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Abstract
In recent years, some efforts have been devoted to nonlinear dynamics of fractional discrete-time
systems. A number of papers have so far discussed results related to the presence of chaos in
fractional maps. However, less results have been published to date regarding the presence of
hyperchaos in fractional discrete-time systems. This paper aims to bridge the gap by introducing
a new three-dimensional fractional map that shows, for the first time, complex hyperchaotic
behaviors. A detailed analysis of the map dynamics is conducted via computation of Lyapunov
exponents, bifurcation diagrams, phase portraits, approximated entropy and C0 complexity.
Simulation results confirm the effectiveness of the approach illustrated herein.

Keywords : Chaos; Discrete Fractional Calculus; Hyperchaotic Map.

1. INTRODUCTION

Unlike fractional derivatives, which made their first
appearance in 1695, discrete fractional calculus has
been introduced only in 1974.1 Namely, Diaz and
Olser made a discretization of a continuous-time
fractional operator and obtained the first example
of a discrete fractional operator.1 Since 1974, dis-
crete fractional calculus has received considerable
attentions. In recent years, this has led to the dis-
covery of chaotic phenomena in discrete-time sys-
tems described by fractional difference equations.2

These systems are nonlinear fractional-order maps

that highlight unpredictable behaviors and sensitiv-
ity to initial conditions.3 For example, in Ref. 4 the
presence of chaos in the fractional delayed logistic
map has been illustrated via bifurcation diagrams
and phase portraits. In Ref. 5 the chaotic dynam-
ics of two maps have been studied, i.e. the frac-
tional sine map and the fractional standard map.
In Ref. 6, the presence of chaos in three fractional
chaotic maps has been discussed. Namely, in Ref. 6
the Stefanski map, the Rössler map and the Wang
map have been studied via bifurcation diagrams
and phase portraits. In Ref. 7, stabilization and
synchronization of three chaotic maps have been
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illustrated, including the fractional Lorenz map,
the fractional flow map and the fractional Lozi
map. In Ref. 8, the chaotic dynamics of the frac-
tional Hénon map have been analyzed, whereas in
Ref. 9 chaotic attractors in the fractional general-
ized Hénon map have been shown. In Ref. 10, a
chaotic fractional quadratic map without equilibria
has been introduced, whereas in Ref. 11 bifurcation
diagrams and phase portraits for a chaotic three-
dimensional (3D) fractional chaotic map have been
reported. In Ref. 12, dynamics and synchronization
of discrete fractional complex-valued neural net-
works have been discussed in detail. In Ref. 13,
a fractional-order higher-dimensional multicavity
chaotic map, defined using the Caputo operator, has
been investigated. In particular, a dynamical anal-
ysis of the multicavity map has been carried out
via bifurcation diagrams and permutation entropy
complexity.13 In Ref. 14, the chaotic dynamics of a
fractional-order difference Cournot duopoly model
characterized by long memory have been investi-
gated. In Ref. 15, a chaotic fractional map with
hidden attractors has been studied using complex-
ity and entropy concepts. In Ref. 16, control laws for
stabilizing chaos in a fractional discrete system with
hidden attractors have been developed. In Ref. 17,
Poincaré plots and Julia sets have been exploited
to analyze the memory effect on the dynamics of
the fractional logistic map. In Ref. 18, the presence
of chaos in a symmetrical fractional map, which
includes only five nonlinear terms in its equations,
has been analyzed in detail. In Ref. 19, it has been
shown that the fractional-order Hénon–Lozi map
exhibits a range of different dynamical behaviors,
which include chaos and coexisting attractors. In
particular, chaotic hidden attractors and transient
state have been found.20

Referring to the literature on fractional chaotic
maps, it should be noted that all the papers pub-
lished to date deal with the presence of chaos, rather
than hyperchaos. Namely, the dynamics of all the
fractional chaotic maps illustrated in Refs. 4–7 are
characterized by the presence of only one positive
Lyapunov exponent. Very few papers have been
published to date regarding the presence of hyper-
chaos in fractional maps, i.e. fractional discrete sys-
tems characterized by complex dynamics involving
at least two positive Lyapunov exponents. Based
on these considerations, this paper aims to bridge
the gap by presenting one of the first examples of
hyperchaos in fractional maps. Namely, the paper

introduces a new 3D fractional chaotic map, for
which a detailed analysis of its dynamics is con-
ducted via computation of Lyapunov exponents,
bifurcation diagrams, approximated entropy and
complexity. The paper is organized as follows. In
Sec. 2, a fractional 3D map is proposed and a stabil-
ity analysis of its equilibria is conducted. In Sec. 3,
the hyperchaotic behavior of the map is analyzed
via the computation of bifurcation diagrams, Lya-
punov exponents and phase portraits. Finally, in
Sec. 4, the complexity of the dynamic behavior of
the proposed hyperchaotic map is investigated by
computing the C0 algorithm and the approximate
entropy.

2. A NEW 3D FRACTIONAL
CHAOTIC MAP

2.1. System Equations

Let us consider the following integer-order discrete
system, which has been recently proposed in Ref. 21
as an example of a 3D hyperchaotic system. Its
mathematical model is described by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1(n + 1) = −a1x1(n) − a2x2(n) − a3x3(n)

+ 1.44x2(n) + 1.61x1(n)x3(n)

+ 1.48x2(n)x3(n),

x2(n + 1) = x1(n),

x3(n + 1) = x2(n),

(1)

where ai, ∀ i = 1.3 three real parameters. In Ref. 21,
it has been shown that the integer-order system (1)
exhibits a hyperchaotic attractor when a1 = 2.32,
a2 = 1.27 and a3 = 0.01. Figure 1 illustrates the 2D
and 3D phase plots of the hyperchaotic attractor.

In this work, we present a new fractional chaotic
map by removing and adding some terms from the
integer-order system (1) and by introducing a frac-
tional difference operator. Then, we will analyze the
effects of both fractional order and system parame-
ters on the dynamics of the map.

First, let us introduce the definition of the frac-
tional Caputo difference operator, which has been
recently used in discrete fractional systems.22

Definition 1. For a real order ν > 0, the
Caputo fractional difference operator of a function
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Fig. 1 Hyperchaotic attractor of the integer-order system (1).

X : Na → R is defined as22

CΔν
aX(t) =

1
Γ(n − ν)

t−(n−ν)∑
s=a

(t − σ(s))(n−ν−1)

×Δn
s X(s), (2)

where t ∈ Na+n−ν , a is the starting point, Γ(.) is the
Euler’s gamma function and n = [ν] + 1, in which
[ν] is the floor function of ν. t(ν) is the generalized
falling function, which is defined using Γ as follows:

t(ν) =
Γ(t + 1)

Γ(t + 1 − ν)
.

Now, the ν-Caputo of system (1) can be
described as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CΔν
ax(t) = −a1x1(t − 1 + ν) − a2x2(t + 1 − ν)

− a3x3(t + 1 − ν)

+ 1.44x2(t + 1 − ν)

+ 1.61x1(t + 1 − ν)

+ x3(t + 1 − ν)

+ 1.48x2(t + 1 − ν)x3(t + 1 − ν),
CΔν

ax2(t) = x1(t + 1 − ν) − x2(t + 1 − ν),
CΔν

ax3(t) = x2(t + 1 − ν) − x3(t + 1 − ν),
(3)

with t ∈ Na+1−ν and fractional order 0 < ν ≤ 1.

2.2. Stability of the Equilibrium
Points

Now the behavior of the new system (3) is inves-
tigated by considering the stability analysis in the
context of fractional-order difference equations. Let
CΔν

ax1 = CΔν
ax2 = CΔν

ax3 = 0. Thus, the follow-
ing equation is obtained:

−(a1 + a2 + a3)x1 + 4.53x2
1 = 0. (4)

Direct calculation shows that the fractional sys-
tem (3) has two equilibrium points: E1 = (0, 0, 0)
and E2 = (a1+a2+a3

4.53 , a1+a2+a3
4.53 , a1+a2+a3

4.53 ). By tak-
ing the same values of the system parameters
as in Fig. 1, the fixed point E2 becomes E2 =
( 3.6
4.53 , 3.6

4.53 , 3.6
4.53). By computing the eigenvalues of

the Jacobian matrix, we could readily get the sta-
ble conditions around the equilibrium. Namely, the
Jacobian matrix of the 3D fractional system for an
arbitrary point (x1, x2, x3) is given by

J =

⎛
⎜⎜⎝

A B C

1 −1 0

0 1 −1

⎞
⎟⎟⎠, (5)

where A = −2.32 + 1.44x2 + 1.61x3, B = −1.27 +
1.44x1 + 1.48x3 and C = −0.01 + 1.61x1 + 1.48x2
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According to Ref. 23, an equilibrium point for the
fractional difference system (3) is said to be stable
if the following relationship holds

λi ∈
{

z ∈ C : |z| <

(
2 cos

|argz| − π

2 − ν

)
and

|argz| >
νπ

2

}
. (6)

The Jacobian matrix of the fractional system (3)
computed at E1 is given by

JE1 =

⎛
⎜⎜⎝
−2.32 −1.27 −0.01

1 −1 0

0 1 −1

⎞
⎟⎟⎠, (7)

and possesses the eigenvalues: λ1 = −1.6560 +
0.9106i, λ2 = −1.6560− 0.9106i and λ3 = −1.0079.
From Eq. (6), we can directly obtain that |λi| =
1.8899 > (2 cos 2.6388−ν

2−ν ) for every 0.499 < ν ≤ 1,
indicating that the equilibrium point E1 is unstable
in this case. Now we discuss the local stability of
the equilibrium E2 = ( 3.6

4.53 , 3.6
4.53 , 3.6

4.53), for which the
Jacobian matrix is given by

JE2 =

⎛
⎜⎜⎝

0.1038 0.0760 2.4456

1 −1 0

0 1 −1

⎞
⎟⎟⎠. (8)

The stability of E2 is analyzed by evaluating the
eigenvalues of JE2 . The computation gives λ1 =
0.8553, λ2 = −1.3757 + 1.0849i, λ3 = −1.3757 −
1.0849i. Similarly, it can be readily shown that
|λ2| = 1.7520 > (2 cos 2.4738−ν

2−ν ) for every 0.673 <
ν ≤ 1. Thus, according to Eq. (6), the equilibrium
point E2 is unstable.

3. ANALYSIS OF THE SYSTEM
DYNAMICS

In this section, the hyperchaotic behavior of the pro-
posed 3D fractional chaotic map (3) is analyzed via
the computation of bifurcation diagrams, Lyapunov
exponents and phase portraits. The effects of frac-
tional order and system parameters on the dynam-
ics of the map (3) are illustrated in details.

3.1. Volterra equations

At first, we briefly recall the following theorem;
which is used to present the numerical discrete solu-
tion of the fractional system (3).

Theorem 2. Given the following fractional differ-
ence equation:

⎧⎪⎪⎨
⎪⎪⎩

CΔν
aX(t) = f(t + ν − 1,X(t + ν − 1)),

ΔkX(a) = Xk,

n = [ν] + 1, k = 0, 1, . . . , n − 1,

(9)

its solution can be written as a discrete equation of
Volterra type24

X(t) = X(a) +
1

Γ(ν)

t−ν∑
s=a+n−ν

(t − s − 1)(ν−1)

× f(s + ν − 1,X(s + ν − 1)),

where t ∈ Na+n.

Therefore, the discrete solution of the fractional
chaotic map (3) is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = x1(a) +
1

Γ(ν)

t−ν∑
s=a+1−ν

(t − s − 1)(ν−1)

× (−a1x1(s + ν − 1) − a2x2(s + ν − 1)

− a3x3(s + ν − 1) + 1.44x2(s + ν − 1)

+ 1.61x1(s + ν − 1)x3(s + ν − 1)

+ 1.48x2(s + ν − 1)x3(s + ν − 1)),

CΔν
ax2(t) = x2(a) +

1
Γ(ν)

t−ν∑
s=a+1−ν

× (t − s − 1)(ν−1)(x1(s + ν − 1)

−x2(s + ν − 1)),

CΔν
ax3(t) = x3(a) +

1
Γ(ν)

t−ν∑
s=a+1−ν

× (t − s − 1)(ν−1)(x2(s + ν − 1)

−x3(s + ν − 1)),

(10)

here t ∈ Na+n. Since (t − s − 1)(ν−1)/Γ(ν) is equal
to Γ(t − s)/Γ(t − s − ν + 1), by taking n = t − a,
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a = 0, it follows that25

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n) = x1(0) +
1

Γ(ν)

n−1∑
j=0

Γ(n − j + ν)
Γ(n − j + 1)

× (−a1x1(j) − a2x2(j) − a3x3(j)

+ 1.44x2(j) + 1.61x1(j)x3(j)

+ 1.48x2(j)x3(j)),

x2(n) = x2(0) +
1

Γ(ν)

n−1∑
j=0

Γ(n − j + ν)
Γ(n − j + 1)

× (x1(j) − x2(j)),

x3(n) = x3(0) +
1

Γ(ν)
Γ(n − j + ν)
Γ(n − j + 1)

× (x2(j) − x3(j)),

(11)

where x1(0), x2(0) and x3(0) are the initial con-
ditions. According to the numerical equation (11),
the proposed fractional chaotic map (3) has mem-
ory effect; which means that the iterated solutions,
xi,∀ i = 1.3, are determined by all the previous
states.

3.2. Bifurcation Diagrams,
Lyapunov Exponents and Phase
Portraits

It is always useful to examine the bifurcation dia-
gram corresponding to a specific critical parameter,
with the aim to gain a comprehensive understand-
ing of the system dynamics. In the following, we fix
the values a1 = 2.32, a2 = 1.27 and a3 = −0.01
and then we choose the fractional order 0 < ν ≤ 1
as bifurcation parameter. The corresponding bifur-
cation diagram is plotted in Fig. 2 with respect
to 0.96 ≤ ν ≤ 1. From Fig. 2, it can be noted
that system (3) is chaotic over most of the range
0.964 ≤ ν ≤ 1. In particular, when ν = 0.9678, the
chaotic motion suddenly disappears and a periodic
motion appears. The lowest order to generate chaos
is 0.9645.

For better observation, the Lyapunov exponent
is considered. Lyapunov exponent is an effective
method generally used to characterize the exponen-
tial rate of separation of two initially very close
trajectories. It is recognized citation that a non-
linear system is hyperchaotic when two Lyapunov
exponents are positive, whereas it is chaotic when
only one Lyapunov exponent is positive. Herein,

Fig. 2 Bifurcation diagram of the new fractional discrete
system (3) with respect to µ for a3 = −0.01.

Fig. 3 Lyapunov exponents of the new fractional discrete
system (3) with respect to µ for a3 = −0.01.

the Lyapunov exponents are calculated by apply-
ing the QR decomposition method.20 In particu-
lar, the Lyapunov exponents of system (3) have
been obtained in MATLAB with initial conditions
x1 = 0.75, x2 = 0.09, x3 = 0.32 (see Fig. 3).
In particular, regarding hyperchaotic and chaotic
behaviors, from Fig. 3 it can be deduced that the
fractional map (3) is hyperchaotic over the two
ranges 0.964 ≤ ν < 0.9668 and 0.9949 < ν ≤ 1,
whereas it is chaotic over the rest of the interval. In
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Fig. 4 Chaotic attractor of the fractional discrete-time system (3) with a3 = −0.01 and µ = 0.97.

Fig. 5 Periodic attractor of the fractional discrete-time system (3) with a3 = −0.01 and µ = 0.9678.

order to show the different dynamic behaviors, some
phase portraits are reported for three different val-
ues of ν. When ν = 0.97, the maximum LE is posi-
tive indicating that the proposed fractional map (3)
is chaotic. The corresponding attractor is plotted

in Fig. 4, while, when ν = 0.9678 two negative LEs
are observed indicating that the proposed fractional
chaotic map (3) is periodic (see Fig. 5). On the other
hand, when we choose the parameter μ = 0.9655,
LEs has two positive values, indicating that the
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Fig. 6 Hyperchaotic attractor of the fractional discrete system (3) with a3 = −0.01 and µ = 0.9655.

fractional chaotic map is in hyperchaos, as shown
in Fig. 6.

In order to further analyze the properties of the
fractional chaotic map (3), we plot the bifurcation
diagrams for different values of ν (i.e. ν = 1, ν =
0.995, and ν = 0.985) by considering a3 as a bifur-
cation parameter and by taking the values of the
remaining parameters as a1 = 2.32, a2 = 1.27, and
a3 = 0.01, results are reported in Fig. 7. Various
dynamical behavior can be observed by changing
the value of a3 at the interval ]− 0.01, 0.25]. In par-
ticular, we observe that decreasing the value of the
fractional order leads to the disappearance of some
chaotic regions. Moreover, when we decrease the
value of ν, the bifurcation diagram shrinks. Finally,
a flip bifurcation is observed when we consider the
integer-order system (i.e. ν = 1).

4. ANALYSIS OF THE SYSTEM
COMPLEXITY

In this section, the complexity of the new hyper-
chaotic system (3) is investigated by exploiting
the C0 algorithm and the approximate entropy.
Note that the C0 algorithm10 is a statistical mea-
sure that can quantify the irregularity of a time
series, whereas the approximate entropy25 estimates
the complexity of a series of data from a multi-
dimensional perspective. Both the C0 algorithm and
the approximate entropy have been computed by
varying the parameter a3 and the fractional order ν.

4.1. C0 Complexity

At first, we briefly present the C0 algorithm.
Suppose that {x(n), n = 0, 1, . . . , N − 1} is a
time series with a length of N and F (k) =∑n−1

k=0 x(k)e(−2jπk/n), k = 0, n − 1 is the corre-
sponding discrete Fourier transform. Then, we con-
struct the following function10

F̄ (k) =

{
F (k) if |F (k)|2 > rG,

0 if |F (k)|2 ≤ rG,
(12)

Fig. 7 Bifurcation diagrams of the fractional discrete sys-
tem (3) for different fractional-order values.
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where r is a control parameter and G is the mean
square value of suite of data {F (k)}. Herein, the
value r = 15 is selected. By denoting with x̄ the
inverse Fourier transform of F̄ , the C0 complexity
is defined as10

C0(n) =
∑n−1

i=0 |x(i) − x̄(i)|2∑n−1
i=0 |x(i)|2 . (13)

By considering the system parameters a1 = 2.32,
a2 = 1.27, a3 = 0.01, Fig. 8 displays the C0 com-
plexity of the a1 = 2.32, a2 = 1.27, and a3 = 0.01.
Corresponding to the fractional-order value ν =
0.995 (blue diagram) and the value ν = 0.985 (red
diagram). From Fig. 8, it can be deduced that the
complexity of the system is higher for smallest val-
ues of a3. Moreover, the complexity of the system
takes the highest value when the value of order ν
increases. Based on these considerations, it can be
concluded that the fractional chaotic map shows
more complexity (3) when a3 takes smallest values
and for order ν ∈ [0.964, 0.9668[∪ ]0.9949, 1].

4.2. Approximate Entropy (ApEn)

The approximate entropy (ApEn)25 is a technique
used to quantify the amount of regularity and
the unpredictability of fluctuations over time-series
data. Its computation returns a non-negative num-
ber, where higher values indicate higher complex-
ity. The detailed steps for computing the ApEn
are now illustrated.25 We consider a set of points
x(1), . . . , x(N) that are obtained from the discrete
formula (x1(n)). The value of the approximate

entropy depends on two important parameters m
and r, where m is embedding dimension and r is
the similar tolerance. Now, we reconstruct a subse-
quence of x such that χ(i) = [x(i), . . . , x(i+m−1)],
where m presents the points from x(i) to x(i+m−
1). Let K be the number of χ(i) such that the max-
imum absolute difference of two vectors χ(i) and
χ(j) is lower or equal to the tolerance τ . The rel-
ative frequency of χ(i) being similar to χ(j), and
it has the form: Cm

i (τ) = K
N−m+1 . From Cm

i , we
calculate the logarithm and then define the average
for all i as follows:

φm(r) =
1

N − m − 1

N−m+1∑
i=1

log Cm
i (r). (14)

Thus, the approximate entropy of order m is
setting as

ApEn = φm(r) − φm+1(r). (15)

The complexity of the fractional chaotic map (3)
is investigated using the approximate entropy as a
function of the control parameter a3 and the frac-
tional order ν. The behavior of the ApEn in the 3D
space is plotted in Fig. 9. It can be deduced that
the complexity of system (3) changes according to
the variations of ν and a3. Namely, the complex-
ity of system (3) goes to zero when the fractional
order assumes small values. Moreover, the ApEn
decreases with the increase of fractional order ν
and system parameter a3, indicating that the sys-
tem with smaller order is more complex. We con-
clude our analysis by observing that the approxi-
mate entropy results are in good agreement with

Fig. 8 (Color online) Complexity C0 as a function of the parameter a3 (µ = 0.995 for the blue line and µ = 0.985 for the
red line).
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Fig. 9 Approximate entropy of the fractional system (3) as
a function of the order µ and of system parameter a3.

the remaining results obtained through the paper,
clearly indicating that the fractional chaotic map
(3) is more complex than its integer-order counter-
part.

5. CONCLUSIONS

This paper has presented the first example of hyper-
chaos in fractional chaotic maps. The objective has
been achieved by introducing a new 3D map based
on the Caputo difference operator. At first, a sta-
bility analysis of the system equilibria has been
conducted. Successively, the hyperchaotic behavior
of the map has been analyzed via the computa-
tion of bifurcation diagrams, Lyapunov exponents
and phase portraits. The conducted analysis has
shown that the proposed map is hyperchaotic when
the fractional order ν belongs to the two ranges
0.964 ≤ ν < 0.9668 and 0.9949 < ν ≤ 1. Finally, the
complexity of the dynamic behavior of the hyper-
chaotic map has been investigated by computing
the C0 algorithm and the approximate entropy.
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