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Abstract. In this paper, we establish the Lyapunov-type inequality for bound-
ary value problems involving generalized Caputo fractional derivatives that

unite the Caputo and Caputo-Hadamrad fractional derivatives. An applica-

tion about the zeros of generalized types of Mittag-Leffler functions is given.

1. Introduction. One of the most significant inequalities which play a critical role
in acquiring qualitative properties of differential equation is the Lyapunov inequal-
ity.

The Russian mathematician A. M. Liapunov [32, 1949] proved the following:
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Theorem 1.1. If the boundary value problem{
x′′ (t) + p (t)x (t) = 0,

x (a) = 0 = x (b) ,
t ∈ (a, b) , 0 < a < b < +∞, (1)

has a nontrivial solution, where p : [a, b]→ R is a continuous function, then∫ b

a

|p (s)| ds > 4

b− a
. (2)

The number 4 in (2) can not be replaced by a larger number. This inequality
was shown to have applications in many areas [36, 10, 12, 35, 40, 41]

Being considered as the generalization of the calculus of integration and differ-
entiation, the fractional calculus is a rapidly progressing field of mathematics that
has been attracting scientists working on different fields for decades because of the
findings achieved when the fractional derivatives/integrals are exploited to model
some phenomena [29, 37, 14]. Recently, there has been a continuous focus on frac-
tional integrals and derivatives with nonsingular kernels. For these operators we
refer to [11, 8, 18, 9, 19, 20, 43, 13, 44, 22].

For the last few years, many authors have tried to find the analogue of the
Lyapunov inequality when dealing with boundary differntial equations involving
fractional derivatives. Ferreirra succeeded to obtain a Lyapunov type ineauali-
ties for boundary value problems involving Riemann-Liouville fractional derivative.
The same author achieved to find a Lyapunov type inequality for boundary value
problems involving Caputo fractional derivative [17] . In [33], the authors found
Lyapunov-type inequalities for boundary value problems in the frame of Hadamard
fractional derivatives. For other generalizations and extensions of the classical Lya-
punov inequality, we refer to [25, 39, 42, 4, 5, 6, 7].

Motivated by what we mentioned above, in this work we discuss a Lyapunov
type inequality for boundary value problems in the frame of a certain generalized
Caputo derivative that involves the Caputo and the Caputo-Hadamarad fractional
derivative in one derivative [24].

The paper is organized as follows. In section 2, we introduce notations and
present the fractional differential operators that will be studied. We recover some
results involving the Caputo fractional derivative in a generalized form investigate
the connection of (Kilbas–Saigo) Mittag-Leffler type functions with the generalized
Caputo fractional integrals and derivatives are investigated. In section 3, we discuss
a Lyapunov-Type inequality for boundary value problems in the frame of generalized
Caputo fractional derivatives. In section 4, we present an application and the last
section is devoted to the conclusion.

2. Fractional calculus and the (Kilbas–Saigo) Mittag-Leffler type func-
tions. In this section, we introduce some notations, definitions and Lemmas of
fractional calculus, (Kilbas–Saigo) Mittag-Leffler type functions and present pre-
liminary results needed later.

The left-sided Riemann-Liouville fractional derivative of order α ∈ (n− 1, n] , of
a continuous function f : [0,∞) −→ R is given by [29, 37, 14]

(
Dα
a+f

)
(t) =

1

Γ (n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1
f (s) ds, a ≥ 0, (3)
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provided that the right side is pointwise defined on R+, where n = [α] + 1 and [α]
means the maximal integer not exceeding α.The corresponding left-sided Riemann-
Liouville integral operator of order α > 0, of a continuous function f : [0,∞) −→ R
is given by [29, 37, 14]

Jαa+f (t) =
1

Γ (α)

∫ t

a

(t− s)α−1
f (s) ds, (4)

provided that the right side is pointwise defined on R+.
In [28], introduced the Hadamard fractional derivatives and their corresponding

integrals were introduced as:(
Dαa+f

)
(t) =

1

Γ (n− α)
δn
∫ t

a

(
ln
t

s

)n−α−1

f (s)
ds

s
, α ∈ (n− 1, n] (5)

and (
J αa+f

)
(t) =

1

Γ (α)

∫ t

a

(
ln
t

s

)α−1

f(s)
ds

s
, α > 0, (6)

where δ =
(
t ddt
)

is the so-called δ-derivative.
Generalized fractional integral operator of order for α > 0 and t ∈ (a,∞[ is given

by [26, 27] (
J α,ρa+ f

)
(t) =

ρ1−α

Γ (α)

∫ t

a

(tρ − sρ)α−1
f (s)

ds

s1−ρ (7)

and the generalized fractional derivative [26, 27](
Dα,ρa+ f

)
(t) =

ρα−n+1

Γ (n− α)
γn
∫ t

a

(tρ − sρ)n−α−1
f (s)

ds

s1−ρ , α ∈ (n− 1, n] , (8)

where γ =
(
t1−ρ ddt

)
.

The relation between these two fractional latter operators is as follows(
Dα,ρa+ f

)
(t) = γn

(
J n−α,ρa+ f

)
(t) , α ∈ (n− 1, n] . (9)

The generalized operators (7) and (8) depend on extra paramater ρ > 0, which
by taking ρ → 0+ reduces to the Hadamard fractional operator and for parameter
ρ = 1 becomes the Riemann-Liouville fractional operator.

On the other hand, the left-sided generalized Caputo fractional derivatives of f
of order α is defined by [24](

cDα,ρa+ f
)

(t) = J n−α,ρa+ (γnf) (t) , α ∈ (n− 1, n] . (10)

Note that generalized Caputo derivative in (10) reduces to the Caputo-Hadamard
fractional derivative introduced in [23] by taking ρ→ 0+ and becomes the Caputo
fractional derivative when ρ = 1.

Lemma 2.1. [24] Let α ∈ (n− 1, n] , ρ > 0.
(i) If f ∈ ACnγ [a, b] or Cnγ [a, b], then

J n,ρa+ (γnf) (t) = f (t)−
n−1∑
k=0

(
γkf

)
(a)

k!

(
tρ − aρ

ρ

)k
, for t ∈ (a, b] . (11)

(ii) If f ∈ ACnγ [a, b] or Cnγ [a, b], then

J α,ρa+

(
cDα,ρa+

)
f (t) = f (t)−

n−1∑
k=0

(
γkf

)
(a)

k!

(
tρ − aρ

ρ

)k
, for t ∈ (a, b] . (12)
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Remark 1. Let ρ > 0, a ≥ 0.
(i) Let α > 0, β > 0, and n ∈ N then

γn
(
sρ − aρ

ρ

)β
(t) =

Γ (β + 1)

Γ (β − n+ 1)

(
tρ − aρ

ρ

)β−n
.

(ii) Let β > n− 1, n = [α] + 1 then

cDα,ρa+

(
sρ − aρ

ρ

)β
(t) =

Γ (β + 1)

Γ (β − α+ 1)

(
tρ − aρ

ρ

)β−α
,

(iii) Let n = [α] then

cDα,ρa+

(
sρ − aρ

ρ

)j
(t) = 0, j ∈ Z−, cDα,ρa+

(
sρ − aρ

ρ

)α−j
(t) = 0, j ∈ N∗,

(iv) Let β > n− 1, n = [α] + 1 then∫ t

s

(
tρ − sρ

ρ

)α(
sρ − aρ

ρ

)β
ds

s1−ρ =
Γ (α+ 1) Γ (β + 1)

Γ (α+ β + 2)

(
tρ − aρ

ρ

)α+β+1

.

Recently, Mittag-Leffler functions show its close relation to fractional calculus
and especially to fractional problems which come from applications. This new era
of research attract many scientists from different point of view (see, for example,
[29, 37, 14, 17, 4, 5, 6, 7]).

In 1903, the Swedish mathematician G. Mittag-Leffler [34] introduced the one
parametric Mittag-Leffler function Eα (z) defined as

Eα (z) =

∞∑
k=0

zk

Γ (αk + 1)
, α > 0, z ∈ C. (13)

A first generalization of this function was proposed in 1905 by Wiman who defined
the generalized function as

Eα,β (z) =

∞∑
k=0

zk

Γ (kα+ β)
, α > 0, β ∈ R, z ∈ C. (14)

When α, β > 0 the series is convergent. Later, this function was rediscovered and
intensively studied by R. P. Agarwal and others, This generalization is referred to
as two-parameter Mittag-Leffler function. Particularly important is the case when
β = 1. In this case we use notation Eα,1 (z) = Eα (z) .

An interesting generalization of (13) is recently introduced by Kilbas and Saigo
in [31, 1995], the three parametric Mittag-Leffler function defined as

Eα,m,β (z) =

∞∑
k=0

ekz
k, e0 = 1, ek =

k−1∏
j=0

Γ (α (jm+ β) + 1)

Γ (α (jm+ β + 1) + 1)
, (15)

where an empty product is to be interpreted as unity; α, β ∈ C are complex numbers
and m ∈ R. When < (α) > 0,m > 0, α (jm+ β) /∈ Z−, j = 0, 1, ..., and for m = 1
the above defined function reduces to a constant multiple of the Mittag-Leffler
function (14), namely

Eα,1,β (z) = Γ (αβ + 1)Eα,αβ+1 (z) (16)

and if further β = 0, Eα,1,0 (z) = Eα (z) . Certain properties of this function associ-
ated with Riemann-Liouville fractional integrals and derivatives were obtained and
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exact solutions of certain integral equations of Abel-Volterra type are derived by
their applications (Kilbas and Saigo, 1995, 1996).

Another generalization of the Mittag-Leffler function (13) can be found in the
contemporary monographs of R. Gorenflo et al. [21, 2014].

Relations connecting the function defined by (15) and the generalized fractional
integrals and the generalized Caputo derivatives are given in the form of Lemmas
and Remarks.

The first statement in this paper shows the effect of J α,ρa on Eα,m,β (z) .

Lemma 2.2. Let ρ > 0, α > 0, αβ > −1,m > 0 and λ ∈ R∗. Then, the following
relation is valid

J α,ρa

[(
sρ−aρ
ρ

)αβ
Eα,m,β

(
−λ
(
sρ−aρ
ρ

)mα)]
(t) =

− 1

λ

(
tρ−aρ
ρ

)α(β−m+1) [
Eα,m,β

(
−λ
(
tρ−aρ
ρ

)mα)
− 1
]
. (17)

Proof. In accordance with (7) and (15) we have

I = −λJ α,ρa

[(
sρ−aρ
ρ

)αβ
Eα,m,β

(
−λ
(
sρ−aρ
ρ

)mα)]
(t)

=
−λ

Γ (α)

∫ t

a

(
tρ − sρ

ρ

)α−1 [(
sρ−aρ
ρ

)αβ
Eα,m,β

(
−λ
(
sρ−aρ
ρ

)mα)] ds

s1−ρ

=
−λ

Γ (α)

∫ t

a

(
tρ − sρ

ρ

)α−1
[ ∞∑
k=0

(−λ)
k

(ek)
(
sρ−aρ
ρ

)α(mk+β)
]

ds

s1−ρ ,

where (ek) is defined in (15).
Interchanging the integration and summation and evaluating the inner integral,

we find

I =
1

Γ (α)

∞∑
k=0

(−λ)
k+1

(ek)

∫ t

a

(
tρ − sρ

ρ

)α−1(
sρ − aρ

ρ

)α(mk+β)
ds

s1−ρ ,

by Remark 1-(iii), we have

I =

∞∑
k=0

(−λ)
k+1

 k∏
j=0

Γ(α(jm+β)+1)
Γ(α(jm+β+1)+1)

( tρ−aρ
ρ

)α(mk+β+1)

=
(
tρ−aρ
ρ

)α(β−m+1) ∞∑
k=1

(−λ)
k

(ek)
(
tρ−aρ
ρ

)αmk
=

(
tρ−aρ
ρ

)α(β−m+1) [
Eα,m,β

(
−λ
(
tρ−aρ
ρ

)mα)
− 1
]
,

where, the interchanging is guaranteed by the fact that all integrals converge from
the conditions of the Lemma.

Remark 2. for m = 1, α > 0, β > 0 and λ 6= 0, there hold the formula

J α,ρa

[(
sρ−aρ
ρ

)β−1

Eα,β

(
−λ
(
sρ−aρ
ρ

)α)]
(t)

=− 1

λ

(
tρ−aρ
ρ

)β−1
[
Eα,β

(
−λ
(
tρ−aρ
ρ

)α)
− 1

Γ (β)

]
. (18)
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In view of (16) , we know that (18) can be written as

J α,ρa

[(
sρ−aρ
ρ

)β−1

Eα,β

(
−λ
(
sρ−aρ
ρ

)α)]
(t)

=
(
tρ−aρ
ρ

)α+β−1

Eα,α+β

(
−λ
(
tρ−aρ
ρ

)α)
. (19)

- In particular, when β = 1, (18) takes the form

J α,ρa

[
Eα,1

(
−λ
(
sρ−aρ
ρ

)α)]
(t) = − 1

λ

(
tρ−aρ
ρ

)α
Eα,α+1

(
−λ
(
tρ−aρ
ρ

)α)
. (20)

The application of cDα,ρa to Eα,m,β (z) is given by the following statement.

Lemma 2.3. Let ρ > 0, α > 0,m > 0, β > m − 1 − 1/α and λ ∈ R∗ are satisfied.
Then, the following relation holds

D =
(
cDα,ρa+

) [(
sρ−aρ
ρ

)α(β−m+1)

Eα,m,β

(
−λ
(
sρ−aρ
ρ

)mα)]
(t) (21)

=
(

Γ(α(β−m+1)+1)
Γ(α(β−m)+1)

)(
tρ−aρ
ρ

)α(β−m)

− λ
(
tρ−aρ
ρ

)αβ
Eα,m,β

(
−λ
(
tρ−aρ
ρ

)mα)
.

- If further α (β −m) = −j for some j = 1, 2, ...,− [−α]

(
cDα,ρa+

) [(
sρ−aρ
ρ

)α(β−m+1)

Eα,m,β

(
−λ
(
sρ−aρ
ρ

)mα)]
(t) =

−λ
(
tρ−aρ
ρ

)αβ
Eα,m,β

(
−λ
(
tρ−aρ
ρ

)mα)
.

Proof. From (10) and (15) we have

D =
(
cDα,ρa+

) [(
sρ−aρ
ρ

)α(β−m+1)

Eα,m,β

(
−λ
(
sρ−aρ
ρ

)mα)]
(t)

=

(
J n−α,ρa+ γn

[(
sρ−aρ
ρ

)α(β−m+1)

Eα,m,β

(
−λ
(
sρ−aρ
ρ

)mα)])
(t)

=

∞∑
k=0

(−λ)k(ek)
Γ(n−α)

∫ t

a

(
tρ−sρ
ρ

)n−α−1
[
γn
(
sρ−aρ
ρ

)α(mk+β−m+1)
]
ds

s1−ρ ,

where (ek) is defined in (15). By Remark 1-(i), we have

γn
(
tρ−aρ
ρ

)α(mk+β−m+1)

(s) =
(

Γ(α((k−1)m+β+1)+1)
Γ(α((k−1)m+β)+1−n)

)(
sρ−aρ
ρ

)α(m(k−1)+β+1)−n
.

Then,

D =
∞∑
k=0

(−λ)k(ek)
Γ(n−α)

(
Γ(α((k−1)m+β+1)+1)
Γ(α((k−1)m+β)+1−n)

)∫ t

a

(
tρ−sρ
ρ

)n−α−1 (
sρ−aρ
ρ

)α(m(k−1)+β+1)−n ds

s1−ρ
.
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By Remark 1-(iv), we have

D =

∞∑
k=0

(−λ)
k

(ek)
(

Γ(α((k−1)m+β+1)+1)
Γ(α((k−1)m+β)+1)

)(
tρ−aρ
ρ

)α(m(k−1)+β)

=

∞∑
k=0

(−λ)
k
k−2∏
j=0

Γ(α(jm+β)+1)
Γ(α(jm+β+1)+1)

(
tρ−aρ
ρ

)α(m(k−1)+β)

=
(

Γ(α(β−m+1)+1)
Γ(α(β−m)+1)

)(
tρ−aρ
ρ

)α(β−m)

+

∞∑
k=0

(−λ)
k+1

k−1∏
j=0

Γ(α(jm+β)+1)
Γ(α(jm+β+1)+1)

(
tρ−aρ
ρ

)α(km+β)

=
(

Γ(α(β−m+1)+1)
Γ(α(β−m)+1)

)(
tρ−aρ
ρ

)α(β−m)

− λ
(
tρ−aρ
ρ

)αβ
Eα,m,β

(
−λ
(
tρ−aρ
ρ

)mα)
,

which gives (21) and thus the proof is completed.

Remark 3. For α > 0 and β > α, the following holds

cDα,ρa+

[(
sρ−aρ
ρ

)β−1

Eα,β

(
−λ
(
sρ−aρ
ρ

)α)]
(t) =

1
Γ(β−α)

(
tρ−aρ
ρ

)β−α−1

− λ
(
tρ−aρ
ρ

)β−1

Eα,β

(
−λ
(
tρ−aρ
ρ

)α)
.

If further β − α = 0,−1,−2, ..., then

cDα,ρa+

[(
sρ−aρ
ρ

)β−1

Eα,β

(
−λ
(
sρ−aρ
ρ

)α)]
(t)

=− λ
(
tρ−aρ
ρ

)β−1

Eα,β

(
−λ
(
tρ−aρ
ρ

)α)
.

For α > 0 t the following is true.

cDα,ρa+

[
Eα

(
−λ
(
sρ−aρ
ρ

)α)]
(t) =

1

Γ (1− α)

(
tρ−aρ
ρ

)−α
− λEα

(
−λ
(
tρ−aρ
ρ

)α)
.

3. A Lyapunov-type inequality in the frame of generalized Caputo frac-
tional derivatives. In this section, we consider the following fractional boundary
value problem{ (

cDα,ρa+ x
)

(t) + p(t)x (t) = 0,

x (a) = 0 = x (b) .
a ≥ 0, t ∈ (a, b) , α ∈ (1, 2]. (22)

We begin by writing problem (22) in its equivalent integral form.

Theorem 3.1. x(t) ∈ C [a, b] is a solution of (22) if and only if

x(t) =

∫ b

a

G(t, s)p(s)x(s)ds, (23)

where G(t, s) is the Green’s function given by

G(t, s) =
1

Γ (α)


G1(t, s), if a ≤ t ≤ s ≤ b,

G1(t, s)− (
tρ − sρ

ρ
)α−1sρ−1 if a ≤ s ≤ t ≤ b,

(24)
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with

G1(t, s) =

(
tρ − aρ

bρ − aρ

)(
bρ − sρ

ρ

)α−1

sρ−1. (25)

Proof. By applying Lemma 2.1-(ii), we reduce (22) to the equivalent integral equa-
tion given by

x(t) = −
(
J α,ρa+ p (s)x(s)

)
(t) + c0 + c1

(
tρ − aρ

ρ

)
= − ρ

1−α

Γ (α)

∫ t

a

(tρ − sρ)α−1
p (s)x(s)

ds

s1−ρ + c0 + c1

(
tρ − aρ

ρ

)
.

From x (a) = 0, we have c0 = 0. Consequently the solution of (22) becomes

x (t) = −
(
J α,ρa+ p (s)x(s)

)
(t) + c1

(
tρ − aρ

ρ

)
= − ρ

1−α

Γ (α)

∫ t

a

(tρ − sρ)α−1
p (s)x(s)

ds

s1−ρ + c1

(
tρ − aρ

ρ

)
.

Since

x (b) = − ρ
1−α

Γ (α)

∫ b

a

(bρ − sρ)α−1
h (s)

ds

s1−ρ + c1

(
bρ − aρ

ρ

)
and x (b) = 0, one has

c1 =

(
bρ − aρ

ρ

)
ρ1−α

Γ (α)

∫ b

a

(bρ − sρ)α−1
h (s)

ds

s1−ρ .

Consequently, the solution of problem (22) is

x (t) = −
(
J α,ρa+ p (s)x(s)

)
(t) +

(
tρ − aρ

bρ − aρ

)
ρ1−α

Γ (α)

∫ b

a

(bρ − sρ)α−1
p (s)x(s)

ds

s1−ρ .

(26)
Conversely, it is easy to verify directly that (23) is the solution of (22). Thus,

the unique solution x (t) of problem (22) can be written as (23). The proof is
finished.

Remark 4. If we take ρ = 1 in Theorem 3.1, then the Green function given by
Theorem 3.1 reduces to the Green’s function obtained in [17].

Lemma 3.2. The function G defined in Theorem 3.1 satisfies the following prop-
erty:

max {|G(t, s)| : a ≤ s, t ≤ b} ≤ G(s, s) for all s ∈ [a, b] ,

and G(s, s) has a unique maximum Gmax in [a, b], given by

Gmax =


(
L− aρ

bρ − aρ

)
,

(
bρ − L
ρ

)α−1

L
ρ−1
ρ , N = 0

((1− αρ) aρ + (2αρ− 1) bρ −M)α−1 ((1− (α+ 2) ρ) aρ + (2ρ− 1) bρ +M)

Γ (α) (bρ − aρ) (2N)
N
ρ ((αρ− 1) aρ + (2ρ− 1) bρ +M)

1−ρ
ρ

, N 6= 0

(27)

for all s ∈ [a, b] , where

L =

(
(ρ− 1) aρbρ

(2ρ+ 1) bρ − aρ

) 1
ρ

, N = (α+ 1) ρ− 1, (28)
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and

M =
(

((αρ− 1) aρ + (2ρ− 1) bρ)
2 − 4 (1− (α+ 1) ρ) (1− ρ) aρbρ

) 1
2

. (29)

Proof. Let us define the function

G2(t, s) = G1(t, s)− (
tρ − sρ

ρ
)α−1sρ−1, a ≤ s ≤ t ≤ b, (30)

where G1(t, s) is defined in (25). We divide the proof into two steps.

Step (I) We start with the function G1.
In view of the expression for the function G1(t, s), we easily find that G1(t, s) ≥

0, a ≤ t ≤ s ≤ b. Obviously, G1 satisfies the following inequalities:

0 ≤ G1(t, s) ≤ G1(s, s), a ≤ t ≤ s ≤ b.

Differentiating G1(s, s) on (a, b), we get

∂sG1(s, s) =
ρ1−αsρ−2 (bρ − sρ)α−2

(bρ − aρ)
P (s) , (31)

where, P is a polynomial function of one variable defined by

P (s) = As2ρ +Bsρ + C, (32)

where

A = 1− (α+ 1) ρ, B = (αρ− 1) aρ + (2ρ− 1) bρ and C = (1− ρ) aρbρ.

We shall now discuss the existence and uniqueness of solutions of (32) in [a, b] as
follows:

When A = 0 : i.e., ρ = 1
α+1 . Thus, we obtain

B = (αρ− 1) aρ + (2ρ− 1) bρ =
1

α+ 1
(−aρ + (1− α) bρ) < 0.

Then,

s̄ ≡ s0 =

[
(ρ− 1) aρbρ

(bρ − aρ) + 2ρbρ

] 1
ρ

,

where, s0 is a root of the linear polynomial (32) . This gives

max
s∈[a,b]

G1(s, s) ≤ G1(s0, s0) =

(
L− aρ

bρ − aρ

)(
bρ − L
ρ

)α−1

L
ρ−1
ρ , with L = s0. (33)

When A 6= 0 : i.e., ρ 6= 1
α+1 , by a simple variable change, X = sρ in (32), the

quadratic polynomial P (X) has discriminant

∆ = B2 − 4AC = ((αρ− 1) aρ + (2ρ− 1) bρ)
2 − 4 (1− (α+ 1) ρ) (1− ρ) aρbρ.

Then, we have

∂α∆ = 2ρaρ (αρaρ + bρ − aρ) = 0 =⇒ α = −b
ρ − aρ

ρ
< 0.

From the fact that 1 < α ≤ 2, it is easy to see that ∂α∆ ≥ 0. Furthermore, we
get

∂2α∆ = 2ρ2a2ρ > 0, ∂α∆ ≥ 0, ∆|α=1 = ((ρ− 1) aρ − (2ρ− 1) bρ)
2
> 0,
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which yields two distinct real roots of the polynomial (32)

X1 =
−B +

√
∆

2A
and X2 =

−B −
√

∆

2A
.

As consequence, we have

∂sG1(s, s) = 0⇐⇒ s ∈ {0, b, s1, s2} , (34)

where,

s1 = X
1
ρ

1 =


(

(αρ−1)aρ+(2ρ−1)bρ−M
2N

) 1
ρ

si ρ > 0,

0 si ρ = 1,

and

s2 = X
1
ρ

2 =


(

(αρ−1)aρ+(2ρ−1)bρ+M
2N

) 1
ρ

si ρ > 0,

(α−1)a+b
α si ρ = 1,

with

N = −A and M = ∆
1
2 . (35)

(I.1) Firstly, we prove that s1 /∈ [a, b]:
(a) In order to prove that

X1 =
−B +

√
∆

2A
> bρ. (36)

We consider the two cases:
(a.1) : When A > 0, we get

√
∆ > 2Abρ +B then

If
√

∆ > 2Abρ +B > 0, then

(2Abρ +B)
2 −∆ = −4ρ (α− 1)Abρ (bρ − aρ) < 0.

Thus, the inequality (36) holds.

If
√

∆ > 0 > 2Abρ +B, then (36) holds obviously.

(a.2) : When A < 0 we get
√

∆ < 2Abρ +B, we have

(2Abρ +B)
2 −∆ = −4ρ (α− 1)Abρ (bρ − aρ) > 0. (37)

Thus, (36) holds.
(b) Next, we show that

X1 =
−B +

√
∆

2A
< aρ. (38)

We consider also the two cases:
(b.1) : If A > 0, we get

√
∆ > 2Aaρ +B, this yields to

(2Aaρ +B)
2 −∆ = 4ρAaρ (bρ − aρ) > 0.

Thus the inequality (36) holds.
(b.2) : If A < 0, then

If
√

∆ > 2Aaρ +B > 0, it implies that

(2Aaρ +B)
2 −∆ = 4ρAaρ (bρ − aρ) < 0. (39)

Thus (36) holds. If
√

∆ > 0 > 2Aaρ +B, then (36) holds obviously.
From the above cases (a) and (b), we have s1 /∈ [a, b] .
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(I.2) Secondly, we prove that s2 ∈ [a, b] , by similar arguments, we can also obtain
the following

(2Abρ +B)
2 −∆ = −4ρ (α− 1)Abρ (bρ − aρ) .

As a consequence, we have X2 = −B−
√

∆
2A ∈ [aρ, bρ] . Then

s̄ ≡ s2 =

(
(αρ− 1) aρ + (2ρ− 1) bρ +M

2N

) 1
ρ

,

because, if s = 0 or s = b, then x = 0 is a trivial solution, and observe that
∂sG1(s, s) has a unique zero in [a, b], attained at the point s2. This gives

max
s∈[a,b]

G1(s, s) ≤ G1(s2, s2), (40)

where

G1(s2, s2) =
((1 − αρ) aρ + (2αρ− 1) bρ −M)α−1 ((1 − (α+ 2) ρ) aρ + (2ρ− 1) bρ +M)

Γ (α) (bρ − aρ) (2N)
N
ρ ((αρ− 1) aρ + (2ρ− 1) bρ +M)

1−ρ
ρ

,

(41)

with M and N are given by (35). Hence, we have

Gmax ≡ G1(s̄, s̄) =

{
G1(s0, s0) if N = 0,

G1(s2, s2) if N 6= 0.
(42)

Step (II) Now, we turn our attention to the function G2.
We start by differentiation G2 (t, s) with respect to t for every fixed s ∈ [a, b), we

can get

∂tG2(t, s) =
tρ−1sρ−1ρ2−α

(bρ − aρ)

[
(bρ − sρ)α−1 − (α− 1) (bρ − aρ) (tρ − sρ)α−2

]
. (43)

We obtain

∂tG2(t, s) = 0⇐⇒ t∗s =

sρ +

(
(bρ − sρ)α−1

(α− 1) (bρ − aρ)

) 1
α−1


1
ρ

. (44)

We proceed with the following two cases.

(II-1) When t∗s ∈ [s, b] then t∗ρs ≤ bρ, i.e., as long as

s ≤ s∗ ≡ ((α− 1) aρ + (2− α) bρ)
1
ρ . (45)

We can easily see that

∂tG2(t, s)

{
< 0 for t < t∗s,

≥ 0 for t ≥ t∗s.

This together with the fact that G2 (b, s) = 0 imply that G2 (t∗s, s) ≤ 0. By (25),
we know

max |G2(t, s)| ≤ max {max {G2 (t, s) : s ≤ t ≤ b} : s ∈ [a, s∗]} ,

which means

max {|G2 (t, s)| : s ≤ t ≤ b} ≤ max

{
max
s∈[a,s∗]

G2 (s, s) , max
s∈[a,s∗]

|G2 (t∗s, s)|
}
. (46)
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II-1-a: Firstly, in an entirely similar manner to Step (I), we deduce that

max
s∈[a,s∗]

G2(s, s) =

{
G2(s̄, s̄) ≡ G1(s̄, s̄) if s̄ ∈ [a, s∗] ,

G2 (s∗, s∗) if s̄ /∈ [a, s∗] ,
(47)

where

G2 (s∗, s∗) = (α− 2) ρ1−α ((bρ − aρ) (α− 1))
α−1

((α− 1) aρ − (α− 2) bρ)
ρ−1
ρ .

(48)
II-1-b: Secondly, by fixing an arbitrary t ∈ [a, b) and differentiating G2 (t, s)

with respect to s we get

∂sG2(t, s) = ρ1−αsρ−1 [(αρ− 1) Θ(t, s) + (1− ρ) Ψ(t, s)] , (49)

where we denote

Θ(t, s) = sρ [ϕ(t, s)− ψ(t, s)] and Ψ(t, s) = [tρϕ(t, s)− bρψ(t, s)] . (50)

with

ϕ(t, s) =
1

(tρ − sρ)2−α and ψ(t, s) =
(tρ − aρ)

(bρ − aρ) (bρ − sρ)2−α . (51)

From (51) we observe that

0 < ψ(t, s) < ϕ(t, s).

Combining the above, we get G2 (t, s) is a strictly monotonic function for all
s ∈ [a, s∗]. Then G2 (t, s∗) (or G2 (t, a)) be the maximal (or minimal) respectiely.
It is now obvious that

max {|G2 (t, s)| : a < s ≤ s∗} ≤ max

{
max
t∈[a,b)

|G2 (t, s∗)| , max
t∈[a,b)

|G2 (t, a)|
}
. (52)

(II-1-b-1) We consider the maximum of |G2 (t, s∗)| . If we differentiate G2 (t, s∗)
on [a, b], we get

∂tG2 (t, s∗) = 0⇐⇒ t̄s∗ =

sρ∗ +

(
(bρ − sρ∗)α−1

(α− 1) (bρ − aρ)

) 1
α−1


1
ρ

. (53)

Then, it follows from the fact that G2 (b, s∗) = 0 that

∂tG2 (t, s∗)

{
< 0 for t < t̄s∗ ,

≥ 0 for t ≥ t̄s∗ .

Hence, G2 (t, s∗) has maximum at point t̄s∗ . Since t ∈ (a, b] , we get

max
t∈[a,b]

|G2(t, s∗)| ≤ |G2 (t̄s∗ , s∗)| , (54)

where

G2 (t̄s∗ , s∗) = G1 (t̄s∗ , s∗)− (
t̄ρs∗ − s

ρ
∗

ρ
)α−1sρ−1

∗ (55)

(II-1-b-2) Now, we consider the maximum of |G2 (t, s)| which is obtained at
s = a For this purpose, we consider the function G2 (t, a) ,

∂t |G2(t, a)| = 0⇐⇒ t̄a =
[
aρ + (bρ − aρ) (α− 1)

1
2−α
] 1
ρ

, (56)
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also we observe that

∂t |G2(t, a)|

{
< 0 for t < t̄a,

≥ 0 for t ≥ t̄a.

Hence G2(t, a) has maximum at the point t̄a. Since t̄a ∈ (a, b] , we get

G2(t̄a, a) = ρ1−αaρ−1
(

(α− 1)
1

2−α − (α− 1)
α−1
2−α
)

(bρ − aρ)α−1
. (57)

If α = 2 then G2(t, a) = 0. So we only consider the case that 1 < α < 2. Define

g (α) = (α− 1)
1

2−α − (α− 1)
α−1
2−α , 0 ≤ (α− 1)

1
2−α ≤ 1.

It is easy to see that g (α) ≤ 0 and

min {g (α) : 1 < α < 2} =
(

(α− 1)
1

2−α − (α− 1)
α−1
2−α
)
,

thus,

min
t,s∈[a,b]

|G2(t, s)| = |G2(t̄a, a)| . (58)

Consequently, from (54) and (58) it follows that

max {|G2 (t, s)| : a < s ≤ s∗} ≤ max {|G2 (t̄s∗ , s∗)| , |G2(t̄a, a)|} . (59)

where G2 (t̄s∗ , s∗) and G2(t̄a, a) are given by (55) and (57) respectively.
We must make a comparison among G2 (s∗, s∗), |G2(t̄a, a)| to see which is the

smallest. It is obvious that

G2 (s∗, s∗) ≤ G2(s̄, s̄), 1 < α < 2. (60)

We now shall prove that

|G2(t̄a, a)| ≤ G2 (s∗, s∗) , (61)

Thus from (57) and (48), we arrive at

aρ−1

(
(α− 1)

1
2−α − (α− 1)

α−1
2−α

)
≤ (α− 2) (α− 1)α−1 ((α− 1) aρ − (α− 2) bρ)

ρ−1
ρ , α 6= 2.

(62)

Hence, we can verify that(
(α− 1)

1
2−α − (α− 1)

α−1
2−α
)

= (α− 1)
α−1
2−α (α− 2) . (63)

Comparing we get(
(α− 1)

1
2−α − (α− 1)

α−1
2−α
)
≤ (α− 2) (α− 1)

α−1
((2− α) (bρ − aρ))

ρ−1
ρ .

(64)

Now put c = ((2− α) (bρ − aρ))
ρ−1
ρ .and σ = α − 1 Then the expression above

becomes

σ
σ
σ−1 ≤ σσc, where 0 < σ = α− 1 < 1,

or equivalently
σ

1− σ
lnσ − σ lnσ − ln c ≤ 0.

To prove the above inequality, it suffices to show that

f (σ) = σ2 lnσ − (1− σ) ln c ≤ 0. (65)

By differentiations of f with respect to σ we have,

∂σf (σ) = 2σ lnσ − σ + ln c, ∂2σf (σ) = 2 lnσ − 3. (66)



14 F. JARAD, Y. ADJABI, T. ABDELJAWAD, S. F. MALLAK AND H. ALRABAIAH

If 0 < ln c < 1, since ∂2σf (σ) < 0 the function ∂σf (σ) is decreasing. It is easy to
see that

∂σf (σ) −→ ln c as σ −→ 0 ∂σf (σ) −→ ln c− 1 as σ −→ 1

and there is a unique point σ0 in (0, 1) such that ∂σf (σ0) = 0 Therefore, the
function f increases from 0 to 1. Moreover, since

f (σ) −→ − ln c as σ −→ 0 f (σ) −→ 0 as σ −→ 1

we know that f (σ) remains negative when 0 < σ < 1.

If ln c > 1, the function is decreasing. It is easy to see that

∂σf (σ) −→ ln c as σ −→ 0 ∂σf (σ) −→ ln c− 1 as σ −→ 1

Therefore, the function f decreases first from 0 to σ0, and then increases from
σ0 to 1. Moreover, since

f (σ) −→ − ln c as σ −→ 0 f (σ) −→ 0 as σ −→ 1

we know that f (σ) remains negative when 0 < σ < 1. Considering the above cases,
we have, inequality (64) is shown to be true.

From (60), (61) and (64), we conclude that

|G2(t̄a, a)| ≤ G1(s∗, s∗) ≤ G2 (s̄, s̄) .

As consequence, we have

|G2 (t̄s∗ , s∗)| ≤ G1(s∗, s∗) ≤ G2 (s̄, s̄) .

then, we conclude that

max
t,s∈[a,b]

|G2(t, s)| =

{
G2(s̄, s̄), if s̄ ∈ [a, s∗] ,

G2 (s∗, s∗) if s̄ /∈ [a, s∗] .
(67)

(II-2) When t∗s /∈ [a, b] then s∗ < s ≤ t ≤ b. Hence, G2(t, s) is strictly decreasing
as a function of t and, since G2 (b, s) = 0, we conclude that

max
t∈[s,b]

|G2(t, s)| = G2(s, s) ≡ G1(s, s), s ∈ (s∗, b] .

In summary, for each s ∈ (s∗, b] , we conclude that,

max {G2(s, s) : s∗ < s ≤ b} ≤

{
G2(s̄, s̄), for s̄ ∈ (s∗, b] ,

G2(s∗, s∗) for s̄ /∈ (s∗, b] ,
(68)

where s̄ and s∗ are given in step (I) and (45). From the above discussion, thus (27)
holds.

From (67) and (68) we have

max
t,s∈[a,b]

|G2 (t, s)| ≤ |G2(s̄, s̄)| . (69)

From the steps (I) and (II), the maximum value of G (t, s) is

max {|G(t, s)| : a ≤ s, t ≤ b} ≤ max
s∈[a,b]

G (s, s) = Gmax.

This completes the proof of Lemma.
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Theorem 3.3. If a nontrivial continuous solution of the problem (22) exists, then∫ b

a

|p (s)| ds > Gmax, (70)

where Gmax is defined in (27).

Proof. By Lemma 3.2 and from (23), it follows that if x is a nontrivial continuous
solution of the (22), then

|x (t)| ≤
∫ b

a

|G(t, s)p (s)| |x (s)| ds. (71)

Let B = C [a, b] be a Banach space endowed a norm

‖x‖∞ = max
t∈[a,b]

|x (t)| , x ∈ B. (72)

Hence, from (71) and (72), we get

‖x‖∞ ≤ max
t∈[a,b]

∣∣∣∣∣
∫ b

a

G(t, s)p (s) ds

∣∣∣∣∣ ‖x‖∞ ,

or equivalently,

max
t∈[a,b]

∫ b

a

|G(t, s)p (s)| ds ≥ 1. (73)

Using the properties of Green’s function G(t, s) particularly, Gmax in Lemma 3.2
gives the inequality ∫ b

a

|p (s)| ds ≥ 1

Gmax
, (74)

called the Lyapunov-type inequality for (22), where Gmax is defined in (27).

Particular cases. In the case ρ = 1 we have

s̄ =
(α− 1) a+ b

α
, M = (α− 1) a+ b, N = α.

The corresponding maximum Green’s function Gmax can be written as

Gmax =
α−α

Γ (α)
((α− 1) (b− a))

α−1
.

Thus, our results matches the results of Theorem 1 in [17].
When ρ = 1, α = 2

s̄ =
a+ b

2
, M = a+ b, N = 2.

The corresponding maximum Green’s function Gmax can be written as

Gmax =
b− a

4
.

Thus, we obtain Theorem 1.1.

4. Applications. This section can be considered as the applied aspect of this pa-
per. Relying on the Lyapunov inequalitie (70), we are going to establish nontrivial
solutions of fractional boundary value problems (22) . Also, considering correspond-
ing fractional eigenvalue problems we find spreading interval of the eigenvalues.
The eigenvalues and eigenfunctions are characterized in terms of the Mittag–Leffler
functions.
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4.1. Lyapunov-type inequality for fractional boundary value prolems. In
this subsection, we obtain a Lyapunov-type inequality for fractional boundary value
prolems having the form

(
cDα,ρa+

)((
sρ−aρ
ρ

)α(1−m)

y (s)

)
(t) + q(t)y(t) = 0,

y (a) = 0 = y (b) , m > 0, t ∈ (a, b) , α ∈ (1, 2], ρ > 0,

(75)

where y(t) ∈ Cρ,α(1−m) of the functions g (t) ∈ B such that
(
sρ−aρ
ρ

)α(1−m)

g (t) ∈ B
and q : [a, b]→ R is a continuous function.

The fractional boundary value prolems (75) can be reduced to (22) by a change
of

y (t) =

(
tρ − aρ

ρ

)α(m−1)

x (t) and q(t) =

(
tρ − aρ

ρ

)α(1−m)

p(t). (76)

For x (t) and p(t) in (76), Theorem 3.3, yields to the following Corollary.

Corollary 1. If a nontrivial continuous solution of the problem (75) exists, then∫ b

a

∣∣∣∣∣
(
sρ − aρ

ρ

)α(m−1)

q(s)

∣∣∣∣∣ ds > Gmax, (77)

where Gmax is defined in (27).

4.2. The real zeroes of the generalized Mittag–Leffler functions Eα,m,β (z).
The zeros of Eα,m,β (z) , which play a significant role in the dynamic solutions, are
of intrinsic interest, we will use Lyapunov-type inequalities (70) to obtain intervals
where certain generalized Mittag-Leffler functions have no real zeros.

Firstly, we present explicit solutions to fractional differential equations(
cDα,ρa+

)((
sρ−aρ
ρ

)α(1−m)

y (s)

)
(t) = −λy (t) , α > 0, m > 0, λ 6= 0. (78)

Theorem 4.1. Let ρ > 0, m > 0, λ ∈ R∗.
(i) If α ∈ (0, 1] the equation (78) has the solution

y (t) =
(
tρ−aρ
ρ

)αm−1

Eα,m,m−1/α

(
−λ
(
tρ−aρ
ρ

)mα)
, for t > a > 0. (79)

(ii) If α > 1 and αm (i− 1) 6= 1, 2, ...,− [−α] − 1, i = 0, 1, 2, ..., the equation
(78) has (− [−α]) linearly independent solutions

yj (t) =
(
tρ−aρ
ρ

)α(m− j
α )
Eα,m,m−j/α

(
−λ
(
tρ−aρ
ρ

)mα)
, for j = 1, 2, ...,− [−α] .

(80)

Proof. Applying the relation (21) and (80) we have

cDα,ρa+

((
sρ−aρ
ρ

)α(1−m)

yj (s)

)
(t) =

cDα,ρa+

((
sρ−aρ
ρ

)α(m− j
α+1−m)

Eα,m,m−j/α

(
−λ
(
sρ−aρ
ρ

)mα))
(t)

= −λ
(
tρ−aρ
ρ

)α(m− j
α )
Eα,m,m−j/α

(
−λ
(
tρ−aρ
ρ

)mα)
= −λyj (t) ,

which gives (78), for j = 1, 2, ...,− [−α] .
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Corollary 2. Let ρ > 0, m > (− [−α]− 1) /α, λ ∈ R∗, then the equation (78) has
(− [−α]) linearly independent solutions given by (80) .

Corollary 3. Let m = 1, ρ > 0, α > 0 , then the equation (78) has (− [−α]) linearly
independent solutions

yj (t) = Γ (α− j + 1)
(
tρ−aρ
ρ

)α−j
Eα,α−j+1

(
−λ

(
tρ−aρ
ρ

)α)
, for j = 1, 2, ...,− [−α] .

(81)

Remark 5. In particular, if we take 1 < α < 2 in Corollary 3, then the equation
(78) has the general solution

y (t) = c2
(
tρ−aρ
ρ

)α−2

Eα,α−1

(
−λ

(
tρ−aρ
ρ

)α)
+ c1

(
tρ−aρ
ρ

)α−1

Eα,α
(
−λ

(
tρ−aρ
ρ

)α)
.

(82)

where c1 and c2 are the constants.
When α = 2 in Corollary 3, the equation (78) , has the general solution

y (t) = c2E2,1

(
−λ
(
tρ−aρ
ρ

)2
)

+ c1

(
tρ−aρ
ρ

)
E2,2

(
−λ
(
tρ−aρ
ρ

)2
)
. (83)

When ρ = 1 in Corollary 3, the equation (78) , has the well-known general solu-
tion

y (t) = c2Eα,1 (−λ (t− a)
α

) + c1 (t− a)Eα,2 (−λ (t− a)
α

) . (84)

If λ = 0 the general solution (78) degenerates to

y (t) = c2 + c1 (t− a) . (85)

Secondly, we consider the particular case of the following fractional eigenvalue
problem (75)

(
cDα,ρ0+

)((sρ
ρ

)α(1−m)

y (s)

)
(t) = −λy (t) ,

y(0) = 0 = y(1), t ∈ [0, 1] , α ∈ (1, 2],m > 0, λ 6= 0,

(86)

Let z ∈ R and consider the real zeros of the generalized Mittag-Leffler functions
Eα,m,β (z).

Obviously Eα,m,β (z) > 0 for all z ≥ 0. Hence, the real zeros of Eα,m,β (z) if they
exist, must be negative real numbers. The values of α,m and β determine if the
function Eα,m,β (z) has real zeroes.

Theorem 4.2. The fractional eigenvalue problem (86) has an infinite number of
eigenvalues, and they are roots of the generalized Mittag-Leffler type equation

Eα,m,m−1/α

(
−λ
(

1
ρ

)mα)
= 0,

and the corresponding eigenfunctions are given by

y (t) =
(
tρ

ρ

)α(m− 1
α )
Eα,m,m−1/α

(
−λ
(
tρ

ρ

)mα)
. (87)

Proof. Using Theorem 4.1-ii, the general solution of (86) can be obtained as

y(t) = c2

(
tρ

ρ

)α(m− 2
α )
Eα,m,m−2/α

(
−λ
(
tρ

ρ

)mα)
+ c1

(
tρ

ρ

)α(m− 1
α )
Eα,m,m−1/α

(
−λ
(
tρ

ρ

)mα)
.

If λ ≤ 0 then the problem (86) only has zero solution.
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If λ > 0 with y (0) = 0 we have c2 = 0 and

y (1) = c1

(
1
ρ

)αm−1

Eα,m,m−1/α

(
−λ
(

1
ρ

)mα)
= 0,

where c1 is an arbitrary constant, we get

Eα,m,m−1/α

(
−λ
(

1
ρ

)mα)
= 0.

The eigenfunctions of the problem (86) then has the form

y (t) =
(
tρ

ρ

)αm−1

Eα,m,m−1/α

(
−λ
(
tρ

ρ

)mα)
,

where −λ
(
tρ

ρ

)mα
are zeros of the generalized Mittag-Leffler function.

Corollary 4. In particular, if m = 1, the fractional eigenvalue problem (86) has an
infinite number of eigenvalues, and they are roots of the Mittag-Leffler type equation

Eα,1,1−1/α

(
−λ
(

1
ρ

)α)
= Γ (α)Eα,α

(
−λ
(

1
ρ

)α)
= 0

and the corresponding eigenfunctions are given by

y (t) =
(
tρ

ρ

)α−1

Eα,1,1−1/α

(
−λ
(
tρ

ρ

)α)
, t ∈ [0, 1] .

Finally in this section, inequality (70) can be used to determine intervals for the
real zeros of the Mittag-Leffler function Eα,m,β (z).

Let us consider the fractional eigenvalue problem (22) (with [a, b] = [0, 1] and
q(t) = −λ) Theorem 3.3, yields to the following Corollary.

Corollary 5. Let λ be the smallest eigenvalue of (86). Then the eigenvalues λ are
indeed real zeros of the generalized Mittag-Leffler function Eα,m,β (z) provided that∫ 1

0

∣∣∣∣λ( 1
ρ

)α(m−1)
∣∣∣∣ ds > Γ (α) (2N)

N
ρ (M + 2ρ− 1)

1−ρ
ρ

(2αρ− 1−M)
α−1

(M − αρ− 1)
, N 6= 0. (88)

Equivalently,

|λ| > (ρ)
α(m−1) Γ (α) ((α+ 1) ρ− 1)

((α+1)ρ−1)
ρ

(2ρ− 1)
2ρ−1
ρ (α− 1)

α−1
. (89)

Hence, it follows that for each

λ ∈ (ρ)
α(m−1)

[
−Γ (α) ((α+ 1) ρ− 1)

((α+1)ρ−1)
ρ

(2ρ− 1)
2ρ−1
ρ (α− 1)

α−1
,

Γ (α) ((α+ 1) ρ− 1)
((α+1)ρ−1)

ρ

(2ρ− 1)
2ρ−1
ρ (α− 1)

α−1

]
λ is not an eigenvalue of the fractional eigenvalue problem (75). Also,

LBeigenvalue := (ρ)
α(m−1) Γ (α) ((α+ 1) ρ− 1)

((α+1)ρ−1)
ρ

(2ρ− 1)
2ρ−1
ρ (α− 1)

α−1
,

can be considered as a lower bound for the positive eigenvalues of the eigenvalue
problem (86).

Corollary 6. If (88) is does not hold then the eigenfunctions

y (t) =
(
tρ

ρ

)αm−1

Eα,m,m−1/α

(
−λ
(
tρ

ρ

)mα)
, t ∈ [0, 1] , (90)

of the eigenvalue problem (86) has no real zeros.
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Corollary 7. If (88) is does not hold then the the problem (86) has no nontrivial
solutions in the class of real functions.

Corollary 8. The generalized Mittag-Leffler function Eα,m,β (z) has no real zeros
for

|z| ≤ Γ (α) ((α+ 1) ρ− 1)
((α+1)ρ−1)

ρ

(2ρ− 1)
2ρ−1
ρ (α− 1)

α−1
. (91)

Remark 6. When ρ = 1, the result in (91), coincides with the result found in
[2], where a Lyapunov type inequality was obtained by considering boundary value
problems involving different fractional derivatives.

Remark 7. We stress that, when m = 1 and ρ = 1, the result stated in Corollary
8 coincides with that of Theorem 2.2 in [17].

|z| ≤ Γ (α)αα

(α− 1)
α−1 . (92)

5. Conlusion. In this article, we obtained Lyapunov type inequalities for certain
classes of fractional boundary value problems involving generalized Caputo frac-
tional derivatives. In all cases it was demonstrated that the results previously
obtained in the literature are just special cases of our results. We think it is worth
to mention that because of the complexity to obtain the maximum of the Green’s
functions discussed we were forced to use symbolic manipulation program Maple.
Because of the fact that the fractional integrals considered in this paper combine the
Riemann-Liouville and the Hadamard fractional integrals (derivative), it is appreci-
ated if the researchers consider them, although difficult, to obtain new inequalities
that help in the development of the qualitative properties of the fractional differ-
ential equations that contain these operators. In addition, researchers can use the
newly discovered Atangana-Baleanu fractional operators in order to establish math-
ematical inequalities. This will contribute in pushing the theory of the fractional
calculus in the frame of these operators forward.
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