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Abstract: In this analysis, we aim to examine the heat transfer and flow characteristics
of a copper-aluminum/water hybrid nanofluid in the presence of viscous dissipation,
magnetohydrodynamic (MHD), and porous medium effect over the shrinking sheet. The governing
equations of the fluid model have been acquired by employment of the model of Tiwari and Das,
with additional properties of the hybrid nanofluid. The system of partial differential equations (PDEs)
has been converted into ordinary differential equations (ODEs) by adopting the exponential similarity
transformation. Similarity transformation is an essential class of phenomenon where the symmetry of
the scale helps to reduce the number of independent variables. Note that ODE solutions demonstrate
the PDEs symmetrical behavior for the velocity and temperature profiles. With BVP4C solver in the
MATLAB program, the system of resulting equations has been solved. We have compared the present
results with the published results and found in excellent agreements. The findings of the analysis
are also displayed and discussed in depth graphically and numerically. It is discovered that two
solutions occur in definite ranges of suction and magnetic parameters. Dual (no) similarity solutions
can be found in the range of Sc ≤ S and Mc ≤ M (Sc > S and Mc > M). By performing stability
analysis, the smallest values of eigenvalue are obtained, suggesting that a stable solution is the first
one. Furthermore, the graph of the smallest eigenvalue shows symmetrical behavior. By enhancing
the Eckert number values the temperature of the fluid is raised.

Keywords: hybrid nanofluid; porous medium; dual solutions; viscous dissipation; stability analysis

1. Introduction

The concept of nanofluid was first proposed in 1995, by Choi and Eastman [1]. In their
spearheading research, they found that the enhancement of the heat transfer rate in nanofluid is higher
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as compared to any kind of simple viscous fluids. It is made by mixing solid nanoparticles in the base
fluids [2]. Until now, various kinds of base fluids with different kinds of solid nanoparticles have
been mixed and examined in the literature. Nanoparticles can be polymeric nanoparticles, magnetic
nanoparticles, dendrimers, liposomes, metallic nanoparticles, quantum dots, and numerous others.
The ethylene glycol, water, oil, sodium alginate and, etc. can be used as the base fluids. Further, carbon
nanotubes and the well-known graphite are categorized as the no-metallic nanoparticles, while nitrides,
metal oxides, copper, carbides, and, alumina are the metallic nanoparticles. Ghazvini et al. [3] used
an experimental approach to examine the water-based nanofluid which contained the CuFe2O4

nanoparticles. Tassaddiq et al. [4] investigated the sodium alginate nanofluid through a numerical
approach where they used the model of Brinkman. Molybdenum disulphide (MoS2) nanoparticles were
considered as solid particles. Further, single-wall carbon nanotubes (SWCNT) and multi-wall carbon
nanotubes (MWCNT) carbon nanotubes in the water base fluid were considered by Nadeem et al. [5].
Mitra et al. [6] tried to find the maximum heat transfer rate of TiO2 in the examination by considering the
various sizes and phases of the nanoparticles. Sahoo and Kumar [7] investigated the various mixtures
of nanoparticles in order to find the maximum heat transfer rate. In this regard, three nanoparticles
Al2O3, CuO, and TiO2 were considered, and also Al2O3–CuO–TiO2 ternary hybrid nanofluid were
examined. Shafiq et al. [8] numerically examined the single-and multi-wall carbon nanotubes.
Further, Gireesha et al. [9] used a two-phase nanofluid model to investigate Jeffrey nanofluid in
a three-dimensional framework. Lund et al. [10] used the same model of Gireesha et al. [9] for the
examination of the micropolar nanofluid. It is worth mentioning here that various mixes of nanoparticles
in the different base fluids have been investigated. Nevertheless, nobody concluded which nanoparticle
mixture and base fluid may offer superior heat transfer rate improvement (refer to the work of [11–18]).

The new development in the innovation of technologies required more heat transfer rates. The most
recent investigation of the nanofluids revealed that the better heat transfer rate can be achieved with
a new kind of nanofluid which is a hybrid nanofluid. It is composed by dispersing two different
types of nanoparticles in the base fluid. This new kind of nanofluid can support the technologies
of the industries and engineering with the minimum cost as it works effectively in vehicle thermal
management/engine cooling, generator cooling, heating and cooling in buildings, biomedical, electronic
cooling, nuclear system cooling, etc. By suspending the suitable combination of nanoparticles, even for
the small volume fraction of nanoparticles, the required effects of heat transfer rate can be achieved [19].
However, not many investigations were accounted for on the synthesis and preparation of the hybrid
nanofluid as it is a new kind of fluid [20]. It tends to be closed from the overview of the published
literature that the exceptionally limited studies have been focused on the heat transfer and the fluid flow
of the hybrid nanofluids numerically. Lund et al. [21] considered the shrinking surface to investigate
the hybrid nanofluid by considering copper and alumina as solid particles and found double solutions.
We have looked at Devi and Devi’s thermophysical model [22]. Devi and Devi [22] compared their
numerical findings with the experimental outcomes of Suresh et al. [23] and found a good contrast
between them. Therefore, it can be expected that our present results would be beneficial for those
who are working in this area, as the model of Devi and Devi [23] has good validation with the
experimental work. Hayat and Nadeem [24] investigated the hybrid nanofluid and found that hybrid
nanofluid has more capacity to transfer heat than simple nanofluid. Jamshed et al. [25] studied hybrid
nanofluid using engine oil as the regular fluid and observed that higher heat transfer is possible only
for minimum value of shape feature parameter. Dual solutions with stability analysis of stagnation
point flow of hybrid nanofluid were examined by Rostami et al. [26]. The magnetohydrodynamic
(MHD) flow from hybrid Nanofluid based on water over shrinking/stretching sheets has been studied
by Aly and Pop [27] and double solutions have been found. In comparison with the hybrid nanofluid
TiO2–Cu/H2O, Khan et al. [28] revealed that the lower Nusselt is the Cu-Water nanofluid. Olatundun
and Makinde [29] modified the model of Blasius for the hybrid nanofluid in which convective
condition had also been considered. Chamkha et al. [30] examined the hybrid nanofluid in the
rotating system where they found that “Nusselt number acts as an ascending function of injection and
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radiation parameters, as well as volume fraction of nanofluid”. Maskeen et al. [31] investigated the
hydromagnetic alumina–copper/water hybrid nanofluid. An interesting development of the hybrid
nanofluid can be seen in these papers [32–38].

The exponentially shrinking/stretching surface is commonly utilized with the fluid flow and
the heat transfer in daily life and industrial problems. It seems that the Magyari and Keller [39]
paper is the first paper on the exponentially stretching sheet to look at the fluid boundary layer
flow. Mushtaq et al. [40] utilized the exponential similarity variables to transform the governing
PDEs into ODEs. Further, Reddy et al. [41] considered the mixed convection flow of nanofluid over
the exponential surface where they found that for the highest value of viscous ratio parameter then
concentration, momentum, thermal boundary layers thicknesses enhance. Rahman et al. [42] developed
the MHD flow model for the stagnation point where exponential similarity variables were used to get
ODEs. Some studies of fluid flow over the exponential surface can be found in these articles [43–47].
Bachok et al. [48] used a single-phase model of nanofluid over the exponential surface and concluded
that two solutions existed in an exponentially shrinking sheet. Moreover, unsteady stagnation point
flow of nanofluid was considered by Dzulkifli et al. [49]. Anuar et al. [50] examined the hybrid
nanofluid flow over an exponential sheet and noticed double solutions. Meanwhile, the stability of
the solutions was also evaluated because solutions were not uniquely present. Waini et al. [51] have
recently considered and obtained two branches for a hybrid nanofluid MHD flow in the impact of
the heat radiation effect. They considered alumina and copper as the nanoparticles with water and
concluded that heat transfer was reduced in both solutions when the thermal radiation parameter
was enhanced.

In this study, we have extended the research of the Waini et al. [51] to examine the MHD flow
of the Al2O3–Cu/water hybrid on the exponentially shrinking sheet. Moreover, the effects of the
porous medium and viscous dissipation have been taken into account. By applying exponential
similarity transformation variables, momentum, and energy conservations are converted to the system
of ODEs. The numerical solutions of the resulting equations have been determined by employing the
shooting technique. Further, analysis of the stability of solutions has also been performed to specify
a stable solution with a bvp4c solver. The effects of the different application parameters are shown
graphically on the heat transfer rate and skin friction coefficient. Lastly, this work can be extended in
the following directions: (i) considering the vertical exponential surface with thermal radiation effect;
(ii) considering the first and second-order slip conditions, and (iii) considering the entire model for the
three-dimensional flow.

2. Mathematical Modeling

Let us take the two-dimensional, steady, MHD, and incompressible flow of a hybrid nanofluid
in the presence of viscous dissipation and porosity on the exponentially shrinking surface (allude to
Figure 1). The governing momentum, mass, and energy conservation are expressed in the following
terms by considering all assumptions (see [51–53]):

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 −

µhn f

ρhn f K
u−

σhn f

ρhn f
B2u (2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(
ρcp

)
hn f

∂2T
∂y2 +

µhn f(
ρcp

)
hn f

(
∂u
∂y

)2

(3)
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The boundary conditions are{
v = vw(x), u = uw, T = Tw as y = 0

u→ 0, T→ T∞, as y→∞
(4)

here, velocities along the y-axis and x-axis are v and u, respectively, T and Tw(x) are the temperature of
fluid and surface, respectively, where Tw(x) = T∞ + T0 e

x
2l , T∞ is free stream temperature, B = B0e

x
2l

is the field of magnetic where B0 is constant magnetic strength, K = 2K0 e
−x
l is considered as

the permeability of porous medium where K0 is the reference permeability,
(
ρcp

)
hn f

,ρhn f , σhn f , khn f ,

and µhn f , are corresponding effective heat capacity, density, electrical conductivity, thermal conductivity,

and viscosity of hybrid nanofluid. Further, uw = −Uw e
x
l is the surface velocity, and vw =

√
ϑ f Uw

2l e
x
2l S

where S is blowing/suction parameter.
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Figure 1. Physical model and coordinate system.

In the current work, we use the thermophysical features of nanomaterials, base fluid, and
thermophysical properties of hybrid nanofluid [51]. In these regards, Tables 1 and 2 are presented.

Table 1. Properties of thermophysical of hybrid nanofluid.

Names Properties

Viscosity of Dynamic µhn f =
µ f

(1−φCu)
2.5(1−φAl2O3 )

2.5

Density ρhn f = (1−φCu)
[(

1−φAl2O3

)
ρ f + φAl2O3ρAl2O3

]
+ φCuρCu

Thermal conductivity
khn f =

kCu+2kn f−2φCu(kn f−kCu)
kCu+2kn f +φCu(kn f−kCu)

×

(
kn f

)
where kn f =

kAl2O3+2k f−2φAl2O3 (k f−kAl2O3 )
kAl2O3+2k f +φAl2O3 (k f−kAl2O3 )

×

(
k f

)
Heat capacity

(
ρcp

)
hn f

= (1−φCu)
[(

1−φAl2O3

)(
ρcp

)
f
+ φAl2O3

(
ρcp

)
Al2O3

]
+ φCu

(
ρcp

)
Cu

Electrical conductivity
σhn f =

σCu+2σn f−2φCu(σn f−σCu)
σCu+2σn f +φCu(σn f−σCu)

×

(
σn f

)
where σn f =

σAl2O3+2σ f−2φAl2O3 (σ f−σAl2O3 )
σAl2O3+2σ f +φAl2O3 (σ f−σAl2O3 )

×

(
σ f

)
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Table 2. The thermal properties of nanoparticles and water.

Fluids ρ (kg/m3) cp (J/kg K) k (W/m K)

Alumina (Al2O3) 3970 765 40

Copper (Cu) 8933 385 400
Water (H2O) 997.1 4179 0.613

To reduce the system into ODEs, we have the following variables of similarity transformation

ψ =
√

2ϑ f lUwe
x
2l f (η); θ(η) =

T − T∞
Tw − T∞

; η = y

√
Uw

2ϑ f l
e

x
2l (5)

where stream function is ψ and velocities are explained as u =
∂ψ
∂y and v = −

∂ψ
∂x . By substituting

Equation (5) in the Equations (2) and (3), which implies that

f ′′′ + ξ1
{

f ′′ f − 2( f ′)2
}
−

[
γ+

σhn f

σ f
ξ2M

]
f ′ = 0 (6)

khn f /k f

Prξ3
θ′′ + θ′ f − θ f ′+

Ec
ξ2ξ3

( f ′′)2 = 0 (7)
ξ1 = ξ2

{
(1−φCu)

[
1−φAl2O3 + φAl2O3

(
ρAl2O3
ρ f

)]
+ φCu

(
ρCu
ρ f

)}
ξ2 = (1−φCu

2.5
(
1−φAl2O3

)2.5

ξ3 =

{
(1−φCu)

[
1−φAl2O3 + φAl2O3

(ρcp)Al2O3

(ρcp) f

]
+ φCu

(ρcp)Cu

(ρcp) f

} (8)

Along with boundary conditions{
f (0) = S, f ′(0) = −1, θ(0) = 1
f ′(η)→ 0; θ(η)→ 0 as η→∞

(9)

where M =
2lσ f (B0)

2

ρ f Uw
is the magnetic number γ =

lϑ f
UwK0

is the permeability parameter, Pr =
ϑ f
α f

is Prandtl

number, and Ec = U2
w

(Cp) f T0
is Eckert number.

The significant physical factors are skin friction coefficient C f and local Nusselt number Nux and
explained as

C f =
µhn f

ρ f u2
w

(
∂u
∂y

)∣∣∣y = 0 , Nux = −
xkhn f

k f (Tw − T∞)

(
∂T
∂y

)∣∣∣y = 0 (10)

By using Equation (5), these are obtained

√

ReC f =
1
ξ2

f ′′ (0);

√
1

Re
Nux = −

khn f

k f
θ′(0) (11)

3. Stability Analysis

To perform a stability analysis of the solution, the governing Equations (2) and (3) are needed to
be reduced to unsteady flow problems. Thus, we get

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
µn f

ρn f

∂2u
∂y2 −

µhn f

ρhn f K
u−

σhn f

ρhn f
B2u (12)
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∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 +

µhn f(
ρcp

)
hn f

(
∂u
∂y

)2

(13)

By introducing a time dependent variable τ, we have the following new non-dimensionless
similarity transformation variables as mentioned in the paper of Lund et al. [54]:

ψ =
√

2ϑlUwe
x
2l f (η, τ); η = y

√
Uw

2ϑl
e

x
2l ; τ =

Uw

2l
e

x
l ·t; θ(η, τ) =

(T − T∞)
(Tw − T∞)

(14)

By substituting Equation (14) into Equations (12) and (13), we have

∂3 f (η, τ)
∂η3 + ξ1

∂2 f (η, τ)
∂η2 f (η, τ) − 2

(
∂ f (η, τ)
∂η

)2

−
∂2 f (η, τ)
∂τ∂η

−
[
γ+

σhn f

σ f
ξ2M

]
∂ f (η, τ)
∂η

= 0 (15)

khn f /k f

Prξ3

∂2θ(η, τ)
∂η2 + f (η, τ)

∂θ(η, τ)
∂η

−
∂ f (η, τ)
∂η

θ(η, τ) +
Ec
ξ2ξ3

(
∂2 f (η, τ)
∂η2

)2

−
∂θ(η, τ)
∂τ

= 0 (16)

Along with boundary conditions f (0, τ) = S, ∂ f
∂η (0, τ) = −1,θ(0, τ) = 1

f ′(η, τ)→ 0, θ(η, τ)→ 0 as η→∞
(17)

To test the stability analysis of solutions of the steady-state flow, we have f (η) = f0(η) and θ(η) =
θ0(η) which must satisfy the boundary value problems (BVPs) (6)–(9), we have

θ(η, τ) = θ0(η) + e−ετG(η, τ); f (η, τ) = f0(η) + e−ετF(η, τ) (18)

here, G(η, τ) and F(η, τ) and are the small concerned to θ0(η). Additionally, f0(η) and ε is the
unknown eigenvalue and the solutions of eigenvalues problems (16)–(18) provide an unlimited set of
the eigenvalues ε1 < ε2 < ε3 . . .. Substituting Equation (18) into Equations (15)–(17). The solutions
f (η) = f0(η) and θ(η) = θ0(η) of steady state Equations (8) and (9) are found by setting τ = 0. Thus,
we have to solve the following linear eigenvalues problems.

F′′′0 + ξ1
{

f0F′′0 + F0 f ′′0 − 4 f ′0F′0 + εF′0
}
−

[
γ+

σhn f

σ f
ξ2M

]
F′0 = 0 (19)

khn f /k f

Prξ3
G′′0 + f0G′0 + F0θ

′

0 − f ′0G0 − F′0θ0 +
2Ec
ξ2ξ3

f ′′0 F′′0 + εG0 = 0 (20)

Along with reduced boundary conditions{
F0(0) = 0, F′0(0) = 0, G0(0) = 0
F′0(η)→ 0, G0(η)→ 0 as η→∞

(21)

Harris et al. [55] proposed that in order to obtain the ε1, one boundary condition should be relaxed.
Therefore, in this problem F′0(η)→ 0 as η→∞ is relaxed to a new initial condition such that F′′0 (0) = 1.

4. Results and Discussion

In this section, we discuss the results of the considered flow problem. Before going on to discuss
the results, our numerical method is needed to validate and check the accuracy of the used method.
For the validation, the values of

√
ReC f has been compared with the outcomes of Waini et al. [51]

in Figure 2 graphically. The results show the same features as those noticed in the published paper
(refer to Figure 2 of Waini et al. [51]). The results found excellent agreements as the critical values of
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Sc of the current study are the same up to three decimal points those gotten by the Waini et al. [51].
Therefore, the three-stage Lobatto IIIa formula can be used confidently in this problem. The detailed
description of this method can be seen in Lund et al.’s paper [54] and Rehman et al.’s paper [56].
Moreover, the present values of f ′′(0) and −θ′(0) are correspondingly given in Tables 3 and 4.Symmetry 2020, 12, x FOR PEER REVIEW 7 of 16 
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ReC f for the comparison with Waini et al. [51].

Table 3. Outcomes of f ′′(0) surface where Pr = 6.2, φAl2O3 = 0.1, and Ec = 0.3.

φCu M γ S f”(0)

First Solution Second Solution

0.01 0 0 3 2.4863 −1.1077
0.05 2.8189 −1.6261
0.1 3.0749 −2.0807

0.1 3.1146 −2.2302
0.3 3.1908 −2.5230
0.5 3.2633 −2.8077

0.1 3.2967 −2.9403
0.3 3.3614 −3.1999
0.5 3.4236 −3.4519

2.75 3.0944 −2.4453
2.5 2.7590 −1.6382

2.25 2.4142 −1.0062

Table 4. The results of −θ′(0) where γ = 0, φAl2O3 = 0.1, and S = 3.

φCu Pr M Ec −θ
′

(0)

First Solution Second Solution

0.01 6.2 0 0 12.7302 12.5387
0.05 11.2238 10.9591
0.1 9.6302 9.2758

5 7.6893 7.2426
3 4.4876 3.7171
2 2.9193 1.8444

6.2 0.1 9.6319 9.2613
0.3 9.6354 9.2315
0.5 9.6386 9.2000

0.1 8.5867 5.9024
0.3 6.4827 0.6929
0.5 4.3787 7.2883
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From Figures 3–8, it is noticed that the similarity solutions of a system of reduced ODEs have
a non-uniqueness of solutions in certain ranges of M and S. It should be noted that there does not
exist a similarity solution when Sc > S and Mc > M. Further, Sc and Mc are respective critical values
of S and M where solutions exist. Variation of f ′′(0) for numerous permeability parameter γ values
is displayed in Figure 3 where φAl2O3 = 0.1, φCu = 0.04, M = 0.5, Pr = 6.2, and Ec = 0.3 are kept
constant. It is noticed that for confident ranges of the S there are two solutions. Further, Sc1 = 1.7758,
Sc2 = 1.6169, and Sc3 = 1.4463 are the critical values for the respective γ = 0, γ = 0.2, and γ = 0.4. It is
also examined that an increase in γ creates the enhancement in the coefficient of skin friction for the
stable solution, while the reverse tendency is noted for the unstable solution. Physically, the reduction
in skin friction is caused by the suction force that facilitates the separation of the boundary layer in the
second solution. This nature of flow happens because of the pressure gradient and the antagonistic
roles of transpiration on the fluid flow.
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Figures 4 and 5 demonstrate the effect of φCu on f ′′(0) and −θ′(0) for several values of M by
keeping φAl2O3 = γ = 0.1, S = 1.75, Pr = 6.2, and Ec = 0.3 constant. It is found that the higher φCu

values postpone separation of the layer since the φCu’s critical values shift to the left. The coefficient of
skin friction increases when Hartmann number M and copper volume fraction φCu are increased in
the first solution, but the contradictory trend of f ′′(0) is found in the second solution. Furthermore,
heat transfer enhances in a stable solution for the intensity of the magnetic effect, while it reduces
in the second solution. Physically, the explanation of these natures can be explained as “the Lorenz
force suppressed the vorticity produced by the shrinking of the sheet inside the boundary layer” [57].
The critical values of φCu = 0.001, φCu = 0.01, and φCu = 0.1 are Mc1 = 0.4885, Mc2 = 0.4768, and
Mc3 = 0.3718, respectively.

Figures 6 and 7 were drawn to demonstrate the effect of φCu and S on f ′′(0) and −θ′(0),
respectively. Usually, flow over the shrinking surface generates the vorticity, therefore solutions do not
occur subsequently vorticity has not been restricted inside the boundary layer. It is noticed from figures,
so enough suction efficiency is required to sustain the fluid flow on a shrinking surface. These findings
and behavior of fluid flow are supported by the statements of the Miklavčič and Wang [58] and
Fang [59]. For high S values in the first solution, the rate of heat transfer and skin friction coefficient
increase monotonically, while skin friction in the second solution decreases, but the rate of heat transfer
upsurges initially for some instances and then starts to decrease. Further, Sc1 = 1.7401, Sc2 = 1.6973,
and Sc3 = 1.6747 are the critical values for the respective φCu = 0.0, φCu = 0.02, and φCu = 0.04.
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The effect of Eckert number on −θ′(0) is shown in Figure 8 where φAl2O3 = γ = 0.1, φCu = 0.04,
M = 0.5, and Pr = 6.2 are kept as the constant. First solution demonstrations that the rate of
heat transfer increases, while it reduces (enhances) for Ec = 0.3, 0.6 (Ec = 0.1) for the unstable
solution. The effect of permeability γ on profiles of velocity f ′(η) and temperature θ(η) was drawn in
Figures 9 and 10. It should be noted that for f ′(η) and θ(η) profiles, dual solutions exist and these
profiles fulfill infinite boundary conditions asymptotically. It is examined that the increment of γ
contributes to the rise of f ′(η) and θ(η) in the second solution, while no large variation is perceived in
the first solution. It is examined that the velocity of the hybrid nanofluid reduces in the first solution
when the porosity enhances. Physically, it shows that resistance exists due to the direct effect on
the viscosity of the fluid. The effect of Ec on the profile of temperature θ(η) is revealed in Figure 11.
We also found that the fluid temperature rises with the rising Ec values for both branches. Physically,
the increase in Eckert number can be clarified in order to minimize enthalpy influence.
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The graph of the values of the smallest eigenvalue ε1 against suction S is depicted in Figure 12.
According to Hamid et al. [60], positive (negative) values of γ show initial growth of decay (disturbance),
and the solution of flow can be stable (unstable). From Figure 12, the first solution is clearly stable and
the second one is unstable. Moreover, the graph of the smallest eigenvalue shows symmetrical behavior.
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5. Conclusions

The effect of MHD flow of hybrid nanofluid on the exponentially permeable shrinking surface
with the porous medium in the presence of viscous dissipation is examined. The effect of numerous
emerging physical parameters on the heat transfer of hybrid nanofluid flow has been examined from
the figures, and can be summarized as follows:

1. The present results show good agreements with the previously published results.
2. Dual solutions exist when Sc ≤ S and Mc ≤M, while no solution exists Sc > S and Mc > M.
3. Shear stress rises in the first solution then declines in the second solution for the rising values of

φCu, M, S, and γ.
4. For the first solution, the heat transfer rate rises as S and M parameters are enhanced, while this

is lower when φCu is up.
5. Enhancement in the volume fraction of the nanoparticles pushes forward the boundary layer

separation. Therefore, ranges of solutions increase.
6. Compared with nanofluid and viscous fluid, hybrid nanofluid seems to be more efficient in

cooling processes.
7. The first is stable, and the second is unstable.
8. The Eckert number and temperature profiles are directly proportional.
9. The highest value of Eckert number does not affect the boundary layer separation against suction.
10. This model does not function outside the critical points, so there is no solution.
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