
Results in Physics 19 (2020) 103492

A
2

Contents lists available at ScienceDirect

Results in Physics

journal homepage: www.elsevier.com/locate/rinp

Lie analysis, conservation laws and travelling wave structures of nonlinear
Bogoyavlenskii–Kadomtsev–Petviashvili equation
Adil Jhangeer a, Amjad Hussain b, M. Junaid-U-Rehman b, Ilyas Khan c,∗, Dumitru Baleanu d,e,f,
Kottakkaran Sooppy Nisar g

a Department of Mathematics, Namal Institute, 30 Km Talagang Road, Mianwali 42250, Pakistan
b Department of Mathematics, Quaid-I-Azam University 45320, Islamabad, Pakistan
c Faculty of Mathematics and Statistics, Ton DucThang University, Ho Chi Minh City, 72915, Viet Nam
d Department of Mathematics, Cankaya University, Ankara 06790, Turkey
e Institute of Space Sciences, 077125 Magurele-Bucharest, Romania
f Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan
g Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University Wadi Aldawaser 11991, Saudi Arabia

A R T I C L E I N F O

Keywords:
Bogoyavlenskii–Kadomtsev–Petviashvili (BKP)
equation
Lie analysis
Conservation laws
New extended direct algebraic method
Tanh method

A B S T R A C T

In this paper, the Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation is taken into consideration by means
of Lie symmetry analysis. Infinitesimal generators are computed under the invariance criteria of Lie groups
and symmetry group for each generator is reported. Henceforth, conjugacy classes of abelian algebra are used
to find the similarity reductions, which convert the considered equation into ordinary differential equations
(ODEs). Further, these ODEs are taken into consideration, and travelling wave structures are computed by
applying different techniques. Moreover, the discussed model is discussed by means of nonlinear selfadjointness
and conservation laws are derived for each Lie symmetry generator. For specific values of the physical
parameters of the equation under discussion, the graphical behaviour of some solutions is depicted.
1. Introduction

In this article, we will discuss the Bogoyavlenskii-Kadomtsev–
Petviashvili (BKP) equation [1,2] of the following form;

𝑄𝜃𝜃𝜏 +𝑄𝜃𝜃𝜃𝜃𝜁 + 12𝑄𝜃𝜃𝑄𝜃𝜁 + 8𝑄𝜃𝑄𝜃𝜃𝜁 + 4𝑄𝜃𝜃𝜃𝑄𝜁 = 𝑄𝜁𝜁𝜁 , (1)

where 𝑄(𝜃, 𝜁 , 𝜏) is an real field and shows the amplitude of the relevant
waves, 𝜏 is the temporal component and 𝜃, 𝜁 are the spatial compo-
nents. Eq. (1) is used to construct the propagation of dispersive waves,
where nonlinear wave envelope is described by 𝑄. It is important to
mention that after ignoring the scattering impact term 𝑄𝜁𝜁𝜁 , the Eq. (1)
converts into the Calogero–Bogoyavlenskii–Schiff (CBS) equation [3]
which explains the connection of a Riemann wave proliferating along
the 𝑦-axis with a long wave to the 𝑥-axis. Eq. (1) is an extension of the
Bogoyavlenskii–Schiff (BS) equation and Kadomtsev–Petviashvili (KP)
equation [4,5].

Differential equations (DEs) have frequently been used in literature
to model [6] many physical phenomena. In economics and biology,
the behaviour of complex systems can be examined by using DEs.
Solutions of nonlinear DEs play a significant role in mathematics,
physics, and engineering [7]. The investigation of travelling wave
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solutions of nonlinear equations has an important role in mathematics
and other nonlinear science. Nonlinear problems are more difficult
to solve than linear problems. Different techniques and their applica-
tions are accessible in literature for the calculation of accurate results
of various classes of DEs emerge in many branches of science, few
techniques are given in [8–15]. Some famous techniques which have
been developed to study the nonlinear differential equations are Lie
symmetry approach [16,17], the Hirota’s bilinear method [18], and
Bäcklund transformation [19], etc.

The fundamental enquiry in the theory of nonlinear partial differ-
ential equations (NLPDEs) is to investigate the existence of solutions to
considered NLPDEs. For example, real-world physical problems have
been described by dispersive wave equations [20]. Notably, it is amaz-
ingly hard to find the exact solution even for integrable systems.
Hypothetically, it is additionally fascinating to figure out what sort
of NLPDEs can be especially intriguing given solutions, for example,
solitons and lumps [21,22]. In recent decades, plasma physics [23]
has grown quickly in the worldwide environment, astronomical envi-
ronment, and particularly in the electromagnetic spread. The constant
improvement of the exploration of fractional PDEs [24] is one of
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the basic wave processes in plasmas. Countless hypothetical and trial
examine have been conducted on n ion-acoustic waves for a long time.
(for details see [25,26]).

The symmetry analysis technique [27,28] plays an essential role in
finding the solutions of nonlinear evolution equations that appear in
mathematical physics, which can explain a lot of complicated physical
phenomena, such as optics, plasma physics, and fluid mechanics, etc.
It is well known that investigating the exact solutions of nonlinear
evolution equations is always one of the central themes in mathematical
physics.

Noether discovers the other important aspect of Lie symmetry in
1918. She found a relationship between symmetry and conserved quan-
ities. Conservation laws have their significance in the theory of DEs.
iterature is full of the contributions made by many researchers in
eveloping the different techniques to construct conservation laws.
ome of them are given in [29–33]. In the recent past, a lot of efforts
ave been put in the theory of self-adjointness [34,35], author extends
he results given in [36].

The considered equation has been described by many means in
iterature due to its significance in different branches of science. In
he past literature, general higher-order lump-type soliton and higher-
rder blend solution comprising of the kink soliton and lump-type
oliton solutions and Gramian determinant solutions are constructed
n [1,2], and their dynamical behaviours are discussed in mention
apers. According to our knowledge, Lie analysis and conservation
aws of the discussed model are not reported before and examined
ere. The format of the paper is as follows. In Section 2, preliminaries
re presented. Lie analysis of Eq. (1) and travelling wave structures
re presented in Section 3. Nonlinear self-adjointness and conservation
aws are discussed in Section 4. In the end, the conclusion is stated.

. Nonlinear selfadjointness

Consider a 𝑛th order partial differential equation:

𝐹 (𝜃,𝑄,𝑄1,… , 𝑄𝑛) = 0, (2)

here 𝑄 is a dependent variable and 𝜃 = (𝜃1, 𝜃2,… , 𝜃𝑚) represents inde-
endent variables while 𝑄1 and 𝑄𝑛 show first and 𝑛th order derivatives
f 𝑄 with respect 𝜃, respectively.

The formal Lagrangian  = 𝑣𝐹 is assumed so the adjoint form of
q. (2) becomes:

∗ ≡ 𝛿
𝛿𝑄

(𝑣𝐹 ) = 0, (3)

where

𝛿
𝛿𝑄

= 𝜕
𝜕𝑄

+
∞
∑

𝑗=1
(−1)𝑗𝐷𝑖1 ...𝐷𝑖𝑗

𝜕
𝜕𝑄𝑖1 ...𝑖𝑗

, (4)

s called Euler–Lagrange operator, while 𝐷𝑖 are called total derivative
perators which can be defined as:

𝑖 =
𝜕
𝜕𝜃1

+𝑄𝑖
𝜕
𝜕𝑄

+𝑄𝑖𝑗
𝜕
𝜕𝑄𝑗

+⋯ ⋅ (5)

efinition 2.1. Eq. (2) is called strictly self-adjoint If the equation
ained from its adjoint equation by using the transformation 𝑣 = 𝑄, for
ome 𝑘 ∈ , such that

𝐹 ∗
|

|𝑣=𝑄 = 𝑘(𝜃,𝑄,…)𝐹 . (6)

efinition 2.2. Eq. (2) is called the quasi self-adjoint if the equation
cquired to its adjoint equation by using the transformation 𝑣 = 𝛹 (𝜃) ≠
such that:

𝐹 ∗
|

|𝑣=𝛹 (𝑄) = 𝑘(𝜃,𝑄,…)𝐹 , (7)

here 𝑘 ∈ .
2

Definition 2.3. If the equation gained from its adjoint equation then
Eq. (2) is called the weak self-adjoint by using the transformation
𝑣 = 𝛹 (𝜃,𝑄) ≠ 0 for a some function 𝛹 such that 𝛹𝑄 ≠ 0 and 𝛹𝜃𝑖 ≠ 0 for
some 𝜃𝑖 such that:

𝐹 ∗
|

|𝑣=𝛹 (𝜃,𝑄) = 𝑘(𝜃,𝑄,…)𝐹 , (8)

where 𝑘 ∈ .

Definition 2.4. If the equation acquired from its adjoint equation
then Eq. (1) is called the nonlinearly self-adjoint by the transformation
𝑣 = 𝛹 (𝜃,𝑄), with a some function such that for 𝛹 (𝜃,𝑄) ≠ 0, Eq. (1)
fulfils the following condition:

𝐹 ∗
|

|𝑣=𝛹 (𝜃,𝑄) = 𝑘(𝜃,𝑄,…)𝐹 , (9)

where 𝑘 ∈ .

The vector space of all functions of finite order which can be
differentials are represented by  in above definitions. It is important
to mention here that the concept of equations mentioned in Def.(1), (2)
and (4) are reported in [37,38], while Def.(3) is taken from [39].

Theorem 2.1. Assume Lie point, Lie–Bäcklund or non-local symmetry of
Eq. (2) of the form

𝑃 = 𝜉𝑖 𝜕
𝜕𝜃𝑖

+ 𝜂 𝜕
𝜕𝑄

,

with a standard Lagrangian  ( 𝛿𝛿𝑄 = 0) then the conserved vectors for
Eq. (2) can be taken as:

𝐶𝜃𝑖 =𝜉𝑖𝐿 +𝑊
[

𝜕
𝜕𝑄𝑖

−𝐷𝑗
𝜕
𝜕𝑄𝑖𝑗

+𝐷𝑗𝑘𝑥
𝜕
𝜕𝑄𝑖𝑗𝑘

]

+𝐷𝑗 (𝑊 )
[

𝜕
𝜕𝑄𝑖𝑗

−𝐷𝑘
𝜕
𝜕𝑄𝑖𝑗𝑘

]

+ 𝐷𝑗𝐷𝑘(𝑊 ) 𝜕
𝜕𝑄𝑖𝑗𝑘

,

(10)

where 𝑊 is called the Lie characteristic function, it can be obtained from

𝑊 = 𝜙 − 𝜉𝑖𝑄𝑖 , (11)

while 𝐷𝑖𝑇 𝜃
𝑖 = 0.

. Lie analysis of Eq. (1)

In this section, we will compute infinitesimal generators [40–42] of
q. (1). For this, let us assume Lie algebra of infinitesimal generators
or Eq. (1) is spanned by vector field:

𝑃 =𝜉1(𝜃, 𝜁 , 𝜏, 𝑄) 𝜕
𝜕𝜃

+ 𝜉2(𝜃, 𝜁 , 𝜏, 𝑄) 𝜕
𝜕𝜁

+ 𝜉3(𝜃, 𝜁 , 𝜏, 𝑄) 𝜕
𝜕𝜏

+ 𝜂(𝜃, 𝜁 , 𝜏, 𝑄) 𝜕
𝜕𝑄

.

(12)

The invariance condition for Eq. (1) with 𝑃 becomes:

𝑃 [5]
(

𝑄𝜃𝜃𝜏 +𝑄𝜃𝜃𝜃𝜃𝜁 + 12𝑄𝜃𝜃𝑄𝜃𝜁 + 8𝑄𝜃𝑄𝜃𝜃𝜁 + 4𝑄𝜃𝜃𝜃𝑄𝜁 −𝑄𝜁𝜁𝜁

)

|𝐸𝑞. (1) = 0,

(13)

where 𝑃 [5] is the fifth prolongation of 𝑃 and defined as:

𝑃 [5] =𝑃 + 𝜂𝜃 𝜕
𝜕𝑄𝜃

+ 𝜂𝜁 𝜕
𝜕𝑄𝜁

+ 𝜂𝜃𝜃 𝜕
𝜕𝑄𝜃𝜃

+ 𝜂𝜃𝜁 𝜕
𝜕𝑄𝜃𝜁

+ 𝜂𝜃𝜃𝜃 𝜕
𝜕𝑄𝜃𝜃𝜃

+ 𝜂𝜁𝜁𝜁 𝜕
𝜕𝑄𝜁𝜁𝜁

+ 𝜂𝜃𝜃𝜏 𝜕
𝜕𝑄𝜃𝜃𝜏

+ 𝜂𝜃𝜃𝜁 𝜕
𝜕𝑄𝜃𝜃𝜁

+ 𝜂𝜃𝜃𝜃𝜃𝜁 𝜕
𝜕𝑄𝜃𝜃𝜃𝜃𝜁

.

(14)

Eq. (13) leads to the following five dimensional Lie algebra of Eq. (1):

𝑃1 =
𝜕
𝜕𝜏
, 𝑃2 =

𝜕
𝜕𝜃
, 𝑃3 =

𝜕
𝜕𝜁
, 𝑃4 =

𝜕
𝜕𝑄

, 𝑃5 =
𝜃
4
𝜕
𝜕𝜃

+
𝜁
2
𝜕
𝜕𝜁

+ 𝜏 𝜕
𝜕𝜏

− 𝑄
4

𝜕
𝜕𝑄

.

(15)

In Table 2, 𝜀 ≪ 1 is a group parameter.
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Table 1
Commutator table.
[𝑃𝑖 , 𝑃𝑗 ] 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5
𝑃1 0 0 0 0 4𝑃1
𝑃2 0 0 0 0 𝑃2
𝑃3 0 0 0 0 2𝑃3
𝑃4 0 0 0 0 −𝑃4
𝑃5 −4𝑃1 −𝑃2 −2𝑃3 𝑃4 0

Table 2
Adjoint representation.
𝐴𝑑𝑔 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5
𝑃1 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 − 𝜀𝑃1
𝑃2 𝑃1 𝑃2 𝑃3 𝑃4 2𝑃5 − 𝜀𝑃3
𝑃3 𝑃1 𝑃2 𝑃3 𝑃4 4𝑃5 − 𝜀𝑃2
𝑃4 𝑃1 𝑃2 𝑃3 𝑃4 4𝑃5 − 𝜀𝑃4
𝑃5 𝑃1𝑒

3
2
𝜀 𝑃2𝑒

− 1
4
𝜀 𝑃3𝑒

1
4
𝜀 𝑃4 𝑃5

3.1. Symmetry group of (2 + 1)-dimensional BKP equation

In this section, we obtain some new exact solutions from known
nes, for this we compute the Lie symmetry groups from the corre-
ponding symmetries.

The one parameter group is defined as:

𝑖 ∶ (𝜃, 𝜁 , 𝜏, 𝑄) → (𝜃̄, 𝜁 , 𝜏, 𝑄̄) , (16)

which is produced by the generators of infinitesimal transformations 𝑃𝑖
for 1 ≤ 𝑖 ≤ 5 after solving the following system of ordinary differential
equations:
𝑑
𝑑𝜀

(𝜃̄, 𝜁 , 𝜏, 𝑄̄) = 𝜇(𝜃̄, 𝜁 , 𝜏, 𝑄̄), w𝑖𝑡ℎ (𝜃̄, 𝜁 , 𝜏, 𝑄̄)|𝜀=0 = (𝜃, 𝜁 , 𝜏, 𝑄) , (17)

where 𝜀 is an discretionary real parameter and

𝜇 = 𝜉1𝑄𝜃 + 𝜉2𝑄𝜁 + 𝜉3𝑄𝜏 + 𝜂𝑄. (18)

By using the infinitesimal generators 𝜉1, 𝜉2, 𝜉3 and 𝜂, we have the
ollowing groups:

𝐻1 ∶ (𝜃, 𝜁 , 𝜏, 𝑄) →(𝜃, 𝜁 , 𝜏 + 𝜀,𝑄),

𝐻2 ∶ (𝜃, 𝜁 , 𝜏, 𝑄) →(𝜃 + 𝜀, 𝜁 , 𝜏, 𝑄),

𝐻3 ∶ (𝜃, 𝜁 , 𝜏, 𝑄) →(𝜃, 𝜁 + 𝜀, 𝜏,𝑄),

𝐻4 ∶ (𝜃, 𝜁 , 𝜏, 𝑄) →(𝜃, 𝜁 , 𝜏, 𝑄𝑒𝜀),

𝐻5 ∶ (𝜃, 𝜁 , 𝜏, 𝑄) →(𝜃𝑒𝜀, 𝜁𝑒2𝜀, 𝜏𝑒4𝜀, 𝑄𝑒−𝜀) − 𝐴.

(19)

It is significant to mention here, that the symmetry group 𝐻1 is a time
interpretation and 𝐻2, 𝐻3 illustrate the space invariance of Eq. (1).
Further, corresponding new solutions can be obtained by using 𝐻𝑖,
1 ≤ 𝑖 ≤ 5. For example, if 𝑄 = 𝑓 (𝜃, 𝜁 , 𝜏) is a known solution of Eq. (1),
then by utilizing 𝐻𝑖, 1 ≤ 𝑖 ≤ 5 the new solutions 𝑄𝑖, 1 ≤ 𝑖 ≤ 5 are
acquired as follow:

𝑄1 =𝑓2(𝜃, 𝜁 , 𝜏 − 𝜀),

𝑄2 =𝑓4(𝜃 − 𝜀, 𝜁 , 𝜏),

𝑄3 =𝑓3(𝜃, 𝜁 − 𝜀, 𝜏),

𝑄4 =𝑒−𝜀𝑓5(𝜃, 𝜁 , 𝜏),

𝑄5 =𝑒𝜀𝑓1(𝜃𝑒−𝜀, 𝜁𝑒−2𝜀, 𝜏𝑒−4𝜀).

(20)

3.2. Optimal system and similarity reduction of Eq. (1)

It can be seen from Table 1 that 𝑃 = {𝑃1, 𝑃2, 𝑃3, 𝑃4} forms an abelian
subalgebra. Thus the one dimensional optimal system for 𝑃 [43] is:

£1 =⟨𝑃1⟩,

£2 =⟨𝑃1 + 𝑎𝑃2⟩,

£3 =⟨𝑃1 + 𝑎𝑃2 + 𝑏𝑃3⟩,
(21)
3

£4 =⟨𝑃1 + 𝑎𝑃2 + 𝑏𝑃3 + 𝑐𝑃4⟩. o
Next task is to calculate the similarity variables for (21), which are fur-
ther used to compute the all possible similarity reductions for Eq. (1).

3.2.1. £1 = ⟨𝑃1⟩
In this case, we have

𝜚 = 𝜏, 𝑄 = 𝑈 (𝜚),

which leads to a constant solution.

3.2.2. £2 = ⟨𝑃1 + 𝑎𝑃2⟩
In this case, one can obtain

𝜚 = 𝜏 − 𝑎𝜃, 𝑄 = 𝑈 (𝜚), (22)

by putting the similarity variables (22) into Eq. (1) and we get the
following solution:

𝑄(𝜃, 𝜁 , 𝜏) =
𝛼1
2
(𝜏 − 𝑎𝜃)2 + 𝛼2(𝜏 − 𝑎𝜃) + 𝛼3. (23)

.2.3. £3 = ⟨𝑃1 + 𝑎𝑃2 + 𝑏𝑃3⟩
For this class, one can easily get

= 𝜏 − 𝑎𝜃 − 𝑏𝜁, 𝑄 = 𝑈 (𝜚). (24)

y putting the similarity variables (24) into Eq. (1), we get the follow-
ng ODE:
2𝑈 ′′′ − 𝑎4𝑏𝑈 ′′′′′ + 12𝑎3𝑏(𝑈 ′′)2 + 12𝑎3𝑏𝑈 ′𝑈 ′′′ + 𝑏3𝑈 ′′′ = 0. (25)

.2.4. £4 = ⟨𝑃1 + 𝑎𝑃2 + 𝑏𝑃3 + 𝑐𝑃4⟩
For this class, one can easily get

= 𝑏𝜃 − 𝑎𝜁, 𝑄(𝜃, 𝜁 , 𝜏) = 𝑐𝜏 − 𝑈 (𝜚). (26)

y putting the similarity variables (26) into Eq. (1), we get the follow-
ng ODE:

𝑏4𝑈 ′′′′′ − 12𝑎𝑏3𝑈 ′′2 − 12𝑎𝑏3𝑈 ′𝑈 ′′′ − 𝑎3𝑈 ′′′ = 0. (27)

.3. Travelling wave structure of Eq. (1)

In this section, we will compute the travelling wave structures
f Eq. (1) by using Eqs. (25) and (27) by practicing two different
echniques.

.3.1. Travelling wave solutions from Eq. (25)
In this section, we will compute the travelling wave structures of

q. (1) from Eq. (25) with the help of new extended direct algebraic
ethod. Equating the linear term 𝑈 ′′′′′ and nonlinear term 𝑈 ′𝑈 ′′′

n Eq. (25), gives the solution of the following form (for details see
ppendix A section)

(𝜚) = 𝑎0 + 𝑎1𝑔(𝜚). (28)

Let us suppose 𝑔(𝜚) is the solution of the following equation
′(𝜚) = 𝑙𝑛(𝜗)(𝛼 + 𝜍𝑔(𝜚) + 𝛾𝑔2(𝜚)), (29)

utting Eqs. (28) and (29) into Eq. (25) and comparing the coefficients
f powers of 𝑔(𝜚), we get a system of algebraic equations. After solving
he obtained system with the help of Maple for 𝑎0, 𝑎1 and 𝑎, we get the
ollowing sets of solutions:

𝑎0 = 𝑚1, 𝑎1 = 𝛾 ln(𝜗)𝑎, 𝑎 =

√

√

√

√
(4𝜍2𝑏4𝑙𝑛2(𝜗) − 16𝛼𝛾𝑏4𝑙𝑛2(𝜗))

1
2 − 1

8𝛼𝛾𝑏 ln2(𝜗) − 2𝜍2𝑏 ln2(𝜗)
,

(30)

here 𝑚1 is an real constant.
Following the routine calculation as mentioned in preliminaries, we
btain the following travelling wave solutions of BKP equation:
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𝐂𝐚𝐬𝐞 𝟏. When 𝛥 < 0 and 𝛾 ≠ 0, then
𝑄1(𝜃, 𝜁 , 𝜏) = 𝑚1 +

1
2𝑎 ln(𝜗)[−𝜍 +

√

−𝛥 tan𝜗(
√

−𝛥
2 𝜚)],

𝑄2(𝜃, 𝜁 , 𝜏) = 𝑚1 +
1
2𝑎 ln(𝜗)[−𝜍 −

√

−𝛥 cot𝜗(
√

−𝛥
2 𝜚)],

𝑄3(𝜃, 𝜁 , 𝜏) = 𝑚1+
1
2𝑎 ln(𝜗)[−𝜍+

√

−𝛥(tan𝜗(
√

−𝛥𝜚)±
√

𝑟𝑠 sec𝜗(
√

−𝛥𝜚))],
𝑄4(𝜃, 𝜁 , 𝜏) = 𝑚1+

1
2𝑎 ln(𝜗)[−𝜍−

√

−𝛥(cot𝜗(
√

−𝛥𝜚)±
√

𝑟𝑠 csc𝜗(
√

−𝛥𝜚))],

𝑄5(𝜃, 𝜁 , 𝜏) = 𝑚1 +
1
2𝑎 ln(𝜗)[−𝜍 +

√

−𝛥
2 (tan𝜗(

√

−𝛥
4 𝜚) − cot𝜗(

√

−𝛥
4 𝜚))].

𝐂𝐚𝐬𝐞 𝟐. When 𝛥 > 0 and 𝛾 ≠ 0, then
𝑄6(𝜃, 𝜁 , 𝜏) = 𝑚1 +

1
2𝑎 ln(𝜗)[−𝜍 −

√

𝛥 tanh𝜗(
√

𝛥
2 𝜚)],

𝑄7(𝜃, 𝜁 , 𝜏) = 𝑚1 +
1
2𝑎 ln(𝜗)[−𝜍 −

√

𝛥 coth𝜗(
√

𝛥
2 𝜚)],

𝑄8(𝜃, 𝜁 , 𝜏) = 𝑚1 +
1
2𝑎 ln(𝜗)[−𝜍 −

√

𝛥(tanh𝜗(
√

𝛥𝜚) ± 𝜄
√

𝑟𝑠 sech 𝜗(
√

𝛥𝜚))],
𝑄9(𝜃, 𝜁 , 𝜏) = 𝑚1 +

1
2𝑎 ln(𝜗)[−𝜍 −

√

𝛥(coth𝜗(
√

𝛥𝜚) ±
√

𝑟𝑠 csch 𝜗(
√

𝛥𝜚))],

𝑄10(𝜃, 𝜁 , 𝜏) = 𝑚1 +
1
2𝑎 ln(𝜗)[−𝜍 −

√

𝛥
2 (tanh𝜗(

√

𝛥
4 𝜚) + coth𝜗(

√

𝛥
4 𝜚))].

𝐂𝐚𝐬𝐞 𝟑. When 𝛾𝛼 > 0 and 𝜍 = 0, then
𝑄11(𝜃, 𝜁 , 𝜏) = 𝑚1 +

√

𝛾𝛼𝑎 ln(𝜗) tan𝜗(
√

𝛾𝛼𝜚),
𝑄12(𝜃, 𝜁 , 𝜏) = 𝑚1 −

√

𝛾𝛼𝑎 ln(𝜗) cot𝜗(
√

𝛾𝛼𝜚),
𝑄13(𝜃, 𝜁 , 𝜏) = 𝑚1 +

√

𝛾𝛼𝑎 ln(𝜗)[tan𝜗(2
√

𝛾𝛼𝜚) ±
√

𝑟𝑠 sec𝜗(2
√

𝛾𝛼𝜚)],
𝑄14(𝜃, 𝜁 , 𝜏) = 𝑚1 −

√

𝛾𝛼𝑎 ln(𝜗)[cot𝜗(2
√

𝛾𝛼𝜚) ±
√

𝑟𝑠 csc𝜗(2
√

𝛾𝛼𝜚)],
𝑄15(𝜃, 𝜁 , 𝜏) = 𝑚1 +

1
2

√

𝛾𝛼𝑎 ln(𝜗)[tan𝜗(
√

𝛾𝛼
2 𝜚) − cot𝜗(

√

𝛾𝛼
2 𝜚)].

𝐂𝐚𝐬𝐞 𝟒. When 𝛾𝛼 < 0 and 𝜍 = 0, then
𝑄16(𝜃, 𝜁 , 𝜏) = 𝑚1 −

√

−𝛾𝛼𝑎 ln(𝜗) tanh𝜗(
√

−𝛾𝛼𝜚),
𝑄17(𝜃, 𝜁 , 𝜏) = 𝑚1 −

√

−𝛾𝛼𝑎 ln(𝜗) coth𝜗(
√

−𝛾𝛼𝜚),
𝑄18(𝜃, 𝜁 , 𝜏) = 𝑚1 −

√

−𝛾𝛼𝑎 ln(𝜗)[tanh𝜗(2
√

−𝛾𝛼𝜚) ± 𝜄
√

𝑟𝑠 sech 𝜗
(2
√

−𝛾𝛼𝜚)],
𝑄19(𝜃, 𝜁 , 𝜏) = 𝑚1 −

√

−𝛾𝛼𝑎 ln(𝜗)[coth𝜗(2
√

−𝛾𝛼𝜚) ±
√

𝑟𝑠 csch 𝜗
(2
√

−𝛾𝛼𝜚)],
𝑄20(𝜃, 𝜁 , 𝜏) = 𝑚1 −

1
2

√

−𝛾𝛼𝑎 ln(𝜗)[tanh𝜗(
√

−𝛾𝛼
2 𝜚) + coth𝜗(

√

−𝛾𝛼
2 𝜚)].

𝐂𝐚𝐬𝐞 𝟓. When 𝜍 = 0 and 𝛾 = 𝛼, then
𝑄21(𝜃, 𝜁 , 𝜏) = 𝑚1 + 𝛾𝑎 ln(𝜗) tan𝜗(𝛼𝜚),
𝑄22(𝜃, 𝜁 , 𝜏) = 𝑚1 − 𝛾𝑎 ln(𝜗) cot𝜗(𝛼𝜚),
𝑄23(𝜃, 𝜁 , 𝜏) = 𝑚1 + 𝛾𝑎 ln(𝜗)[tan𝜗(2𝛼𝜚) ±

√

𝑟𝑠 sec𝜗(2𝛼𝜚)],
𝑄24(𝜃, 𝜁 , 𝜏) = 𝑚1 − 𝛾𝑎 ln(𝜗)[cot𝜗(2𝛼𝜚) ±

√

𝑟𝑠 csc𝜗(2𝛼𝜚)],
𝑄25(𝜃, 𝜁 , 𝜏) = 𝑚1 +

1
2 𝛾𝑎 ln(𝜗)[tan𝜗(

𝛼
2 𝜚) − cot𝜗(

𝛼
2 𝜚)].

𝐂𝐚𝐬𝐞 𝟔. When 𝜍 = 0 and 𝛾 = −𝛼, then
𝑄26(𝜃, 𝜁 , 𝜏) = 𝑚1 − 𝛾𝑎 ln(𝜗) tanh𝜗(𝛼𝜚),
𝑄27(𝜃, 𝜁 , 𝜏) = 𝑚1 − 𝛾𝑎 ln(𝜗) coth𝜗(𝛼𝜚),
𝑄28(𝜃, 𝜁 , 𝜏) = 𝑚1 − 𝛾𝑎 ln(𝜗)[tanh𝜗(2𝛼𝜚) ± 𝜄

√

𝑟𝑠 sech 𝜗(2𝛼𝜚)],
𝑄29(𝜃, 𝜁 , 𝜏) = 𝑚1 − 𝛾𝑎 ln(𝜗)[coth𝜗(2𝛼𝜚) ±

√

𝑟𝑠 csch 𝜗(2𝛼𝜚)],
𝑄30(𝜃, 𝜁 , 𝜏) = 𝑚1 −

1
2 𝛾𝑎 ln(𝜗)[tanh𝜗(

𝛼
2 𝜚) + coth𝜗(

𝛼
2 𝜚)].

𝐂𝐚𝐬𝐞 𝟕. When 𝜍2 = 4𝛾𝛼 then
𝑄31(𝜃, 𝜁 , 𝜏) = 𝑚1 −

2𝛾𝛼𝑑(𝜍𝜚 ln(𝜗)+2)
𝜍2𝜚

.
𝐂𝐚𝐬𝐞 𝟖. When 𝜍 = 𝜆, 𝛼 = 𝑚𝜆 (𝑚 ≠ 0) and 𝛾 = 0, then
𝑄32(𝜃, 𝜁 , 𝜏) = 𝑚1.
we get trivial solution.
𝐂𝐚𝐬𝐞 𝟗. When 𝜍 = 𝛾 = 0, then
𝑄33(𝜃, 𝜁 , 𝜏) = 𝑚1.
we get trivial solution.
𝐂𝐚𝐬𝐞 𝟏𝟎. When 𝜍 = 𝛼 = 0, then
𝑄34(𝜃, 𝜁 , 𝜏) = 𝑚1 −

𝑑
𝜚 .

𝐂𝐚𝐬𝐞 𝟏𝟏. When 𝛼 = 0 and 𝜍 ≠ 0, then
𝑄35(𝜃, 𝜁 , 𝜏) = 𝑚1 −

𝑟𝜍𝑎 ln(𝜗)
[cosh𝜗(𝜍𝜚)−sinh𝜗(𝜍𝜚)+𝑟]

.
𝑄36(𝜃, 𝜁 , 𝜏) = 𝑚1 −

𝜍𝑎 ln(𝜗)[cosh𝜗(𝜍𝜚)+sinh𝜗(𝜍𝜚)]
[cosh𝜗(𝜍𝜚)+sinh𝜗(𝜍𝜚)+𝑠]

.
𝐂𝐚𝐬𝐞 𝟏𝟐. When 𝜍 = 𝜆, 𝛾 = 𝑚𝜆 (𝑚 ≠ 0) and 𝛼 = 0, then
𝑄37(𝜃, 𝜁 , 𝜏) = 𝑚1 + 𝛾𝑎 ln(𝜗)

𝑟𝜗𝜆𝜚

𝑠−𝑚𝑟𝜗𝜆𝜚 .

.3.2. Exact explicit solutions from Eq. (27)
In this section, we will compute the exact explicit solutions of

q. (1) from Eq. (27) with the help of tanh technique.
Suppose the general solution of Eq. (1) is of the form (for details see

ppendix B section)

(𝜚) = 𝑎0 +
𝑁
∑

𝑎𝑛𝑌
𝑛, (31)
4

𝑛=1
quating the linear term 𝑈 ′′′′′ and nonlinear term 𝑈 ′𝑈 ′′′ in Eq. (27),
we get 𝑁 = 1, using in Eq. (31) and we get:

(𝜚) = 𝑎0 + 𝑎1𝑌 , (32)

After doing routine calculations as mentioned in the description, we get
the following sets of solutions for Eq. (1):

𝐒𝐞𝐭 𝟏 ∶
𝑎0 = 𝑑1, 𝑎1 = −𝑏, 𝑎 = 2𝑏2.
𝑄(𝜃, 𝜁 , 𝜏) = 𝑐𝜏 + 𝑏 tanh(𝑏𝜃 − 2𝑏2𝜁 ) − 𝑑1,
where 𝑑1 is an arbitrary constant.
𝐒𝐞𝐭 𝟐 ∶
𝑎0 = 𝑑2, 𝑎1 = −𝑏, 𝑎 = −2𝑏2.
𝑄(𝜃, 𝜁 , 𝜏) = 𝑐𝜏 + 𝑏 tanh(𝑏𝜃 + 2𝑏2𝜁 ) − 𝑑2,
where 𝑑2 is an arbitrary constant.
𝐒𝐞𝐭 𝟑 ∶
𝑎0 = 𝑑3, 𝑎1 = 𝑑4, 𝑎 = 0.
𝑄(𝜃, 𝜁 , 𝜏) = 𝑐𝜏 − 𝑑4 tanh(𝑏𝜃) − 𝑑3,
where 𝑑3 and 𝑑4 are arbitrary constants.

3.3.3. Graphical interpretation of travelling wave structures
In this section, we will interpret some solutions graphically. By

taking the different values of involving parameters, we have repre-
sented the different 2𝐷 and 3𝐷 graphical behaviour of travelling wave
olutions. Different graphical behaviour of 𝑄6(𝜃, 𝜁 , 𝜏) for 𝛼 = −1, 𝜍 =
, 𝛾 = 1, 𝑏 = −1, 𝑚1 = 1, 𝜏 = 1, and 𝜗 = 𝑒. in Figs. 1(a) and 1(b).
urthermore, we have represented the different 2𝐷 and 3𝐷 graphical
ehaviour of 𝑄8(𝜃, 𝜁 , 𝜏) for 𝛼 = −1, 𝜍 = 0, 𝛾 = 1, 𝑏 = −1, 𝑚1 = 1, 𝜏 =

1, 𝑟 = −1, 𝑠 = 1, and 𝜗 = 𝑒 is presented in Figs. 2(a) and 2(b). we have
howed the different 2𝐷 and 3𝐷 graphical structures of 𝑄10(𝜃, 𝜁 , 𝜏) for
= −1, 𝜍 = 0, 𝛾 = 1, 𝑏 = −1, 𝑚1 = 1, 𝜏 = 1, 𝑟 = −1, 𝑠 = 1 and 𝜗 = 𝑒

n Figs. 3(a) and 3(b). By choosing the different values of involving
arameters and we represent the 2𝐷 and 3𝐷 graphical behaviour of the
olution 𝑄11(𝜃, 𝜁 , 𝜏) for 𝛼 = 1, 𝛾 = 1, 𝑎 = 1, 𝑏 = 1, 𝑚1 = 1, 𝜏 = 1, 𝜗 = 𝑒
n Figs. 4(a) and 4(b). Different graphical behaviour of 𝑄26(𝜃, 𝜁 , 𝜏) for
= 1, 𝜍 = 0, 𝛾 = 1, 𝑏 = −1, 𝑚1 = 1, 𝜏 = 1 and 𝜗 = 𝑒 in Figs. 5(a) and 5(b).

n Figs. 6(a) and 6(b), we have showed the graphical representation of
35(𝜃, 𝜁 , 𝜏) for 𝜍 = 1, 𝑑 = 1, 𝑟 = 0.5, 𝑎 = 1, 𝑏 = 1, 𝑚1 = 1, 𝜏 = 5 and

𝜗 = 𝑒.
We have showed the different 2𝐷 and 3𝐷 graphical behaviour of

travelling wave solutions. Different graphical structures of Set 1 for
𝑏 = 1, 𝑐 = 1, 𝑑1 = 0.5 and 𝜏 = 2 in Figs. 7(a) and 7(b). By taking the
ifferent values of involving parameters and we represent the graphical
ehaviour of Set 2 for 𝑏 = 1, 𝑐 = 1, 𝑑2 = 0.5 and 𝜏 = 2 in Figs. 8(a) and
(b) and graphical representation of Set 3 for 𝑏 = 1, 𝑐 = 1, 𝑑3 = 0.5 and
𝑑4 = 1. are represented in Figs. 9(a) and 9(b).

. Nonlinear self-adjointness and conservation laws

.1. Nonlinear self-adjointness classification

In this section, we will present classification of Eq. (1) via theory of
onlinear self-adjointness. For this let us suppose formal Lagrangian 
f the form:

= 𝜓(𝜃, 𝜁 , 𝜏)
(

𝑄𝜃𝜃𝜏 +𝑄𝜃𝜃𝜃𝜃𝜁 + 12𝑄𝜃𝜃𝑄𝜃𝜁 + 8𝑄𝜃𝑄𝜃𝜃𝜁 + 4𝑄𝜃𝜃𝜃𝑄𝜁 −𝑄𝜁𝜁𝜁

)

,

(33)

where 𝜓(𝜃, 𝜁 , 𝜏) is the new dependent variable based on Eq. (33), now
we define action integral which can be written as:

∫

𝜏

0 ∫𝛺1
∫𝛺2

(𝜃, 𝜁 , 𝜏, 𝑄,𝑄𝜃 , 𝑄𝜁 , 𝑄𝜃𝜃 , 𝑄𝜃𝜁 , 𝑄𝜃𝜃𝜏 , 𝑄𝜃𝜃𝜁 , 𝑄𝜃𝜃𝜃 , 𝑄𝜁𝜁𝜁 , 𝑄𝜃𝜃𝜃𝜃𝜁 )𝑑𝜃𝑑𝜁𝑑𝜏.
(34)
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Fig. 1. Graphical representation of 𝑄6(𝜃, 𝜁 , 𝜏) for 𝛼 = −1,𝜍 = 0,𝛾 = 1,𝑏 = −1,𝑚1 = 1,𝜏 = 1, and 𝜗 = 𝑒.

Fig. 2. Graphical representation of 𝑄8(𝜃, 𝜁 , 𝜏) for 𝛼 = −1,𝜍 = 0,𝛾 = 1,𝑏 = −1,𝑚1 = 1,𝜏 = 1,𝑟 = −1,𝑠 = 1,and 𝜗 = 𝑒.

Fig. 3. Graphical representation of 𝑄10(𝜃, 𝜁 , 𝜏) for 𝛼 = −1, 𝜍 = 0, 𝛾 = 1, 𝑏 = −1, 𝑚1 = 1, 𝜏 = 1, 𝑟 = −1, 𝑠 = 1 and 𝜗 = 𝑒.
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Fig. 4. Graphical representation of 𝑄11(𝜃, 𝜁 , 𝜏) for 𝛼 = 1, 𝛾 = 1, 𝑎 = 1, 𝑏 = 1, 𝑚1 = 1, 𝜏 = 1, 𝜗 = 𝑒.

Fig. 5. Graphical representation of 𝑄26(𝜃, 𝜁 , 𝜏) for 𝛼 = 1, 𝜍 = 0, 𝛾 = 1, 𝑏 = −1, 𝑚1 = 1, 𝜏 = 1 and 𝜗 = 𝑒.

Fig. 6. Graphical representation of 𝑄35(𝜃, 𝜁 , 𝜏) for 𝜍 = 1, 𝑑 = 1, 𝑟 = 0.5, 𝑎 = 1, 𝑏 = 1, 𝑚1 = 1, 𝜏 = 5 and 𝜗 = 𝑒.
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Fig. 7. Graphical representation of Set 1 for 𝑏 = 1, 𝑐 = 1, 𝑑1 = 0.5 and 𝜏 = 2.
Fig. 8. Graphical representation of Set 2 for 𝑏 = 1, 𝑐 = 1, 𝑑2 = 0.5 and 𝜏 = 2.
Fig. 9. Graphical representation of Set 3 for 𝑏 = 1, 𝑐 = 1, 𝑑3 = 0.5 and 𝑑4 = 1.
After applying Euler–Lagrange operator on Lagrangian (33), we get:

𝐷3
𝜁 [𝜓] −𝐷

4
𝜃𝐷𝜁 [𝜓] −𝐷2

𝜃𝐷𝜏 [𝜓] + 12𝐷𝜃𝐷𝜁 [𝜓𝑄𝜃𝜃] − 8𝐷2
𝜃𝐷𝜁 [𝜓𝑄𝜃] + 12𝐷2

𝜃[𝜓𝑄𝜃𝜁 ]

− 4𝐷3
𝜃[𝜓𝑄𝜁 ] − 8𝐷𝜃[𝜓𝑄𝜃𝜃𝜁 ] − 4𝐷𝜁 [𝜓𝑄𝜃𝜃𝜃] = 0.

(35)
7

where 𝜓 = 𝜓(𝜃, 𝜁 , 𝜏) and 𝑄 = 𝑄(𝜃, 𝜁 , 𝜏). Further computing 𝐷𝜃 , 𝐷𝜁 and
𝐷𝜏 in Eq. (35) and we get

𝜓𝜃𝜃𝜃(1 − 4𝑄𝜁 ) − 𝜓𝜃𝜃𝜃𝜃𝜁 − 8𝜓𝜃𝜃𝑄𝜃𝜁 − 4𝜓𝜃𝜁𝑄𝜃𝜃 − 8𝜓𝜃𝜃𝜁𝑄𝜃 − 𝜓𝜃𝜃𝜏 = 0.

(36)
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Now by using the Definitions 2.1–2.4 and doing the routine calcu-
lations, we can state the following theorem:

Theorem 4.1. Eq. (1) is neither nonlinear self-adjoint or quasi self-adjoint
or weak self-adjoint, however Eq. (1) is strictly self-adjoint for 𝑣 = 𝜓 ,
here 𝜓 can be taken as:

(𝜃, 𝜁 , 𝜏) = 𝜃𝑓 (𝜏) + ℎ(𝜁, 𝜏), (37)

here 𝑓 (𝜏) and ℎ(𝜁, 𝜏) are arbitrary functions.

It is important to mention that due to arbitrariness of 𝑓 (𝜏) and
(𝜁, 𝜏), Eq. (1) contains infinite many conservation laws, which are
eported in next section.

.2. Conservation laws

In this portion, we are represent the conserved vectors for Eq. (1)
hich fulfils the following condition

𝐷𝜏 (𝐶𝜏 ) +𝐷𝜃(𝐶𝜃) +𝐷𝜁 (𝐶𝜁 )]𝐸𝑞. (1) = 0 , (38)

here 𝐶𝜏 , 𝐶𝜃 and 𝐶𝜁 are the conserved vectors. Now supposing, the
ase if 𝜃, 𝜁 and 𝜏 are independent variables and 𝑄(𝜃, 𝜁 , 𝜏) is dependent
ariable, then we have

̄+𝐷𝜏 (𝜉1)𝐼+𝐷𝜃(𝜉2)𝐼+𝐷𝜁 (𝜉3)𝐼 = 𝑊 𝛿
𝛿𝑄

+𝐷𝜏 (𝐶𝜏 )+𝐷𝜃(𝐶𝜃)+𝐷𝜁 (𝐶𝜁 ) , (39)

where 𝐼 is identity operator and 𝛿
𝛿𝑄 is EL-generator, 𝐶𝜏 , 𝐶𝜃 and 𝐶𝜁 are

he conserved vectors.
𝑃 is written as

𝑃 = 𝜉1 𝜕
𝜕𝜏

+ 𝜉2 𝜕
𝜕𝜃

+ 𝜉3 𝜕
𝜕𝜁

+ 𝜂 𝜕
𝜕𝑄

+ 𝜂𝜃 𝜕
𝜕𝑄𝜃

+ 𝜂𝜁 𝜕
𝜕𝑄𝜁

+ 𝜂𝜃𝜃 𝜕
𝜕𝑄𝜃𝜃

+ 𝜂𝜃𝜁 𝜕
𝜕𝑄𝜃𝜁

+

𝜂𝜃𝜃𝜏 𝜕
𝜕𝑄𝜃𝜃𝜏

+ 𝜂𝜃𝜃𝜁 𝜕
𝜕𝑄𝜃𝜃𝜁

+ 𝜂𝜁𝜁𝜁 𝜕
𝜕𝑄𝜁𝜁𝜁

+ 𝜂𝜃𝜃𝜃𝜃𝜁 𝜕
𝜕𝑄𝜃𝜃𝜃𝜃𝜁

,

(40)

and 𝑊 is the Lie characteristic function which can be written as

𝑊 = 𝜂 − 𝜉1𝑢𝜏 − 𝜉3𝑄𝜃 − 𝜉1𝑄𝜁 .

In this case, 𝐶 𝑖 for three independent variables 𝜃, 𝜁 and 𝜏 can be written
as

𝐶 𝑖 =𝜉𝑖 +𝑊𝛼

[

𝜕
𝜕𝑄𝛼

𝑖
−𝐷𝑗

(

𝜕
𝜕𝑄𝛼

𝑖𝑗

)

+𝐷𝑗𝐷𝑘

(

𝜕
𝜕𝑄𝛼

𝑖𝑗𝑘

)

−⋯
]

+𝐷𝑗 (𝑊𝛼)
[

𝜕
𝜕𝑄𝛼

𝑖𝑗

− 𝐷𝑘

(

𝜕
𝜕𝑄𝛼

𝑖𝑗𝑘

)

+⋯
]

+𝐷𝑗𝐷𝑘(𝑊𝛼)
[

𝜕
𝜕𝑄𝛼

𝑖𝑗𝑘
−⋯

]

+⋯ ,

(41)

where

𝜉𝜏 = 𝜉1, 𝜉𝜃 = 𝜉2, 𝜉𝜁 = 𝜉3 𝑎𝑛𝑑 𝛼 = 1, 2, 3... .

For the operators 𝑃𝑖(𝑖 = 1, 2..., 5) in (12), the corresponding character-
istic functions have the following form

𝑊1 = −𝑄
4
−𝜏𝑄𝜏 −

𝜃
4
𝑄𝜃−

𝜁
2
𝑄𝜁 ,𝑊2 = −𝑄𝜏 ,𝑊3 = −𝑄𝜁 ,𝑊4 = −𝑄𝜃 ,𝑊5 = 1.

(42)

Putting (33) and (42) into (41), one can obtain

𝐶𝜏 =𝜉𝜏 +𝑊𝑖

[

𝐷𝜃𝐷𝜏 (
𝜕
𝜕𝑄𝜃𝜃𝜏

)
]

+𝐷𝜏 (𝑊𝑖)
[

−𝐷𝜃
𝜕
𝜕𝑄𝜃𝜃𝜏

]

+𝐷𝜃(𝑊𝑖)
[

−𝐷𝜏
𝜕
𝜕𝑄𝜃𝜃𝜏

]

+ 𝐷𝜃𝐷𝜏 (𝑊𝑖)
[

−𝐷𝜏 (
𝜕
𝜕𝑄𝜃𝜃𝜏

)
]

, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, 4, 5 .

(43)
8

w

𝐶𝜃 =𝜉𝜃 +𝑊𝑖

[

𝜕
𝜕𝑄𝜃

+𝐷𝜃𝐷𝜏 (
𝜕
𝜕𝑄𝜃𝜃𝜏

) +𝐷3
𝜃𝐷𝜁 (

𝜕
𝜕𝑄𝜃𝜃𝜃𝜃𝜁

)

−𝐷𝜃(
𝜕
𝜕𝑄𝜃𝜃

) −𝐷𝜁 (
𝜕
𝜕𝑄𝜃𝜁

)

+ 𝐷𝜃𝐷𝜁 (
𝜕

𝜕𝑄𝜃𝜃𝜁
) +𝐷2

𝜃(
𝜕

𝜕𝑄𝜃𝜃𝜃
)
]

+𝐷𝜏 (𝑊𝑖)

×
[

−𝐷𝜃
𝜕
𝜕𝑄𝜃𝜃𝜏

]

+𝐷𝜃(𝑊𝑖)
[

𝜕
𝜕𝑄𝜃𝜃

− 𝐷𝜏
𝜕
𝜕𝑄𝜃𝜃𝜏

+𝐷𝜃𝐷𝜁 (
𝜕

𝜕𝑄𝜃𝜃𝜃𝜃𝜁
) −𝐷𝜁 (

𝜕
𝜕𝑄𝜃𝜃𝜁

)

−𝐷𝜃(
𝜕

𝜕𝑄𝜃𝜃𝜃
)
]

+𝐷𝜁 (𝑊𝑖)
[

𝜕
𝜕𝑄𝜃𝜁

− 𝐷𝜃(
𝜕

𝜕𝑄𝜃𝜃𝜁
) −𝐷3

𝜃(
𝜕
𝜕𝑄𝜃

)
]

+𝐷𝜃𝐷𝜏 (𝑊𝑖)
[

𝜕
𝜕𝑄𝜃𝜃𝜏

]

+𝐷𝜃𝐷𝜁 (𝑊𝑖)
[

𝜕
𝜕𝑄𝜃𝜃𝜁

]

+ 𝐷𝜃𝐷𝜃(𝑊1)
[

𝜕
𝜕𝑄𝜃𝜃𝜃

]

+𝐷2
𝜃𝐷𝜁 (𝑊𝑖)

[

−𝐷𝜃
𝜕

𝜕𝑄𝜃𝜃𝜃𝜃𝜁

]

+𝐷3
𝜃𝐷𝜁 (𝑊𝑖)

[

𝜕
𝜕𝑄𝜃𝜃𝜃𝜃𝜁

]

,

(44)

where 𝑖 = 1, 2, 3, 4, 5.

𝐶𝜁 =𝜉𝜁 +𝑊𝑖

[

𝜕
𝜕𝑄𝜁

−𝐷𝜁 (
𝜕
𝜕𝑄𝜃𝜁

) +𝐷3
𝜃𝐷𝜁 (

𝜕
𝜕𝑄𝜃𝜃𝜃𝜃𝜁

)

+𝐷𝜃𝐷𝜁 (
𝜕

𝜕𝑄𝜃𝜃𝜁
) +𝐷2

𝜁 (
𝜕

𝜕𝑄𝜁𝜁𝜁
)
]

+ 𝐷𝜃(𝑊𝑖)
[

−𝐷2
𝜃𝐷𝜁 (

𝜕
𝜕𝑄𝜃𝜃𝜃𝜁

) −𝐷𝜁 (
𝜕

𝜕𝑄𝜃𝜃𝜁
)

−𝐷𝜁 (
𝜕

𝜕𝑄𝜁𝜁𝜁
)
]

+𝐷2
𝜁 (𝑊𝑖)

[

𝜕
𝜕𝑄𝜁𝜁𝜁

]

+ 𝐷𝜃𝐷𝜁 (𝑊𝑖)
[

𝜕
𝜕𝑄𝜃𝜃𝜁

]

+𝐷2
𝜃𝐷𝜁 (𝑊𝑖)

×
[

−𝐷𝜃
𝜕

𝜕𝑄𝜃𝜃𝜃𝜃𝜁

]

+𝐷3
𝜃𝐷𝜁 (𝑊𝑖)

[

𝜕
𝜕𝑄𝜃𝜃𝜃𝜃𝜁

]

+ 𝐷𝜁 (𝑊𝑖)
[

−𝐷3
𝜃(

𝜕
𝜕𝑄𝜃𝜃𝜃𝜃𝜁

) + 𝜕
𝜕𝑄𝜃𝜁

−𝐷𝜃(
𝜕

𝜕𝑄𝜃𝜃𝜁
) −𝐷𝜁 (

𝜕
𝜕𝑄𝜁𝜁𝜁

)
]

,

(45)

where 𝑖 = 1, 2, 3, 4, 5.
Case:1 For 𝑃1, we have 𝑊 = −𝑄𝜏 and 𝜉𝜏 = 1. Substituting these

values in Eqs. (43)–(45), we find

𝐶𝜏 = −𝑄𝜏𝜓𝜃𝜏 +𝑄𝜏𝜏𝜓𝜃 +𝑄𝜃𝜏𝜓𝜏 +𝑄𝜃𝜏𝜏𝜓𝜏 ,

𝐶𝜃 = −𝑄𝜏 [−4𝑄𝜃𝜃𝜁𝜓 + 𝜓𝜃𝜏 + 𝜓𝜃𝜃𝜃𝜁 − 4𝑄𝜃𝜃𝜓𝜁 + 8𝑄𝜃𝜓𝜃𝜁 + 4𝜓𝜃𝜃𝑄𝜁 ] +𝑄𝜏𝜏𝜓𝜃

− 𝑄𝜃𝜏 [13𝜓𝜃𝜁 − 𝜓𝜏 − 8𝜓𝜁𝑄𝜃 − 12𝜓𝑄𝜃𝜁 − 4𝜓𝜃𝑄𝜁 ]

− 𝑄𝜁𝜏 [4𝜓𝑄𝜃𝜃 − 8𝜓𝜃𝑄𝜃 − 8(𝜓𝜃𝜃𝜃𝑄𝜃𝜃𝜁 + 3𝜓𝜃𝜃𝑄𝜃𝜃𝜃𝜁 + 3𝜓𝜃𝑄𝜃𝜃𝜃𝜃𝜁 + 𝜓𝜃𝑄𝜃𝜃𝜃𝜃𝜃𝜁 )]

− 𝜓𝑄𝜃𝜏𝜏 − 8𝜓𝑄𝜃𝑄𝜃𝜁𝜏 − 4𝜓𝜃𝑄𝜁𝑄𝜃𝜃𝜏 + 𝜓𝜃𝑄𝜃𝜃𝜁𝜏 − 𝜓𝜃𝑄𝜃𝜃𝜃𝜁𝜏 ,

𝐶𝜁 = −𝑄𝜏[4𝑄𝜃𝜃𝜃𝜓 − 12𝜓𝜁𝑄𝜃𝜃 − 12𝜓𝑄𝜃𝜃𝜁 + 𝜓𝜃𝜃𝜃𝜁 + 8𝑄𝜃𝜃𝜓𝜁 + 8𝑄𝜃𝑄𝜃𝜁 + 8𝑄𝜃𝜁𝜓𝜃

+ 𝜓𝑄𝜃𝜃𝜁 − 𝜓𝜁𝜁 ] −𝑄𝜃𝜏 [−𝜓𝜃𝜃𝜁 − 8𝜓𝑄𝜃𝜁 − 8𝜓𝜁𝑄𝜃 + 𝜓𝜁 ] −𝑄𝑡𝜁 [ − 𝜓𝜃𝜃𝜃
+ 12𝜓𝑄𝜃𝜃 − 8𝜓𝑄𝜃𝜃 − 8𝜓𝜃𝑄𝜃 + 𝜓𝜁 ] − 8𝜓𝑄𝜃𝑄𝜃𝜁𝜏 − 𝜓𝜁𝜁 − 𝜓𝜃𝑄𝜃𝜃𝜁𝜏 − 𝜓𝑄𝜃𝜃𝜃𝜁𝜏 ,

here 𝜓(𝜃, 𝜁 , 𝜏) = 𝜃𝑓 (𝜏) + ℎ(𝜁, 𝜏).
Case:2 For 𝑃2, we have 𝑊 = −𝑄𝜃 and 𝜉𝜃 = 1, we find

𝐶𝜏 =2𝑄𝜃𝜃𝜓𝜏 +𝑄𝜃𝜏𝜓𝜃 −𝑄𝜃𝜓𝜃𝜏 +𝑄𝜃𝜃𝜏𝜓𝜏 ,

𝐶𝜃 = −𝑄𝜃 [−4𝑄𝜃𝜃𝜁𝜓 + 𝜓𝜃𝜏 + 𝜓𝜃𝜃𝜃𝜁 − 4𝑄𝜃𝜃𝜓𝜁 + 8𝑄𝜃𝜓𝜃𝜁 + 4𝜓𝜃𝜃𝑄𝜁 ] +𝑄𝜃𝜏𝜓𝜃
− 𝑄𝜃𝜃 [13𝜓𝜃𝜁 − 𝜓𝜏 − 8𝜓𝜁𝑄𝜃 − 12𝜓𝑄𝜃𝜁 − 4𝜓𝜃𝑄𝜁 ]

− 𝑄𝜃𝜁 [4𝜓𝑄𝜃𝜃 − 8𝜓𝜃𝑄𝜃 − 8(𝜓𝜃𝜃𝜃𝑄𝜃𝜃𝜁 + 3𝜓𝜃𝜃𝑄𝜃𝜃𝜃𝜁 + 3𝜓𝜃𝑄𝜃𝜃𝜃𝜃𝜁 + 𝜓𝜃𝑄𝜃𝜃𝜃𝜃𝜃𝜁 )]

− 𝜓𝑄𝜃𝜃𝜏 − 8𝜓𝑄𝜃𝑄𝜃𝜃𝜁 − 4𝜓𝑄𝜁𝑄𝜃𝜃𝜃 + 𝜓𝜃𝑄𝜃𝜃𝜃𝜁 − 𝜓𝑄𝜃𝜃𝜃𝜃𝜁 ,

𝐶𝜁 = −𝑄𝜃[4𝑄𝜃𝜃𝜃𝜓 − 12𝜓𝜁𝑄𝜃𝜃 − 12𝜓𝑄𝜃𝜃𝜁 + 𝜓𝜃𝜃𝜃𝜁 + 8𝑄𝜃𝜃𝜓𝜁 + 8𝑄𝜃𝑄𝜃𝜁 + 8𝑄𝜃𝜁𝜓𝜃
+ 𝜓𝑄𝜃𝜃𝜁 − 𝜓𝜁𝜁 ] −𝑄𝜃𝜃 [−𝜓𝜃𝜃𝜁 − 8𝜓𝑄𝜃𝜁 − 8𝜓𝜁𝑄𝜃 + 𝜓𝜁 ] −𝑄𝜃𝜁 [ − 𝜓𝜃𝜃𝜃
+ 12𝜓𝑄𝜃𝜃 − 8𝜓𝑄𝜃𝜃 − 8𝜓𝜃𝑄𝜃 + 𝜓𝜁 ] − 8𝜓𝑄𝜃𝑄𝜃𝜃𝜁 − 𝜓𝜁𝜁 − 𝜓𝜃𝑄𝜃𝜃𝜃𝜁 − 𝜓𝑄𝜃𝜃𝜃𝜃𝜁 ,
here 𝜓(𝜃, 𝜁 , 𝜏) = 𝜃𝑓 (𝜏) + ℎ(𝜁, 𝜏).
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Case:3 For 𝑃3, we have 𝑊 = −𝑄𝜁 and 𝜉𝜁 = 1, we find

𝐶𝜏 =𝑄𝜁𝜏𝜓𝜃 +𝑄𝜃𝜁𝜓𝜏 −𝑄𝜁𝜓𝜃𝜏 +𝑄𝜃𝜏𝜁𝜓𝜏 ,

𝐶𝜃 = −𝑄𝜁 [−4𝑄𝜃𝜃𝜁𝜓 + 𝜓𝜃𝜏 + 𝜓𝜃𝜃𝜃𝜁 − 4𝑄𝜃𝜃𝜓𝜁 + 8𝑄𝜃𝜓𝜃𝜁 + 4𝜓𝜃𝜃𝑄𝜁 ] +𝑄𝜏𝜁𝜓𝜃

− 𝑄𝜃𝜁 [13𝜓𝜃𝜁 − 𝜓𝜏 − 8𝜓𝜁𝑄𝜃 − 12𝜓𝑄𝜃𝜁 − 4𝜓𝜃𝑄𝜁 ]

− 𝑄𝜁𝜁 [4𝜓𝑄𝜃𝜃 − 8𝜓𝜃𝑄𝜃 − 8(𝜓𝜃𝜃𝜃𝑄𝜃𝜃𝜁 + 3𝜓𝜃𝜃𝑄𝜃𝜃𝜃𝜁 + 3𝜓𝜃𝑄𝜃𝜃𝜃𝜃𝜁 + 𝜓𝜃𝑄𝜃𝜃𝜃𝜃𝜃𝜁 )]

− 𝜓𝑄𝜃𝜁𝜏 − 8𝜓𝑄𝜃𝑄𝜃𝜁𝜁 − 4𝜓𝑄𝜁𝑄𝜃𝜃𝜁 + 𝜓𝜃𝑄𝜃𝜃𝜁𝜁 − 𝜓𝑄𝜃𝜃𝜃𝜁𝜁 ,

𝐶𝜁 = −𝑄𝜁 [4𝑄𝜃𝜃𝜃𝜓 − 12𝜓𝜁𝑄𝜃𝜃 − 12𝜓𝑄𝜃𝜃𝜁 + 𝜓𝜃𝜃𝜃𝜁 + 8𝑄𝜃𝜃𝜓𝜁 + 8𝑄𝜃𝑄𝜃𝜁 + 8𝑄𝜃𝜁𝜓𝜃

+ 𝜓𝑄𝜃𝜃𝜁 − 𝜓𝜁𝜁 ] −𝑄𝜃𝜁 [−𝜓𝜃𝜃𝜁 − 8𝜓𝑄𝜃𝜁 − 8𝜓𝜁𝑄𝜃 + 𝜓𝜁 ] −𝑄𝜁𝜁 [ − 𝜓𝜃𝜃𝜃
+ 12𝜓𝑄𝜃𝜃 − 8𝜓𝑄𝜃𝜃 − 8𝜓𝜃𝑄𝜃 + 𝜓𝜁 ] − 8𝜓𝑄𝜃𝑄𝜃𝜁𝜁 − 𝜓𝜁𝜁 − 𝜓𝜃𝑄𝜃𝜃𝜁𝜁 − 𝜓𝑄𝜃𝜃𝜃𝜁𝜁 ,

here 𝜓(𝜃, 𝜁 , 𝜏) = 𝜃𝑓 (𝜏) + ℎ(𝜁, 𝜏).
Note: Here we have calculated the conservation laws for 𝑊1, 𝑊2

nd 𝑊3. The conservation laws for other 𝑊4 and 𝑊5 can also be
alculated, which have been excluded here.

. Conclusions

In this article, BKP equation was discussed by means of Lie analysis.
ie point symmetries were computed, and one-dimensional conjugacy
lasses were reported for the abelian algebra of the Lie group. These
lasses were further utilized to find the reductions of the discussed
odel via similarity variables. The reduced differential equations were

olved by using different techniques to find the new solitary wave
olutions and exact explicit solutions of the BKP equation. Different
inds of explicit exact solutions were calculated, which contain trigono-
etric, rational and hyperbolic functions. The considered equation was

lassified by using nonlinear-selfadjointness theory, and conservation
aws were computed.
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ppendix A

.1. Description of methods

.1.1. The new extended direct algebraic method
In this section, the general procedure of the new extended direct

lgebraic method [44,45] is discussed. We will follow given below steps
o practice the said methods.
𝐭𝐞𝐩𝟏 ∶ By using the substitution

(𝜃, 𝜁 , 𝜏) = 𝑈 (𝜚)

here 𝜚 is a linear combination of independent variables, Eq. (2) can
e converted into following nonlinear ODE of the form:

(𝑈,𝑈 ′, 𝑈 ′′,…) = 0. (A.1)
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𝐭𝐞𝐩 𝟐 ∶ Assuming the general solution of Eq. (A.1) is of the form:

(𝜚) =
𝑁
∑

𝑖=0
𝑎𝑖𝑔

𝑖(𝜚), (A.2)

here 𝑎𝑖(0 < 𝑖 ≤ 𝑛) are the coefficients which can be decided later and
(𝜚) is the solution of the following equation:
′(𝜚) = 𝑙𝑛(𝜗)(𝛼 + 𝜍𝑔(𝜚) + 𝛾𝑔2(𝜚)), (A.3)

here 𝜗 ≠ 0, 1 and 𝛼, 𝜍, 𝛾 are the constants.
After assuming 𝛥 = 𝜍2 −4𝛾𝛼, the solutions of Eq. (A.3) can be taken

s:
𝟏): If 𝛥 < 0 and 𝛾 ≠ 0, then
1(𝜚) = − 𝜍

2𝛾 +
√

−𝛥
2𝛾 tan𝜗(

√

−𝛥
2 𝜚),

𝑔2(𝜚) = − 𝜍
2𝛾 −

√

−𝛥
2𝛾 cot𝜗(

√

−𝛥
2 𝜚),

𝑔3(𝜚) = − 𝜍
2𝛾 +

√

−𝛥
2𝛾 (tan𝜗(

√

−𝛥𝜚) ±
√

𝑟𝑠 sec𝜗(
√

−𝛥𝜚)),

𝑔4(𝜚) = − 𝜍
2𝛾 −

√

−𝛥
2𝛾 (cot𝜗(

√

−𝛥𝜚) ±
√

𝑟𝑠 csc𝜗(
√

−𝛥𝜚)),

𝑔5(𝜚) = − 𝜍
2𝛾 +

√

−𝛥
4𝛾 (tan𝜗(

√

−𝛥
4 𝜚) − cot𝜗(

√

−𝛥
4 𝜚)).

(𝟐): If 𝛥 > 0 and 𝛾 ≠ 0, then
6(𝜚) = − 𝜍

2𝛾 −
√

𝛥
2𝛾 tanh𝜗(

√

𝛥
2 𝜚),

𝑔7(𝜚) = − 𝜍
2𝛾 −

√

𝛥
2𝛾 coth𝜗(

√

𝛥
2 𝜚),

𝑔8(𝜚) = − 𝜍
2𝛾 −

√

𝛥
2𝛾 (tanh𝜗(

√

𝛥𝜚) ± 𝜄
√

𝑟𝑠 sech 𝜗(
√

𝛥𝜚)),

𝑔9(𝜚) = − 𝜍
2𝛾 −

√

𝛥
2𝛾 (coth𝜗(

√

𝛥𝜚) ±
√

𝑟𝑠 csch 𝜗(
√

𝛥𝜚)),

𝑔10(𝜚) = − 𝜍
2𝛾 −

√

𝛥
4𝛾 (tanh𝜗(

√

𝛥
4 𝜚) + coth𝜗(

√

𝛥
4 𝜚)).

(𝟑): If 𝛾𝛼 > 0 and 𝜍 = 0, then
11(𝜚) =

√

𝛼
𝛾 tan𝜗(

√

𝛾𝛼𝜚),

𝑔12(𝜚) = −
√

𝛼
𝛾 cot𝜗(

√

𝛾𝛼𝜚),

𝑔13(𝜚) =
√

𝛼
𝛾 (tan𝜗(2

√

𝛾𝛼𝜚) ±
√

𝑟𝑠 sec𝜗(2
√

𝛾𝛼𝜚)),

𝑔14(𝜚) =
√

𝛼
𝛾 (− cot𝜗(2

√

𝛾𝛼𝜚) ±
√

𝑟𝑠 csc𝜗(2
√

𝛾𝛼𝜚)),

𝑔15(𝜚) =
1
2

√

𝛼
𝛾 (tan𝜗(

√

𝛾𝛼
2 𝜚) − cot𝜗(

√

𝛾𝛼
2 𝜚)).

(𝟒): If 𝛾𝛼 < 0 and 𝜍 = 0, then
16(𝜚) = −

√

− 𝛼
𝛾 tanh𝜗(

√

−𝛾𝛼𝜚),

17(𝜚) = −
√

− 𝛼
𝛾 coth𝜗(

√

−𝛾𝛼𝜚),

𝑔18(𝜚) = −
√

− 𝛼
𝛾 (tanh𝜗(2

√

−𝛾𝛼𝜚) ± 𝜄
√

𝑟𝑠 sech 𝜗(2
√

−𝛾𝛼𝜚)),

𝑔19(𝜚) = −
√

− 𝛼
𝛾 (coth𝜗(2

√

−𝛾𝛼𝜚) ±
√

𝑟𝑠 csch 𝜗(2
√

−𝛾𝛼𝜚)),

𝑔20(𝜚) = − 1
2

√

− 𝛼
𝛾 (tanh𝜗(

√

−𝛾𝛼
2 𝜚) + coth𝜗(

√

−𝛾𝛼
2 𝜚)).

(𝟓): If 𝜍 = 0 and 𝛾 = 𝛼, then
21(𝜚) = tan𝜗(𝛼𝜚),
22(𝜚) = − cot𝜗(𝛼𝜚),
23(𝜚) = tan𝜗(2𝛼𝜚) ±

√

𝑟𝑠 sec𝜗(2𝛼𝜚),
𝑔24(𝜚) = − cot𝜗(2𝛼𝜚) ±

√

𝑟𝑠 csc𝜗(2𝛼𝜚),
𝑔25(𝜚) =

1
2 (tan𝜗(

𝛼
2 𝜚) − cot𝜗(

𝛼
2 𝜚)).

(𝟔): If 𝜍 = 0 and 𝛾 = −𝛼, then
26(𝜚) = − tanh𝜗(𝛼𝜚),
27(𝜚) = − coth𝜗(𝛼𝜚),
28(𝜚) = − tanh𝜗(2𝛼𝜚) ± 𝜄

√

𝑟𝑠 sech 𝜗(2𝛼𝜚),
𝑔29(𝜚) = − coth𝜗(2𝛼𝜚) ±

√

𝑟𝑠 csch 𝜗(2𝛼𝜚),
𝑔30(𝜚) = − 1

2 (tanh𝜗(
𝛼
2 𝜚) + coth𝜗(

𝛼
2 𝜚)).

(𝟕): If 𝜍2 = 4𝛾𝛼, then
31(𝜚) =

−2𝛼(𝜍𝜚 ln(𝜗)+2)
𝜍2𝜚 ln(𝜗) .

(𝟖): If 𝜍 = 𝜆 , 𝛼 = 𝑝𝜆(𝑝 ≠ 0) and 𝛾 = 0, then
32(𝜚) = 𝜗𝜆𝜚 − 𝑝.
𝟗): If 𝜍 = 𝛾 = 0, then
33(𝜚) = 𝛼𝜚 ln(𝜗).
𝟏𝟎): If 𝜍 = 𝛼 = 0, then
34(𝜚) =

−1
𝛾𝜚 ln(𝜗) .

(𝟏𝟏): If 𝛼 = 0 and 𝜍 ≠ 0, then
𝑔 (𝜚) = − 𝑟𝜍 ,
35 𝛾(cosh𝜗(𝜍𝜚)−sinh𝜗(𝜍𝜚)+𝑟)
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𝑔36(𝜚) = − 𝜍(sinh𝜗(𝜍𝜚)+cosh𝜗(𝜍𝜚))
𝛾(sinh𝜗(𝜍𝜚)+cosh𝜗(𝜍𝜚)+𝑠)

.
(𝟏𝟐): If 𝜍 = 𝜆 , 𝛾 = 𝑝𝜆(𝑝 ≠ 0) and 𝛼 = 0, then
𝑔37(𝜚) =

𝑟𝜗𝜆𝜚

𝑠−𝑝𝑟𝜗𝜆𝜚 .
ere we define the hyperbolic and trigonometric functions as follows:
inh𝜗(𝜚) =

𝑟𝜗𝜚−𝑠𝜗−𝜚
2 , cosh𝜗(𝜚) =

𝑟𝜗𝜚+𝑠𝜗−𝜚
2 ,

tanh𝜗(𝜚) =
𝑟𝜗𝜚−𝑠𝜗−𝜚
𝑟𝜗𝜚+𝑠𝜗−𝜚 , coth𝜗(𝜚) =

𝑟𝜗𝜚+𝑠𝜗−𝜚
𝑟𝜗𝜚−𝑠𝜗−𝜚 ,

csch 𝜗(𝜚) =
2

𝑟𝜗𝜚−𝑠𝜗−𝜚 , sech 𝜗(𝜚) =
2

𝑟𝜗𝜚+𝑠𝜗−𝜚 ,
sin𝜗(𝜚) =

𝑟𝜗𝜄𝜚−𝑠𝜗−𝜄𝜚
2𝜄 , cos𝜗(𝜚) =

𝑟𝜗𝜄𝜚+𝑠𝜗−𝜄𝜚
2 ,

an𝜗(𝜚) = −𝜄 𝑟𝜗
𝜄𝜚−𝑠𝜗−𝜄𝜚

𝑟𝜗𝜄𝜚+𝑠𝜗−𝜄𝜚 , cot𝜗(𝜚) = 𝜄 𝑟𝜗
𝜄𝜚+𝑠𝜗−𝜄𝜚

𝑟𝜗𝜄𝜚−𝑠𝜗−𝜄𝜚 ,
csc𝜗(𝜚) =

2𝜄
𝑟𝜗𝜄𝜚−𝑠𝜗−𝜄𝜚 , sech 𝜗(𝜚) =

2
𝑟𝜗𝜄𝜚+𝑠𝜗−𝜄𝜚 ,

where 𝑟 and 𝑠 are constants and also called the deformation parameters.
𝐒𝐭𝐞𝐩 𝟑 ∶ Where 𝑁 can be determined by equating the highest order
linear term in Eq. (A.1) with the nonlinear terms of highest order.
𝐒𝐭𝐞𝐩 𝟒 ∶ After substituting Eqs. (A.3) and (B.1) into Eq. (A.1) and
comparing all coefficients of 𝑔(𝜚), an algebraic system of equations is
obtained. Obtained system can be further solved by using Maple.

Appendix B

B.1. The tanh method

In this section, the general procedure of the tanh technique [40,46]
is presented below;
𝐒𝐭𝐞𝐩 𝟏 ∶ Assuming the general solution of Eq. (A.1) is of the form;

𝑈 (𝜚) = 𝑎0 +
𝑁
∑

𝑛=1
𝑎𝑛𝑌

𝑛, (B.1)

where 𝑁 is an positive integer and computed as defined in previous
method.
𝐒𝐭𝐞𝐩 𝟐 ∶ Let us take a new independent variable 𝑌 = 𝑡𝑎𝑛ℎ(𝜚) then 𝑈 ′(𝜚)
and 𝑈 ′′(𝜚) can be represented as follow:
𝑑𝑈
𝑑𝜚

= (1 − 𝑌 2)𝑑𝑈
𝑑𝑌

,

𝑑2𝑈
𝑑𝜚2

= (1 − 𝑌 2)
(

−2𝑌 𝑑𝑈
𝑑𝑌

+ (1 − 𝑌 2)𝑑
2𝑈
𝑑𝑌 2

)

,
(B.2)

similarly we can find other derivatives.
𝐒𝐭𝐞𝐩𝟑 ∶ After substituting (B.1) and (B.2) in Eq. (A.1) and taking the
coefficients of 𝑌 𝑛 (𝑛 = 0, 1, 2,…) equal to zero we get system of
algebraic equations which can be further solved by using Maple.
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