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The article studies the extraction of electromagnetic wave structures in a spin ladder

anti-ferromagnetic medium with a coupled generalized non-linear Schrodinger model.

The direct algebraic technique is used to extract the wave solutions. The solutions are

obtained in the form of dark, singular, kink, and dark-singular under different constraint

conditions. Moreover, the dynamic behavior of the structures have depicted in 3D graphs

and their corresponding counterplots. The results are helpful for the understanding of

wave propagation study and are also vital for numerical and experimental verifications in

the field of electromagnetic wave theory.

Keywords: electromagnetic waves, coupled Schrödinger model, anti-ferromagnetic medium, integrability, direct
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1. INTRODUCTION

The theory of solitons is an attractive and exciting area of research. It is interlinked with many
branches of mathematics and engineering [1–9]. Its aspects are charming and amazing because
soliton travels with a steady speed and maintains its shape while propagating. It arises by balancing
dispersive and non-linear terms. Solitons are discussed in different fields, and for references see
[10–18].

The magnetic moments of molecules and atoms, normally linked to the spins of electrons,
adjusted in an ordinary pattern with neighboring spins spell in reverse directions. This is like
ferrimagnetism and ferromagnetism, a manifestation of ordered magnetism. Theoretical and
mathematical theories argue that the spin ladder system is an excellent medium through which the
interaction between different spins can be mapped to an approximate Heisinberg-type coupling
with a coupling parameter that is inversely proportional to the distance between two separated
spins. The dynamics of electromagnetic solitons with the coupled model in an anti-ferromagnetic
spin ladder medium is of great interest among researchers due to its variety of applications.
The spin ladder systems are a great source with which to develop significant interest in both
experimental and theoretical points of view. Anti-ferromagnets test different ideas that involve a
strong correlated system [6–9]. Spin ladders have many applications in different fields of quark
physics, superconductors, and ultra-cold atoms, etc. The study of anti-ferromagnetic is still in its
early stages. In anti-ferromagnets, the staggered magnetization variable M contributes the first
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derivative in this manner, i.e., (∇M). This is because, in the
case of anti-ferromagnets, we have taken limits in specified
intervals for two different sublattices individually. The parent
cuprate insulators are the best example of anti-ferromagnets with
isotropic and predominantly nearest-neighbor coupling. They
satisfied the theory that gives an ordered ground state for (s =
1
2AF) by showing simple long range anti-ferromagnetic order at
low temperature [19–26].

In this article, a coupled generalized derivative non-
linear Schrödinger that describes the dynamical behavior of
electromagnetic waves in a spin ladder antiferromagnetic
medium system is considered and under investigation. The
Heisenberg model was studied in Chen et al. [15] and Xu et al.
[16] and considered with an anisotropic spin ladder and two
ferromagnetic lattices. This lattices consist of N spins and are
directed in the same direction? For more details see also Kavitha
et al. [26]. The system is read as

i
∂qj

∂t
+

∂2qj

∂x2
+ iα1

∂

∂x
(|qj|2qj)− α2

∂3qj

∂x3
+ α3

∂

∂x
(qn − qj)

+ α4
∂3qn

∂x3
− α5

∂qj

∂x
= 0,

(1. 1)

where qj for j = 1, 2, and n = 3 − j, are the wave profiles,
and αk for k = 1, 2, · · · , 5, represent the real coefficients and are

defined by α1 = 1+g

2gM2
0
α, α2 = ijaα

3

gγ , α3 = ijbα
gγ , α4 = ijcα

3

gγ and

α5 = iA
gγ α. Where ja is ferromagnetic spin exchange interaction,

jb is antiferromagnetic coupling, jc is the exchange coupling,
and A represents the single-ion uniaxial anisotropy. The last
equation is reduced to generalized coupled derivative non-linear
Schrodinger system by considering αm = 0, form = 2, · · · , 5. In
the following section, the considered model is analyzed.

2. THE MODIFIED DIRECT ALGEBRAIC
METHOD

The section studies, MDAM [27] to investigate the
wave structures of NLPDs. Thus, we consider NLPDs in
following form:

H
(

q, qt , qx, qtx, qxx, · · ·
)

= 0,

where q is a profile of wave structure andH is called a polynomial
of q and its partial derivatives along with non-linear terms.

To extract wave structures, the method is followed by using
the steps as discussed under.

Step 1: First, the NPDEs is converted into non-linear ODEs
using the following transformation.

q(x, t) = U(ξ ), and ξ = B(x− wt),

where B andw are arbitrary parameters. It allows us to reduce the
above equation in an ODE of U and have the form

Q(U,U
′
,U

′′
,U

′′′
, · · · ) = 0.

Step 2: It is supposed that the solution of above equation satisfies
the following ansatze:

U(ξ ) = A0 +
m

∑

j=0

(

Ajϕ
j + Bjϕ

−j
)i
,

ϕ
′
= γ + ϕ2,

where γ is a parameter and its value is determined,

ϕ = ϕ(ξ ), ϕ
′ = dϕ

dξ
.

Step 3: The homogeneous balance technique is followed
where the highest order derivative is balanced with non-linear
terms, to find the value ofm, and wherem ∈ Z+.

Step 4: The use of the above equation and collecting the
terms of the same order of ϕj together. Equate each term of ϕj to
zero, which produce the system of algebraic equations.

Step 5: The solution of the system of algebraic equations
along with the following wave structures are general solutions.

(i) If γ < 0

ϕ = −
√
−γ tanh(

√
−γ ξ ), or ϕ = −

√
−γ coth(

√
−γ ξ ),

it depends on condition.
(ii) If γ > 0

ϕ =
√

γ tan(
√

γ ξ ), or ϕ = −
√

γ cot(
√

γ ξ ),

it depends on condition.
(iii) If γ = 0

ϕ =
−1

ξ
.

In the following section, the exact wave structures of Equation
(1.1) can be obtained.

3. ANALYTICAL ANALYSIS

We consider the complex transformation qj(x, t) = Uj(ξ ) × eiφ ,
where ξ = B(x−νt) and φ = −kx+wt+θ . It reduces the partial
differential equation to an ordinary differential equation. After
some mathematical work, the following real part of Equation
(1.1) is obtained.

− ωUj + B2U
′′
j − k2Uj + kα1U

3
j + 3α2Bk

2U
′
j − B3α2U

′′′
j

+Bα3U
′
n − Bα3U

′
j − 3Bk2α4U

′
n + B3α4U

′′
n − α5BU

′
j = 0. (3. 2)

The imaginary part equation gives the constraint condition

ν = 2k = ±2

√

α3 + α5

α2

for α2(α3 + α5) > 0. To find the solution of Equation (1.1), let
us consider the U(ξ ) = a0 +

∑m
i=1(aiZ

i + biZ
−i) form of the
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solution (see also [18]), where Z′ = γ +Z2, a′is, b
′
is, and γ are the

real parameters. The parameters are to be determined later. It is
also noted that Z = Z(ξ ), and so does Z′ = dZ

dξ
.

To investigate the electromagnetic waves of the system, we
find the solution of Equation (3.2) by finding the homogenous
balance m = 1 between the non-linear term and highest order
derivatives present in this equation. We have the following value
of U after substituting the homogenous balance:

U = a0 + a1Z + b1Z
−1, (3. 3)

where a0, a1 and b1 are real parameters. To calculate real
parameters, we put U and required derivatives in Equation (3.2).
After simplification and by equating the coefficients of same
power of Z, the system of equations is obtained. To get the
values of parameters and the solutions against these different
parameters, we solve this system by using Maple. Thus, different
cases along with solutions are discussed below.

For case 1: The values of parameters are

a0 = 0, a1 = 0, b1 = r

√

−2Bα2

α1(α3 + α5)
,

B = −
(

ωα2
2 + α2

1(α3 + α5)
2

2α2
1α

2
2r

)

and the corresponding dark and singular wave structures can be
obtained for different values of γ . The constraint condition, for
the existence of these solutions, is given by

γ 2b(b2δ + 2γ 2) < 0.

For γ < 0, one may have the following wave structures of
Equation (1.1)

qj1 = q1 = −

√

2rBα2

α1(α3 + α5)
coth

(

i
√
rξ

)

× eiφ

and

qj2 = q2 = −

√

2rBα2

α1(α3 + α5)
tanh

(

i
√
rξ

)

× eiφ .

The following two cases are obtained from the above solution and
considered as the diagonal components of the spin ladder.

qj2 ,1 =
[

−

√

2rBα2

α1(α3 + α5)
tanh

(

i
√
rB(x− νt)

)]

cos

(

− (
α3 + α5

α2
)x+ wt + θ

)

,

and

qj2 ,1 =
[

−

√

2rBα2

α1(α3 + α5)
tanh

(

i
√
rB(x− νt)

)]

sin

(

− (
α3 + α5

α2
)x+ wt + θ

)

.

For γ > 0, one may have the following periodic solutions.

qj3 = q3 = i

√

2rBα2

α1(α3 + α5)
cot(

√
rξ )× eiφ ,

and

qj4 = q4 = −i

√

2rBα2

α1(α3 + α5)
tan(

√
rξ )× eiφ .

For γ = 0, one may have the following periodic solutions

qj5 = q5 = −irξ

√

2Bα2

α1(α3 + α5)
× eiφ ,

where,

ξ = −
ωα2

2 + α2
1(α3 + α5)

2

2α2
1α

2
2r

(

x− vt

)

.

The graphical representations and contour plots of the solutions
for q1 to q4 are shown in Figure 1 for different values of
parameters α1 = 1, r = 1.25, B = 5, k = 0.1, ξ = 0.01, θ = 0.2,
and b = 0.5.

For case 2: The values of the parameters are

a0 = 0, a1 =

√

−2Bα2

α1(α3 + α5)
, b1 = 0, B = −

1

2α2
(α3 + α5)α1a

2
1

and the corresponding combined dark-singular wave structures
are constructed.

For γ < 0, the following type of exact solutions of Equation
(1.1) is written:

qj6 = q6 =

√

2rBα2

α1(α3 + α5)
tanh(i

√
rξ )× eiφ ,

The following two cases are obtained from the above
solution and considered as the diagonal components of the
spin ladder.

q6,1 =
[

√

2rBα2

α1(α3 + α5)
tanh(i

√
rB(x− νt))

]

cos

(

−
(

α3 + α5

α2

)

x+ wt + θ

)

q6,1 =
[

√

2rBα2

α1(α3 + α5)
tanh(i

√
rB(x− νt))

]

sin

(

−
(

α3 + α5

α2

)

x+ wt + θ

)

and we also have

qj7 = q7 =

√

2rBα2

α1(α3 + α5)
coth(i

√
rξ )× eiφ .
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FIGURE 1 | The 3D plots and contour plots of the real part of solution q1(x, t) to q4(x, t) for different parameters.
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For γ > 0, one may have the following periodic solutions

qj8 = q8 = i

√

2rBα2

α1(α3 + α5)
tan(

√
rξ )× eiφ ,

and

qj9 = q9 = −i

√

2rBα2

α1(α3 + α5)
cot(

√
rξ )× eiφ .

For γ = 0, one may have the following periodic solutions

qj10 = q10 = −
i

ξ

√

2Bα2

α1(α3 + α5)
× eiφ ,

where,

ξ = −
1

2α2
(α3 + α5)α1a

2
1(x− vt).

The pattern of the solutions for q6 to q9 are shown in Figure 2

for the values of parameters α1 = 0.007, α2 = 0.98, α3 = 0.01,
r = 0.76, B = 0.98, k = 0.98, ξ = 0.01, θ = 0.2, and b = 1.5.

For case 3: The values of parameters are

a0 = b1

√

2

r
, a1 = 0, b1 = r

√

−2Bα2

α1(α3 + α5)
,

B = −
(α3 + α5)α1b

2
1

2r2α2

and the corresponding dark and singular wave structures can
be obtained.

For γ < 0, the following forms of the exact solutions to
Equation (1.1) are obtained.

qj11 = q11 = [

√

2b21
r

−

√

2rBα2

α1(α3 + α5)
coth(i

√
rξ )]× eiφ ,

and

qj12 = q12 = [

√

2b21
r

−

√

2rBα2

α1(α3 + α5)
tanh(i

√
rξ )]× eiφ .

The following two cases are obtained from the above solution and
considered as the diagonal components of the spin ladder.

q12,1 =
[

√

2b21
r

−

√

2rBα2

α1(α3 + α5)
tanh(i

√
rB(x− νt))

]

cos

(

− (
α3 + α5

α2
)x+ wt + θ

)

q12,1 =
[

√

2b21
r

−

√

2rBα2

α1(α3 + α5)
tanh(i

√
rB(x− νt))

]

sin

(

− (
α3 + α5

α2
)x+ wt + θ

)

.

For γ > 0, one may have the following periodic solutions

qj13 = q13 =
[

√

2b21
r

+ i

√

2rBα2

α1(α3 + α5)
cot(

√
rξ )

]

× eiφ ,

and

qj14 = q14 =
[

√

2b21
r

− i

√

2rBα2

α1(α3 + α5)
tan(

√
rξ )

]

× eiφ , .

For γ = 0, one may have the following periodic solutions

qj15 = q15 =
[

√

2b21
r

− irξ

√

2Bα2

α1(α3 + α5)

]

× eiφ ,

where,

ξ = −
(α3 + α5)α1b

2
1

2r2α2
(x− vt)

φ =
2Br2

α1b
2
1

x+ (
5(α3 + α5)α1b

2
1

rα2
− (

α3 + α5

α2
)2)t + θ .

The pattern of the solutions for q11 to q14 are shown in Figure 3

for the values of parameters α1 = 2, r = 1.5, B = 3.9, k = 0.98,
ξ = 0.01, θ = 0.2, and b = 0.25.

For case 4: The values of parameters are

a0 = 0, a1 = 0, b1 = r

√

−2Bα2

α1(α3 + α5)
, B = −

b21(α3 + α5)α1

2α2r2

and the corresponding dark and singular wave structures can
be obtained.

For γ < 0, the following exact solutions to Equation (1.1)
are obtained.

qj16 = q16 = −

√

2rBα2

α1(α3 + α5)
coth(i

√
rξ )× eiφ

and

qj17 = q17 = −

√

2rBα2

α1(α3 + α5)
tanh(i

√
rξ )× eiφ .

The following two cases are obtained from the above solution and
are considered the diagonal components of the spin ladder.

q17,1 =
[

−

√

2rBα2

α1(α3 + α5)
tanh(i

√
rB(x− νt))

]

cos

(

− (
α3 + α5

α2
)x+ wt + θ

)

q17,1 =
[

−

√

2rBα2

α1(α3 + α5)
tanh(i

√
rB(x− νt))

]

sin

(

− (
α3 + α5

α2
)x+ wt + θ

)

For γ > 0, one may have the following periodic solutions
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FIGURE 2 | The 3D plots and contour plots of the real part of solution q6(x, t) to q9(x, t) for different parameters.
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FIGURE 3 | The 3D plots and contour plots of the real part of solution q11(x, t) to q14(x, t) for different parameters.
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qj18 = q18 = i

√

2rBα2

α1(α3 + α5)
cot(

√
rξ )× eiφ ,

and

qj19 = q19 = −i

√

2rBα2

α1(α3 + α5)
tan(

√
rξ )× eiφ .

For γ = 0, one may have the following periodic solutions

qj20 = q20 = −irξ

√

2Bα2

α1(α3 + α5)
× eiφ ,

where

ξ = −
b21(α3 + α5)α1

2α2r2

(

x− vt

)

.

The pattern of the solutions for q16 to q19 are shown in Figure 4

for the values of parameters α1 = 0.002, r = 0.5, B = 0.9,
k = 0.98, ξ = 0.01, θ = 0.2, and b = 0.25.

For case 5: The values of parameters are

a0 = 0, b1 = r

√

−2Bα2

α1(α3 + α5)
,

a1 =
ωα2

2 + (α3 + α5)
2 − 2α2

2Br

3b1α1α2(α3 + α5)
,

B =
ωα2

2 + (α3 + α5)
2 − 3a1b1α1α2(α3 + α5)

2rα2
2

and the corresponding dark and singular wave structures
are obtained.

For γ < 0, one can obtain the following exact solutions to
Equation (1.1).

qj21 = q21 = [−
ωα2

2 + (α3 + α5)
2 − 2α2

2Br

3b1α1α2(α3 + α5)
i
√
r tanh(i

√
rξ )

−

√

2Brα2

α1(α3 + α5)
coth(i

√
rξ )]× eiφ .

The following two cases are obtained from the above
solution and considered as the diagonal components of the
spin ladder.

q21,1 =[−
ωα2

2 + (α3 + α5)
2 − 2α2

2Br

3b1α1α2(α3 + α5)
i
√
r tanh(i

√
rB(x− νt)

−

√

2rBα2

α1(α3 + α5)
coth(i

√
rB(x− νt))] cos(−(

α3 + α5

α2
)x

+ wt + θ)

q21,1 =[−
ωα2

2 + (α3 + α5)
2 − 2α2

2Br

3b1α1α2(α3 + α5)
i
√
r tanh(i

√
rB(x− νt)

−

√

2rBα2

α1(α3 + α5)
coth(i

√
rB(x− νt))] sin(−(

α3 + α5

α2
)x

+ wt + θ),

and

qj22 = q22 = [−
ωα2

2 + (α3 + α5)
2 − 2α2

2Br

3b1α1α2(α3 + α5)
i
√
r coth(i

√
rξ )

−

√

2Brα2

α1(α3 + α5)
tanh(i

√
rξ )]× eiφ .

For γ > 0, one may have the following periodic solutions

qj23 = q23 = [
ωα2

2 + (α3 + α5)
2 − 2α2

2Br

3b1α1α2(α3 + α5)

√
r tan(

√
rξ )

+

√

−2Brα2

α1(α3 + α5)
cot(

√
rξ )]× eiφ

qj24 = q24 = [−
ωα2

2 + (α3 + α5)
2 − 2α2

2Br

3b1α1α2(α3 + α5)

√
r cot(

√
rξ )

−

√

−2Brα2

α1(α3 + α5)
tan(

√
rξ )]× eiφ

For γ = 0, one may have the following periodic solutions

qj25 = q25 = [−
ωα2

2 + (α3 + α5)
2 − 2α2

2Br

3b1α1α2(α3 + α5)
(
1

ξ
)

− rξ

√

−2Bα2

α1(α3 + α5)
]× eiφ

where

ξ =
ωα2

2 + (α3 + α5)
2 − 3a1b1α1α2(α3 + α5)

2rα2
2

(

x− vt

)

.

These are the new solitons and periodic wave structures.

4. CONCLUSIONS

The article gives single and combined electromagnetic
wave structures for the coupled non-linear Schrödinger
equations along with the coefficients of ferromagnetic spin
exchange interaction, antiferromagnetic coupling, exchange
coupling, and single-ion uniaxial anisotropy. The model
under investigation describes the dynamic behavior of
electromagnetic waves in a spin ladder antiferromagnetic
medium. First the complex transformation is used and then
modified extended direct algebraic method is utilized to
find dark, singular, and dark-singular wave structures. Some
other solutions (singular periodic) are also fall out during
the analytical analysis. The constraint conditions for the
existence of wave structures for different parameters are also
observed. Moreover, the 3D plots and corresponding contour
plots of the real part of solutions are drawn by choosing
suitable parameters.

It is also observed that the method used is effective,
powerful, reliable, and much more practical in obtaining the
exact wave structures for non-linear phenomena that arise
in fields like telecommunication engineering, mathematical

Frontiers in Physics | www.frontiersin.org 8 October 2020 | Volume 8 | Article 372

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Younis et al. Investigation of Electromagnetic Wave Structures

FIGURE 4 | The 3D plots and contourplots of the real part of solution q16(x, t) to q19(x, t), for different parameters.
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biology, mathematical physics, an ocean engineering and
vice versa.
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