from (SKC)-condition. Indeed, we always have $\frac{1}{2}\|x-T x\| \leq\|x-T x\|$ which yields that

$$
\begin{equation*}
\left\|T x-T^{2} x\right\| \leq N(x, T x) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{aligned}
N(x, T x) & =\max \left\{\|x-T x\|, \frac{1}{2}\left[\|T x-x\|+\left\|T^{2} x-T x\right\|\right], \frac{1}{2}\left[\|T x-T x\|+\left\|T^{2} x-x\right\|\right]\right\} \\
& =\max \left\{\|x-T x\|, \frac{1}{2}\left[\|T x-x\|+\left\|T^{2} x-T x\right\|\right], \frac{1}{2}\left\|T^{2} x-x\right\|\right\}
\end{aligned}
$$

If $N(x, T x)=\|x-T x\|$ we are done. If $N(x, T x)=\frac{1}{2}\left[\|T x-x\|+\left\|T^{2} x-T x\right\|\right]$ then the expression (2.13) turns into

$$
\begin{equation*}
\left\|T x-T^{2} x\right\| \leq N(x, T x)=\frac{1}{2}\left[\|T x-x\|+\left\|T^{2} x-T x\right\|\right] \tag{2.14}
\end{equation*}
$$

By simplifying the expression (2.14), one can get (i). For the case $N(x, T x)=\frac{1}{2}\left\|T^{2} x-x\right\|$ the expression (2.13) turns into

$$
\begin{equation*}
\left\|T x-T^{2} x\right\| \leq N(x, T x)=\frac{1}{2}\left\|T^{2} x-x\right\| \leq \frac{1}{2}\left[\|T x-x\|+\left\|T^{2} x-T x\right\|\right] \tag{2.15}
\end{equation*}
$$

which implies (i).
It is clear that (iii) is a consequence of (ii). To prove (ii), assume the contrary, that is,

$$
\frac{1}{2}\|x-T x\|>\|x-y\| \quad \text { and } \quad \frac{1}{2}\left\|T x-T^{2} x\right\|>\|T x-y\|
$$

holds for all $x, y \in K$. Then by triangle inequality and (i), we have

$$
\begin{aligned}
\|x-T x\| & \leq\|x-y\|+\|y-T x\| \\
& <\frac{1}{2}\|x-T x\|+\frac{1}{2}\left\|T x-T^{2} x\right\| \\
& \leq \frac{1}{2}\|x-T x\|+\frac{1}{2}\|x-T x\|=\|x-T x\|
\end{aligned}
$$

which is a contradiction. Thus, we have (ii).

3. Main results

Proposition 19. Let T be a mapping on a subset K of a Banach space E and satisfy (SKC)-condition. Then $\|x-T y\| \leq$ $5\|T x-x\|+\|x-y\|$ holds for all $x, y \in K$.
Proof. The proof is based on Proposition 18 which says that either

$$
\|T x-T y\| \leq N(x, y) \quad \text { or } \quad\left\|T^{2} x-T y\right\| \leq N(T x, y)
$$

holds, where $N(x, y)=\max \left\{\|x-y\|, \frac{1}{2}[\|T x-x\|+\|T y-y\|], \frac{1}{2}[\|T x-y\|+\|T y-x\|]\right\}$ and

$$
N(T x, y)=\max \left\{\|T x-y\|, \frac{1}{2}\left[\left\|T^{2} x-T x\right\|+\|T y-y\|\right], \frac{1}{2}\left[\left\|T^{2} x-y\right\|+\|T y-T x\|\right]\right\}
$$

Consider the first case. If $N(x, y)=\|x-y\|$ then we have

$$
\begin{equation*}
\|x-T y\| \leq\|x-T x\|+\|T x-T y\| \leq\|x-T x\|+\|x-y\| \tag{3.1}
\end{equation*}
$$

For $N(x, y)=\frac{1}{2}[\|T x-x\|+\|T y-y\|]$ one can observe

$$
\begin{aligned}
\|x-T y\| & \leq\|x-T x\|+\|T x-T y\| \leq\|x-T x\|+\frac{1}{2}[\|T x-x\|+\|T y-y\|] \\
& \leq \frac{3}{2}\|x-T x\|+\frac{1}{2}\|T y-y\| \leq \frac{3}{2}\|x-T x\|+\frac{1}{2}[\|T y-x\|+\|x-y\|]
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\frac{1}{2}\|x-T y\| \leq \frac{3}{2}\|x-T x\|+\frac{1}{2}\|x-y\| \Leftrightarrow\|x-T y\| \leq 3\|x-T x\|+\|x-y\| \tag{3.2}
\end{equation*}
$$

For $N(x, y)=\frac{1}{2}[\|T x-y\|+\|T y-x\|]$ one can obtain

$$
\begin{aligned}
\|x-T y\| & \leq\|x-T x\|+\|T x-T y\| \leq\|x-T x\|+\frac{1}{2}[\|T x-y\|+\|T y-x\|] \\
& \leq\|x-T x\|+\frac{1}{2}[\|T x-x\|+\|x-y\|]+\frac{1}{2}\|T y-x\|
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\frac{1}{2}\|x-T y\| \leq \frac{3}{2}\|x-T x\|+\frac{1}{2}\|x-y\| \Leftrightarrow\|x-T y\| \leq 3\|x-T x\|+\|x-y\| \tag{3.3}
\end{equation*}
$$

Take the second case into account. For $N(T x, y)=\|T x-y\|$, we have

$$
\begin{align*}
\|x-T y\| & \leq\|x-T x\|+\left\|T x-T^{2} x\right\|+\left\|T^{2} x-T y\right\| \\
& \leq\|x-T x\|+\|x-T x\|+\|T x-y\| \\
& =2\|x-T x\|+\|T x-y\| \\
& \leq 2\|x-T x\|+\|T x-x\|+\|x-y\|=3\|T x-x\|+\|x-y\| \tag{3.4}
\end{align*}
$$

If $N(T x, y)=\frac{1}{2}\left[\left\|T^{2} x-T x\right\|+\|T y-y\|\right]$ then we have

$$
\begin{aligned}
\|x-T y\| & \leq\|x-T x\|+\left\|T x-T^{2} x\right\|+\left\|T^{2} x-T y\right\| \\
& \leq 2\|x-T x\|+\frac{1}{2}\left[\left\|T^{2} x-T x\right\|+\|T y-y\|\right] \\
& \leq \frac{5}{2}\|x-T x\|+\frac{1}{2}\|T y-y\| \\
& \leq \frac{5}{2}\|x-T x\|+\frac{1}{2}[\|T y-x\|+\|x-y\|]
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\frac{1}{2}\|x-T y\| \leq \frac{5}{2}\|x-T x\|+\frac{1}{2}\|x-y\| \Leftrightarrow\|x-T y\| \leq 5\|x-T x\|+\|x-y\| . \tag{3.5}
\end{equation*}
$$

For the last case, $N(T x, y)=\frac{1}{2}\left[\left\|T^{2} x-y\right\|+\|T y-T x\|\right]$, we have

$$
\begin{aligned}
\|x-T y\| & \leq\|x-T x\|+\left\|T x-T^{2} x\right\|+\left\|T^{2} x-T y\right\| \\
& \leq 2\|x-T x\|+\frac{1}{2}\left[\left\|T^{2} x-y\right\|+\|T y-T x\|\right] \\
& \leq 2\|x-T x\|+\frac{1}{2}\left[\left\|T^{2} x-T x\right\|+\|T x-x\|+\|x-y\|\right]+\frac{1}{2}[\|T y-x\|+\|x-T x\|] \\
& \leq \frac{7}{2}\|x-T x\|+\frac{1}{2}\|T y-x\|+\frac{1}{2}\|x-y\| .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\frac{1}{2}\|x-T y\| \leq \frac{5}{2}\|x-T x\|+\frac{1}{2}\|x-y\| \Leftrightarrow\|x-T y\| \leq 5\|x-T x\|+\|x-y\| . \tag{3.6}
\end{equation*}
$$

Hence, the result follows from (3.1)-(3.6).
Regarding the analogy, we omit the proof of the following Corollaries.
Corollary 20. Let T be a mapping on a subset K of a Banach space E and satisfy (A3)-condition. Then $\|x-T y\| \leq 5\|T x-x\|+$ $\|x-y\|$ holds for all $x, y \in K$.

Corollary 21. Let T be a mapping on a subset K of a Banach space E and satisfy (KSC)-condition. Then $\|x-T y\| \leq 5\|T x-x\|+$ $\|x-y\|$ holds for all $x, y \in K$.

Corollary 22. Let T be a mapping on a subset K of a Banach space E and satisfy (CSC)-condition. Then $\|x-T y\| \leq 5\|T x-x\|+$ $\|x-y\|$ holds for all $x, y \in K$.

Theorem 23. Let T be a mapping on a compact convex subset K of a Banach space E and satisfy (SKC)-condition. Define a sequence $\left\{x_{n}\right\}$ in K by $x_{1} \in K$ and $x_{n+1}=\lambda T x_{n}+(1-\lambda) x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}, 1\right)$. Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$ holds. Then $\left\{x_{n}\right\}$ converge strongly to a fixed point of T.
Proof. Regarding that K is compact, one can conclude that $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ that converges to some number, say z, in K. By Proposition 19, we have

$$
\begin{equation*}
\left\|x_{n_{k}}-T z\right\| \leq 5\left\|T x_{n_{k}}-x_{n_{k}}\right\|+\left\|x_{n_{k}}-z\right\|, \quad \text { for all } k \in \mathbb{N} . \tag{3.7}
\end{equation*}
$$

Notice that $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$. Taking this fact into account together with (3.7), we conclude that $\left\{x_{n_{k}}\right\}$ converges to $T z$ which implies that $T z=z$. In other words, $z \in F(T)$. On account of Proposition 11, we get

$$
\left\|x_{n+1}-z\right\| \leq \lambda\left\|T x_{n}-z\right\|+(1-\lambda)\left\|x_{n}-z\right\| \leq\left\|x_{n}-z\right\|
$$

for $n \in \mathbb{N}$. Thus, $\left\{x_{n}\right\}$ converges to z.
Corollary 24. Let T be a mapping on a compact convex subset K of a Banach space E. Define a sequence $\left\{x_{n}\right\}$ in K by $x_{1} \in K$ and $x_{n+1}=\lambda T x_{n}+(1-\lambda) x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}, 1\right)$. Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$ holds. If T satisfies one of the following:
(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition,
then $\left\{x_{n}\right\}$ converge strongly to a fixed point of T.
Theorem 25. Let E be a Banach space and T, S be self-mappings on K such that $T(K) \subset S(K)$ and $S(K)$ is a compact convex subset of E and T satisfies (SKC)-condition. Define a sequence $\left\{x_{n}\right\}$ in $T(K)$ by $x_{1} \in S(K)$ and $S x_{n+1}=\lambda T x_{n}+(1-\lambda) S x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}, 1\right)$. Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-S x_{n}\right\|=0$ holds. Then T and S have a coincidence point.
Proof. Let $R: S(K) \rightarrow S(K)$ where $R a=T\left(S^{-1} a\right)$ for each $a \in S(K)$. It is clear that R is well-defined. Indeed, take $x, y \in S^{-1} a$ such that $b=T x$ and $c=T y$. For $x \in S^{-1} a$ we obtain $R a=T x$ and $R a \subset S(K)$ since $T(K) \subset S(K)$. Since $S x=S y$ we get $b=c$. Thus, R is well-defined.

We claim that R satisfies all conditions of Theorem 23. Let $a, b \in S(K)$ such that $\frac{1}{2}\|a-R a\| \leq\|a-b\|$. In other words,

$$
\frac{1}{2}\|S x-T x\|=\frac{1}{2}\|a-R a\| \leq\|a-b\|=\|S x-S y\|
$$

for $x \in S^{-1} a$ and $y \in S^{-1} b$. Since T satisfies (SKC)-condition, we get

$$
\|R a-R b\|=\|T x-T y\| \leq N(S x, S y)=N(a, b)
$$

where $N(a, b)=N(S x, S y)=\max \left\{\|a-b\|=\|S x-S y\|, \frac{1}{2}[\|R a-a\|+\|R b-b\|]=\frac{1}{2}[\|S x-T x\|+\|T y-S y\|], \frac{1}{2}[\| R a-\right.$ $\left.b\|+\| a-R b \|]=\frac{1}{2}[\|T x-S y\|+\|S x-T y\|]\right\}$.

Thus,

$$
\frac{1}{2}\|a-R a\| \leq\|a-b\| \Rightarrow\|R a-R b\| \leq N(a, b)
$$

Further, define a sequence $\left\{a_{n}\right\}$ in $S(K)$ by $a_{1} \in S(K)$ and $a_{n+1}=\lambda R a_{n}+(1-\lambda) a_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}, 1\right)$. For $x_{i} \in S^{-1} a_{i}$ we have

$$
\lim _{n \rightarrow \infty}\left\|R a_{n}-a_{n}\right\|=\lim _{n \rightarrow \infty}\left\|T x_{n}-S x_{n}\right\|=0
$$

Thus, all conditions of Theorem 23 are satisfied.
Hence, $\left\{a_{n}\right\}$ converges to t. Then for any $z \in S^{-1} t$, we have $T z=R t=t=S z$. Therefore, S, T have a coincidence point.

Corollary 26. Let E be a Banach space and $T, S: K \rightarrow E$ such that $T(K) \subset S(K)$ and $S(K)$ is a compact convex subset of E. Define a sequence $\left\{x_{n}\right\}$ in $T(K)$ by $x_{1} \in S(K)$ and $S x_{n+1}=\lambda T x_{n}+(1-\lambda) S x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}\right.$, 1). Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-S x_{n}\right\|=0$ holds. If S, T satisfy one of the following:

$$
\begin{align*}
& \frac{1}{2}\|S x-T x\| \leq\|S x-S y\| \Rightarrow\|T x-T y\| \leq \max \left\{\|S x-S y\|, \frac{1}{2}[\|S x-T x\|+\|T y-S y\|]\right\} \tag{3.8}\\
& \frac{1}{2}\|S x-T x\| \leq\|S x-S y\| \Rightarrow\|T x-T y\| \leq \frac{1}{2}[\|S x-T x\|+\|T y-S y\|] \tag{3.9}\\
& \frac{1}{2}\|S x-T x\| \leq\|S x-S y\| \Rightarrow\|T x-T y\| \leq \frac{1}{2}[\|T x-S y\|+\|S x-T y\|] \tag{3.10}
\end{align*}
$$

then T and S have a coincidence point.

Definition 27. Let E be a Banach space. E is said to have Opial property [7] if for each weakly convergent sequence $\left\{x_{n}\right\}$ in E with weak limit z

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-z\right\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|, \quad \text { for all } y \in E \text { with } y \neq z
$$

All Hilbert spaces, all finite dimensional Banach spaces and Banach sequence spaces $\ell_{p}(1 \leq p<\infty)$ have the Opial property (see [3]).

Proposition 28. Let T be a mapping on a subset K of a Banach space E with Opial property and satisfy (SKC)-condition. If $\left\{x_{n}\right\}$ converges weakly to z and $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$, then $T z=z$. That is $I-T$ is demiclosed at zero.
Proof. Due to Proposition 19, we have

$$
\left\|x_{n}-T z\right\| \leq 5\left\|T x_{n}-x_{n}\right\|+\left\|x_{n}-z\right\|, \quad \text { for all } n \in \mathbb{N} .
$$

Hence,

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-T z\right\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}-z\right\| .
$$

Thus, Opial property implies that $T z=z$.
Corollary 29. Let T be a mapping on a subset K of a Banach space E with Opial property and satisfy one of the following:
(1) (A3)-conditions,
(2) (KSC)-condition,
(3) (CSC)-condition.

If $\left\{x_{n}\right\}$ converges weakly to z and $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$, then $T z=z$. That is $I-T$ is demiclosed at zero.
Theorem 30. Let T be a mapping on a weakly compact convex subset K of a Banach space E with Opial property and satisfy (SKC)-condition. Define a sequence $\left\{x_{n}\right\}$ in K by $x_{1} \in K$ and $x_{n+1}=\lambda T x_{n}+(1-\lambda) x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}\right.$, 1). Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$ holds. Then $\left\{x_{n}\right\}$ converge weakly to a fixed point of T.
Proof. We have $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$. Since K is weakly compact, one can conclude that $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ which converges weakly to an element, say z, in E. On account of Proposition 28 , we observe that z is a fixed point of T. Note that $\left\{\left\|x_{n}-z\right\|\right\}$ is a nondecreasing sequence. Indeed,

$$
\left\|x_{n+1}-z\right\| \leq \lambda\left\|T x_{n}-z\right\|+(1-\lambda)\left\|x_{n}-z\right\|
$$

We show $\left\{x_{n}\right\}$ converges to z. Assume the contrary, that is, $\left\{x_{n}\right\}$ does not converge to z. Then there exists a subsequence $\left\{x_{n_{m}}\right\}$ of $\left\{x_{n}\right\}$ and $u \in K$ such that $\left\{x_{n_{m}}\right\}$ converges weakly to u and $u \neq z$. By Proposition $28, T u=u$. Since E has Opial property,

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z\right\| & =\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-z\right\|<\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-u\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-u\right\| \\
& =\lim _{m \rightarrow \infty}\left\|x_{n_{m}}-u\right\|<\lim _{m \rightarrow \infty}\left\|x_{n_{m}}-z\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-z\right\| \tag{3.11}
\end{align*}
$$

which is a contradiction. Hence, the proof is completed.
Corollary 31. Let T be a mapping on a weakly compact convex subset K of a Banach space E with Opial property and satisfy one of the following:
(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Define a sequence $\left\{x_{n}\right\}$ in K by $x_{1} \in K$ and $x_{n+1}=\lambda T x_{n}+(1-\lambda) x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}\right.$, 1$)$. Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$ holds. Then $\left\{x_{n}\right\}$ converge weakly to a fixed point of T.

Theorem 32. Let E be a Banach space and $T, S: K \rightarrow E$ such that $T(K) \subset S(K)$ and $S(K)$ is a weakly compact convex subset of E with Opial property. Assume for $x, y \in K$,

$$
\frac{1}{2}\|S x-T x\| \leq\|S x-S y\| \Rightarrow\|T x-T y\| \leq N(S x, S y)
$$

where $N(S x, S y)=\max \left\{\|S x-S y\|, \frac{1}{2}[\|S x-T x\|+\|T y-S y\|], \frac{1}{2}[\|T x-S y\|+\|S x-T y\|]\right\}$. Define a sequence $\left\{x_{n}\right\}$ in $T(K)$ by $x_{1} \in S(K)$ and $S x_{n+1}=\lambda T x_{n}+(1-\lambda) S x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}, 1\right)$. Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-S x_{n}\right\|=0$ holds. Then T and S have a coincidence point.

Regarding the analogy with the proof of Theorem 25, we omit the proof.
Corollary 33. Let E be a Banach space and $T, S: K \rightarrow E$ such that $T(K) \subset S(K)$ and $S(K)$ is a weakly compact convex subset of E with Opial property. Define a sequence $\left\{x_{n}\right\}$ in $T(K)$ by $x_{1} \in S(K)$ and $S x_{n+1}=\lambda T x_{n}+(1-\lambda) S x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}, 1\right)$. Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-S x_{n}\right\|=0$ holds. If S, T satisfy one of the following:

$$
\begin{align*}
& \frac{1}{2}\|S x-T x\| \leq\|S x-S y\| \Rightarrow\|T x-T y\| \leq \max \left\{\|S x-S y\|, \frac{1}{2}[\|S x-T x\|+\|T y-S y\|]\right\} \tag{3.12}\\
& \frac{1}{2}\|S x-T x\| \leq\|S x-S y\| \Rightarrow\|T x-T y\| \leq \frac{1}{2}[\|S x-T x\|+\|T y-S y\|] \tag{3.13}\\
& \frac{1}{2}\|S x-T x\| \leq\|S x-S y\| \Rightarrow\|T x-T y\| \leq \frac{1}{2}[\|T x-S y\|+\|S x-T y\|] \tag{3.14}
\end{align*}
$$

then T and S have a coincidence point.
A Banach space E is called strictly convex if $\|x+y\|<2$ for all $x, y \in E$ with $\|x\|=\|y\|=1$ and $x \neq y$. A Banach space E is called uniformly convex in every direction (in short, UCED) if for $\varepsilon \in(0,2]$ and $z \in E$ with $\|z\|=1$, there exists $\delta:=\delta(\varepsilon, z)>0$ such that $\|x+y\| \leq 2(1-\delta)$ for all $x, y \in E$ with $\|x\| \leq 1,\|y\| \leq 1$ and $x-y \in\{t z: t \in[-2,-\varepsilon] \cup[\varepsilon, 2]\}$.

Lemma 34 (See [3]). For a Banach space E, the following are equivalent:
(1) E is UCED.
(2) If sequence $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ in E satisfy $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=1=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|, \lim _{n \rightarrow \infty}\left\|u_{n}+v_{n}\right\|$ and $\left\{u_{n}-v_{n}\right\} \subset\{t w: t \in \mathbb{R}\}$ for some $w \in E$ with $\|w\|=1$, then $\lim _{n \rightarrow \infty}\left\|u_{n}-v_{n}\right\|=0$ holds.

Lemma 35 (See [3]). For a Banach space E, the following are equivalent:
(1) E is UCED.
(2) If $\left\{x_{n}\right\}$ is a bounded sequence in E, then a function f on E defined by $f(x)=\lim \sup _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ is strictly quasi-convex, that is,

$$
f(t x+(1-t) y)<\max \{f(x), f(y)\}
$$

for all $t \in(0,1)$ and $x, y \in E$ with $x \neq y$.

Theorem 36. Let T be a mapping on a weakly compact convex subset K of a UCED Banach space E and satisfy (SKC)-condition. Define a sequence $\left\{x_{n}\right\}$ in K by $x_{1} \in K$ and $x_{n+1}=\lambda T x_{n}+(1-\lambda) x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}\right.$, 1). Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$ holds. Then T has a fixed point.

Proof. Set a sequence $\left\{x_{n}\right\}$ in K in such a way that $x_{n+1}=\frac{1}{2} T x_{n}+\frac{1}{2} x_{n}$ for each $n \in \mathbb{N}$ where $x_{1} \in K$. Notice that $\lim \sup _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$. Define a continuous convex function f from K into $[0, \infty)$ by $f(x)=\lim \sup _{n \rightarrow \infty}\left\|x_{n}-x\right\|$, for all $x \in K$. Since K is weakly compact and f is weakly lower semi-continuous, there exists $z \in K$ such that $f(z)=\min \{f(x)$: $x \in K\}$. Regarding Proposition 19, we have $\left\|x_{n}-T z\right\| \leq 5\left\|T x_{n}-x_{n}\right\|+\left\|x_{n}-z\right\|$ and thus $f(T z) \leq f(z)$. On account of $f(z)$ being the minimum, $f(z)=f(T z)$ holds. To show $T z=z$ we assume the contrary, that is $T z \neq z$. Since f is strictly quasi-convex, we have

$$
f(z) \leq f\left(\frac{z+T z}{2}\right)<\max \{f(z), f(T z)\}=f(z)
$$

which is a contradiction. Thus, we get the desired result.
Corollary 37. Let T be a mapping on a weakly compact convex subset K of a UCED Banach space E and satisfy one of the following:
(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Define a sequence $\left\{x_{n}\right\}$ in K by $x_{1} \in K$ and $x_{n+1}=\lambda T x_{n}+(1-\lambda) x_{n}$, for $n \in \mathbb{N}$, where λ lies in $\left[\frac{1}{2}\right.$, 1$)$. Suppose $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$ holds. Then T has a fixed point.

Theorem 38. Let \& be a family of commuting mappings on a weakly compact convex subset K of a Banach space E. Suppose each mapping in \& satisfy (SKC)-condition. Then \& has a common fixed point.

Proof. Let $I=\{1,2, \ldots, v\}$ be an index set. Let $T_{i} \in s, i \in I$. Due to Theorem $36, T_{i}$ has a fixed point in K, that is, $F\left(T_{i}\right) \neq \emptyset$ for $i \in I$. Proposition 14 implies that each $F\left(T_{i}\right)$ is closed and convex. Suppose that $F:=\cap_{i=1}^{k-1} F\left(T_{i}\right)$ is non-empty, closed and convex for some $k \in \mathbb{N}$ such that $1<k \leq v$. For $x \in F$ and $i \in I$ with $1 \leq i<k, T_{k} x=T_{k} \circ T_{i} x=T_{i} \circ T_{k} x$ since S is commuting. Thus, $T_{k} x$ is a fixed point of T_{i} which yields $T_{k} x \in F$. So, $T_{k}(F) \subset F$. In other words, $T_{k}(F) \subset F$. By Theorem $36, T_{k}$ has a fixed point in F, that is, $F \cap F\left(T_{k}\right)=\cap_{i=1}^{k} F\left(T_{i}\right) \neq \emptyset$.

Due to Proposition 14, this set is closed and convex. By induction, we obtain $\cap_{i=1}^{v} F\left(T_{i}\right) \neq \emptyset$. That is equivalent to saying $\{F(T): T \in \rho\}$ has the finite intersection property. Since K is weakly compact and $F(T)$ is weakly closed for every $T \in \ell$, then $\cap_{T \in s} F(T) \neq \emptyset$.

Corollary 39. Let \& be a family of commuting mappings on a weakly compact convex subset K of a Banach space E. Suppose each mapping in \& satisfies one of the following:
(1) (A3)-condition,
(2) (KSC)-condition,
(3) (CSC)-condition.

Then $\&$ has a common fixed point.

References

[1] K. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory, Methods Appl. 71 (11) (2009) 5313-5317.
[2] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962) 74-79.
[3] K. Suzuki, Fixed point theorems and convergence theorems for some generalized non expansive mappings, J. Math. Anal. Appl. 340 (2008) $1088-1095$.
[4] K. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) $1861-1869$.
[5] S.L. Singh, S.N Mishra, Remarks on recent fixed point theorems, Fixed Point Theory Appl. 2010 (2010) 18 pages. Article ID 452905.
[6] E. Karapınar, Remarks on Suzuki (C)-condition, in: Albert Luo, J.A. Tenreiro Machado and Dumitru Baleanu (Eds.), Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems.
[7] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) $591-597$.

[^0]: * Corresponding author. Tel.: +90 3125868239.

 E-mail addresses: erdalkarapinar@yahoo.com, ekarapinar@atilim.edu.tr (E. Karapınar), kenan@cankaya.edu.tr (K. Taş).

