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This paper is related to frame a mathematical analysis of impulsive fractional order differential equations (IFODEs) under
nonlocal Caputo fractional boundary conditions (NCFBCs). By using fixed point theorems of Schaefer and Banach, we analyze the
existence and uniqueness results for the considered problem. Furthermore, we utilize the theory of stability for presenting Hyers-
Ulam, generalized Hyers-Ulam, Hyers-Ulam-Rassias, and generalized Hyers-Ulam-Rassias stability results of the proposed
scheme. Finally, some applications are offered to demonstrate the concept and results. The whole analysis is carried out by using

Caputo fractional derivatives (CFDs).

1. Introduction

It has been observed that the focus of investigation has shifted
from classical integer-order models to fractional-order models.
It is because of the fact that many practical systems are ex-
cellently described by using fractional-order differential
equations (FODEs) instead of classical differential equations.
For basic theory and some important applications of fractional-
order derivatives, we refer the readers to see [1-4] and the
references therein. Many researchers are devoted to work in
this area and made significant contribution in this regard; we
refer the readers to the recent work in [5-10].

The study of implicit systems of FODEs with impulsive
conditions is quite important as such systems appear in a
variety of problems of applied nature, especially in biosci-
ences, economics, engineering, etc. Such problems arise due
to abrupt changes in the state of systems like earth quack,
fluctuation of pendulum, etc. Here, we refer to some recent
papers on impulsive problems [11-16]. The important class

of FODEs known as IFODEs has been given much devotion by
researchers. One of the most important aspects is investigation
of problems under boundary conditions. Such problems mostly
occur in engineering. Boundary and initial conditions may be
local or nonlocal and both are important, and increasingly
many problems have been investigated under these conditions.
Replacing the local conditions by nonlocal ones produces a
significant effect. This is due to the fact that the measurement
computed from a nonlocal condition is usually more precise
than the only one measurement given by a local condition.
Therefore, the area of nonlocal boundary value problems has
also attracted enough attention. In the last two decades, the area
of IFODEs has been investigated from various directions in-
cluding qualitative theory of existence of solution/solutions,
stability, and numerical analysis. Therefore, IFODEs have also
been investigated under nonlocal boundary conditions. For
instance, Gupta and Dabas [17] studied the existence and
uniqueness results for a class of IFODEs with nonlocal
boundary conditions.
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o€ (1,2],te[0,1],
0<&<1,0<p<l.
(1)

By employing the fixed point technique, the authors
obtained the existence and uniqueness results.

0Dow () + f(tw(t),w (1) =0,
w(0) =0, ;2w (1) = 6, 2w (p),

nut) = 7, (w(iy)) A(i2(t,)) = 7,(w(sy)). ve @.1) g

0<d<é<1,0<p<l

0 Ziw(t) - f(Lw(t), (Diw(®)) =0,
w(0) = 0, §Pw(T) = 8§D;w(p),
In the proposed problem, the notation

cPY, ¢, and (D represent Caputo fractional derivatives
of orders g, v, and &, respectively, where the points 0 and f in
the subscript of the differential operator & are actually the
limits of the definite integral involved in the definition of
CFED. The function f: [0,T] X Z X Z — R is continuous,
where & is the set of real numbers. The impulsive functions
53 q and 5 q in C(R, R) are bounded. For the sequence
0 = 9t <<t <t=T e have Aw(ty) = w(ty) -~ w(ty) and
AGZIw(t)) = (51w (D) - (§2}w (£)w(t) =lim,,__
w(ty+h), and w(t;) =lim,_ w (tq—h) represents the
right-hand and left-hand limits of w (¢) at = te> respectively,
with w (tc‘l) =w (tq). The speciality of this proposed problem
is that the nonlinear term depends not only on the un-
known function but also on its fractional derivative
compared with the available results in the literature. This
type of study has rarely been discussed in the literature
because of the complexity of fractional impulsive surfaces.
The further organization of this manuscript is divided into
four parts as follows: The second part of the paper
demonstrates the preliminary portion in which we recall
to readers the basics of used theory, notations, and def-
initions. The third part presents an existence result by
employing Schaefer’s fixed point theorem. The fourth
section is introduced to analyze and study several stability
results of the considered problem, and the last section is
provided to illustrate the applications of the obtained
results.

2. Preliminaries

We take & =[0,T], &, = [0,t,], and Sq = (ty qﬂ] We
introduce the following space of p1ecew1se continuous
tunctions by
B =PC(S,R)={w: § — R|weC(S),q
r, w(tg),w(t;l) existforg=1,2,... ,r},
(3)

where 9 is the Banach space corresponding to the norm
lwllg = max;eslw (£)].

=1,2,...,
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This paper can be considered as generalization of the
aforesaid work, in which we discuss existence, uniqueness,
and various stability results for the following implicit
IFODEs with three point NCFBCs of order ¢ € (1,2]:

t e [0,T],
=1,2,...,r, (2)

Definition 1 (see [18]). The fractional order integral of
function g € L' ([a,b], #") of order g € " is defined by

t 01
12g(t) = L%g(n)dn, (4)

where T is the gamma function.

Definition 2 (see [18]). For a function g given on interval
[a,b], the CFD of g is defined by

cpe _ 1 ‘ _ o=l _(n)
o0 = s [ -t man

T'(n

where n = [p] + 1.
Let there exist constants S>0ande >0 and a nonde-
creasing function @ € C(8,#), such that the following

inequalities exist for g =1,2,...,r1:
[028h(t) - f(th(1), (DFh(D)|<e, teS,
[an(t,) -7, ((53)) < ®)
[a(528h(ty)) = 74(h(z,))| <e.
[028h(t) - f(t,h(t), (DLh(D)|<@(t), te,

|ah(t,) = 74(h(t))| <. (7)
(528 (h(t,)) - 74(h(t;))) B,

|599h(t) - f(th@), (2Ph(D)|<ed (1), teS,
|An(t,) -7, (h(t,))| < b
|A(627h(t,)) = 74(h(t7))| < B

(8)

Definition 3 (see [19]). If for € >0 there exists a constant
% >0 such that for any solution h € % of inequality (6),
there is a unique solution w € % of problem (2) which
satisfies

|h(t) —w(t)|<Be, ted, 9)

then problem (2) is called Hyers-Ulam stable.
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Definition 4 (see [19]). If for € >0 and set of positive real
numbers #* there exists y € C(Z*, #"), such that for any
solution h € & of inequality (6), there is a unique solution
w € & of problem (2) which satisfies

|h(t) —w(@®)<y(e), ted, (10)

then problem (2) is called generalized Hyers-Ulam stable.

Definition 5 (see [19]). If for € > 0 there exists a real number
€ >0, such that for any solution h € & of inequality (8),
there is a unique solution w € & of problem (2) which
satisfies

[h(t) —w()|<Be(D(t)+vy), ted, (11)

then problem (2) is called Hyers-Ulam-Rassias stable with
respect to (D, ).

Definition 6 (see [19]). If there exists constant € >0, such
that for any solution h € & of inequality (7), there is a
unique solution w € 98 of problem (2) which satisfies

[h(t) —w@®)|<E (@) +vy), ted, (12)

then problem (2) is called generalized Hyers-Ulam-Rassias
stable with respect to (D, y).

Here, it is to be noted that Definitions 3-6 have been
adopted from the paper [19].

Remark 1. The function h € & is called a solution for in-
equality (6) if there exists a function ¢ € 9 together with a
sequence ¢,, where g =1,2,...,r (which depends on h)
such that

(-t (t_ﬂ)g_l
Jo T °

t _ 0l q
wo) =3 [ el otan+ Y 7 (w(e
i=1

if and only if w(t) is a solution of the following BVP:

re-%
dn—t|——2 57

—JZ%OW@) Z( ; f(w(f )))]

i )) - t|:(5p1—£ _ Tl—f)

Tttt r@-
-J g ) 5

_(“2 D) et

@) lpMl<elpgl<e tedS,g=12,...,r
(i) §DEh (1) = f (8 h(1), §DTR () + (1), t € S\ q =
1,2,...,r

(iii) Ah(t) = T, (h(£) + $,t € S1q=1,2,....r
(iv) AGSDIR(t,) = 7y (h(t) + byt € S, =1,2,.. o1

Remark 2. A function h € 3 is a solution of inequality (8) if
there exists a function ¢ € % and a sequence ¢, where g =
1,2,...,r (which depends on h) such that
@ 1o <eb(t), 1,1 <ep, t € S,q=1,2,...,r
(i) §2Fh(t) = f(t,h(t), (DIR (1) + $(t), t € S, q =
1,2,...,r

(iii) Ah(ty) = T (h(E) + dg t € S,q = 1,2,...,x
(iv) AG5DIR(t) = 7y (h(E) + ¢t € S, =1,2,.. o

Lemma 1 (see [20]). For o>0, the given result holds:
wheren = [p] + 1.

n-1
oI (6289 (0) = g0 = Y it
i=0

(13)

To investigate the nonlinear IFODE2, we first consider
the associated linear problem and obtain its solution.

Lemma?2. Letg € (1,2) and o: [0,T] — R be continuous.
A function w(t) is a solution of the fractional integral
equation:

P _e-é-1
<6L0}£la 7t

e[o,t;],g=1,2,...,1,

re-9%

_ 061
(o[ o tomun 0

Pt + £ 1)

la=12..r,



0w (t)—a(t) =0,

Aw(tq) = jq(“’(t;))’

w(0) = 0, {Piw(T) = 852w (p),

o€ (L,2],

Proof. Letfort € [0,t,), w(t) be the solution of (15), then by
Lemma 1, we have

J A 0 1 o(n)dn —cy—c,t. (16)
o T
Using the condition w(0) = 0, we get

¢ = 0. (17)

Substituting ¢, in (16), we get

t _ 0!
w(t) = J-O%o(q)dq -t (18)
For t € (t,t,], we get
t _ o1
w(t) = Jo %a(q)dn —c, —cst. (19)

Applying the impulsive condition Aw (t,) = 7, (w(t7)),
we get

I (w(t)) = -, -ty
—6 = I (w(t)) +csty — ety

+c,tq,
1t (20)

Substituting ¢, in (19), we get

t _ el
w(t) = Jo%a(q)dn + I (w(t)) + ety — ity — sty
(21)

t _ 0l
w(t) = Jowa(n)dq + I (w(t))) —city +c5(t, — ).

I'(o)
(22)
From equations (18) and (22), we get
) p—— J(—)Q“d)d—-lz;
Y T - 1 W= ST oy
1 t I 1-»

0 Diw(t) = To- J (t-n° U(W)dﬂ—ﬁm-

(23)

Now, using the impulsive condition A({D/w (t,)) =
J1(w(t])), we get

_ - -
jl(w(tl))z 3I‘(21 )+ r(zl )
(24)
r2—
&= oS w(i) e
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A((2w(t,)) = jq(w(t;)), ve (0,1, g=1,2,...,r, (15)
0<d<é<l.

Substituting c; in (22), we get

t _ 01
wm=jfiﬁL—amM+fmwm»

I'(o)
(25)
T 2
-t 227 () -
1
For t € (t,,t5], we get
- t (t- ,7)9*1
w(t) = .[071“(9) o(n)dn —c, —cst. (26)
Applying the impulsive condition Aw (t,) = %, (w(t;))
in (26) and (25), we get
FIr(w(ty)) = —cs—csty = I (w(t)))
r 2
(6 -0 2 () et
1
(27)

—¢y = I, (w(ty)) + sty + I (w(t)))

t(-1) "2 g w()) - o

1

Substituting ¢, in (26), we get

to(+_ )01
w(t) = Jo%am)dn +5,(w(ty)) +csty + 74

r(z

S(w(t)) +(t-1y) jl(w(l))_cltZ_Cst'

(28)

1

By equations (25) and (28), we get
1-»

CSF(Z —)

0 Diw(t) = J- (t-n)" to(n)dy -

1
I'(e-)
cony 1 t e
02w (t) = I'(e-) J-o (=" a(ndy

r(2-v) ¢
+< [ — 1 (w(t))) - )1“(2—1/)

(29)

Now, using the impulsive condition A({D;w(t,)) =
5, (w(ty)), we get
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1oy . - Similarly for t € &, t
7)) = esr G- ((C A ) - ) By e
r2-v t re-v» t(t-]’l)g q -
, o wo = [ oty + Y7, w(i) - ot
s = -0 () -~ IS (w(E) e
1 z q r-
(30) +Z(t—t,)( e LC=Y 5 (wie )))
Substituting ¢; in (28), we get -
t(t— )] ~ B Con? (t—n* o £
e R R R e R N OB I v R R
r(z v) 75\ & (T @2-v) _
2w e-n) +<r(2_£)>;( 2w
re- (32)
P wE) 1) e . T,
sing the boundary conditions, §2;w(T) = 6 ;2;w (p),

(31) we get

T 0-4-1 1-¢ q
coné (T -n) T r(z )
ihom = | S ot Clr(z 5 <r(2 f))z s ))>

1=1

o-é-1 1-¢ 1 1/Tr(2- -
8P w(p) =6 Jo%a(q)dq 6c1ré €)+8<r(g_g)>2< (' V) tl)))’

St it _Ne-é-1 1-¢ q _
cl( P )_ 8IP (p—n) a(ﬂ)dn+8< P >Z<r(zlvv)fl (w(ff))) (33)
1=1

re-% o T'(e-9) re-%) t;

1

I RGP B q(r(z )
Io [(e=9) oy r(2-9 Zl e f( ) )

I

re-9 [y e-n""" (T -t~ 4T (2-
Cl:(ép”—T”)[ajo o-p - f, o-p P +Z< g 2 )))

1=1

By substituting the value of ¢, and summarizing, we get ~ Corollary 1. In view of the Lemma 2, problem (2) has the
the required result. following solution:

Conversely, assume that u satisfies the impulsive frac-
tional integral equation (8); then by direct computation, it
can be seen that the solution given by (14) satisfies (15).

(t_ )Q ! 0
Jo fnwy), (2Fwn)dn - %, te[0,t],

w(t) = 1 Jt (e f(nw(n), (2fw(n))dy + if (w(t) -« (34)
0 F(Q) 0=t = 1 1

4 re- -
+y (t—tJ(%jl(w(tl ))), te(tptem]a=12....1

1=1 i



where

r2-§r S

u= (8P1—£ B Tl—s) Jo ( T(o-9) fnwn), ;Ziw(n)dy

re-or (T(T-pnv*! ;
e )L( D F . §94w

(8p"* —1"* I'(e-9)

- (m)dn +tz<r(j )jl(w(tl))>, q=12,...,r
(35)

|f (tow, (0, by (8)) = f (tsw, (£), by ()| < Ly Jwy (8) = w, (8)] + Ly by (£) = by
t:)| SLs|wl (t,)
t))| < Lyjw, (¢,)

|7, (w) () =7, (ws) (
|72 (W) () = 7, (w2) (

(H,) Let the functions ay,a,,a;€ C([0,T],&"),
which satisfy
|f (bw (), %, ()| <ay (t) + ay (D|w] + a3 ()| %, (1)),
fort € §,w € AB.
(37)

such that a; = sup;¢(opla; (t) < 1.

(H5) If f,.7,, and], are continuous functions such that
for all w, h € &, the following inequalities hold:

Mathematical Problems in Engineering

3. Existence and Uniqueness Results

In this section, we shall prove our main results. For which,
we assume the following assumptions:

(H,) Let there exist positive constants L,,L,,L,,
andL, such that for ¢t € [0,T] and all w,,w,,h,
h, € R, the following inequalities hold:

—w, (1)), (36)
- w, (tl_)l

(H,) Let there exist constants $>0ande>0 and a
nondecreasing function ® € C(S, ), such that the
following inequalities hold:

o[2D (t) < SO (t); consequently (IFD (£) < BD(¢).
(39)

We transform problem (2) into a fixed point problem.
Considering an operator J': B — 9B, defined by

|7, (w(t,)| < Chlwl + M 5,C 5, M, >0, (38)
|Il (w(tl_))l SC]1|1‘U| + M], C]l, M] > 0.
[ (f - rQ-8t (P (p-n ! r(2- &)t
8 dn 4 ="t
jo I'(p) T Zwlmdn (SPI_E—TI_E) Jo I'(p-9) Yul }1+(8p1_5—T1_€)

[ O man-i 3 (N2 i)

€[0,t;],q=1,2,...,r,

o TI'(e-9
t—n)! re-or (P (p-n*t!
raw =1 [ 0wy (p(f_?lf)ajo‘f’r(:)_f) Y. (0 (40)
,7)9*5*1

q
Y (dn -ty

re-e& JT(T_
(5p1*f_T1*f) o T'(p-9

( (i)

1—:jl(w(t;))), te(tpty]:a=12...1,
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where Y, (1) = f(t,w(t), ggfw(t)) = f(t,w(t),
%, (). In (40), we see that all the terms of solution w
in the interval [0, t,] are contained in the solution w in
interval (t,,f,,,]; therefore, for simplicity purpose, we  Proof. We use Schaefer’s fixed point theorem. The proof is
will study the solution in interval (¢,,t,,,] only. Now,  given in the following four steps.

we shall prove some theorems. Our grst result is based
on Schaefer’s fixed theorem.

Theorem 1. If the assumptions (H,) — (H;) are satisfied,
then problem (2) has at least one solution.

Step 1: to show that /" is continuous, take a sequence
{w,} such that w, — w € B. Then, fort € &, we have

(t - )“
|/V(wn(t))—/V<w<t>>|sj0 |% ()~ % ()

T (2-§) sjp(” n)“

[op =] |, (1) = Z ()]

0

tr(2-§) JT (T - !

+ |(Sp1_E B Tl_E| |?w (’7) - ?w(’/])|d’7

I'(p-§) " (41)
tZ(m )6 - 2, )]+ Zif (w0, (6)) =7 (w(8)
+Z|t F(2 v)

|7, (w, (t)) - 7, (w(t,))];

“?wn ~Yul|g<

where %, (1) = f (t,w, (£), %, (1)) and () = f (¢,
w(t), %, (t). Using (H,), we have

|?wn ) -%, (t)| = |f(t, w, (1, %, (1)) |7, (w,) (8)) = 7, (w) (£])] < Ly |w,, (£) - w(t))]

~ftw®), %, (®)|
< L1|wn (t) - u)(t)|

(=%,

(43)
(42)
w, — w implies ?wn(t) — Y, () as n— co.
Now, since every convergent sequence is bounded,
there exists a constant b >0 such that %, (¢)<b and
Y,<bforteS. Thus, '

+L,

which implies

(t =m0, () - YW ()] < (£ - ’7)9_1<'%n(t)| +|%(t)|) <2b(t - ),
(=" %0, 0 - Fu O] = (7= (|9, 0] 4|70 0] ) <20 -, (49)
(=m0, (- Fu 0] < (p - ’1)975710%"(0' +|%(t)|> <2b(p-n)*

The functions 7 — 2b (£ —#7)°"}, §— 2b(T -7},
and n—2b(p—-m* ! are 1ntegrable for te c§’
Therefore, by the continuity of f,.#,and ? and the
Lebesgue dominated convergent theorem, we conclude
from (41) that |4/ (w,, (£)) - A (w(t))| — 0asn —> oo

which implies ||/ (w,) - A (w)|l — 01— oo. This
proves the continuity of /.

Step 2: in this step, we will show that for eachw € %'y, =
{fwe &B: |wll<b}, |[Nwlsz<K. For t € &, consider
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(t=n)" =8 p-n"
W wOl< ,[0 Ty | Zw(ldn op T J.o o8 |Zuldn
- (M-~ ( )
+ [op 5~ 11 jo Tlo-9) I%(n)ldﬂ+t2 e |7, (w ()| (45)
F 2
Y @)+ Yot G )
Using (H,) and a;" = sup,cqa, (1), a;, = sup;cqa, (), Taking the maximum value over the interval & and
and a; =sup,.qa;(t) <1, we have simplifying, we get
7o @ =17 (0 ®), 7, 0) 46) P IEELLEY @)
<a, () +ay(Olw®)] + a5 ()| %, 1)]. a3

Using this result, (45) implies

t _ -1 _ _ i1
|W(w(t))lskljo(t N, TR-9K, Jp (p-m""",

I ”I%”—T”] I(o-¢)
TE-K, (T (T-p ", r(2-
+ '6‘01—5 _ T1—E| J F(Q"_ 5 tz< )(C, lwl| + M,) (48)

q
+ Y (Cylwl + M) + zp_q”zvkquMg
1=1

Further simplification implies This shows that the operator /" maps bounded sets into
_ _ bounded sets.
¢ OTT(2-§)(8p* *+1%7F)
AV wllg <K T IRATRESE: Step 3: in this step, we will show that ./ is equi-
(e+1) |6P -T |r(9 -&+1) continuous. Let w € #' €% and t,,t, € § such that

+2qTT(2-9)(C;b+ M) +q(Cyb+ M, ) =K fi <t and consider

(49)

re-8 (P (p-n>*""
)|61£ 1E|6JO r(e_g)

re-¢& (T(r-pnot! -
+(t2_t1)|5plif—T17£| IO I'(e-9) l?W(17)|d}1+(tz_tl)0<t.<ztz—t1< t >|j )

1

(e - < [y, o - %0 0l

F Y @ Y -0 s )

0<t,<t,~t, 0<t,<t,~t; i

(50)
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Using assumptions (H,) and (Hj;), we obtain
(t, - 1) re-¢ ()
|./V(w(t2)) /V(w(tl))ISKlr( +(tz t)K, ' p7 i £| T(o-E+1)
re-9  (m* (51)
+(t, —t;)K +2(t, —t;)gT 2 -v)(C, b+ M
(2 1) 1|8p1_§_T1_5|r(9_£+1) (2 l)q ( T I)

+(ty—1,)ql 2= »)(C b+ M).

We see that as t; — t,, the right-hand side of in-
equality (51) tends to zero that is |4 (w(t,))— # (w
(t))| — Oast, — t,. Hence, by the Ascoli — Arzela
theorem 41 B — B is completely continuous.

Step 4: to complete the proof, it remains to show that
the set & = {w € : w = {Nw, for0< (<1} is bounded.
Let w € &, then for any t € &, we have

(t—n)°! UrQe-§& (° (p- n)“ !
= [ 0ol o1 [
)9*5 1

re-§ ("(r-n
+ |5p1_f _Tl—f' J

wivmwmwwgﬁ

Using 0 < { <1 and (47) and (49), from (52), we get the
following result:

T° ST (2-§)(8p% * +T1%°F)
1Helas ([Kl (F(e A |op'* - TP (@ - £+ 1)

+2qTT (2 - 9)(C;b + M;) +q(Cyrb+ M ;)| = (K <K,

(53)

This shows that the set & is bounded. Therefore, by
Schaefer’s fixed point theorem, problem (2) has at least
one solution.

The following and our second result is based on the
Banach fixed point theorem.

I'(e-9

(52)
1=1

watkin+ 3 (2217, i)

T2 7 w(e))

l

Theorem 2. If the assumptions (H,)—- (H;) and the
inequality
LT LTI (2 - §)(0p% +TO*)
(1-L)(o+1) (1-Ly)|op" " - T"¥|r(e - &+ 1)

+q(Ly +2L,IT(2-§)) <1,
(54)
are satisfied, then (2) has an unique solution.
Proof. To show that the operator ./ as defined above has a

unique fixed point, we consider w,,w, € Z.
For t € £ ,tg,,], we have
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‘ et r(2
o w0 = (w0, 0)] = [ 09,00 = 7, i+ Lﬁ)f
0 T )
Plo-m ! r(z—f) CE )
6]()*1%101) %z<n>ldn s | Folg a0~ i
re- T2
3 (PN ) - 7 )+ 31 ) ) Do) 55
1=1 1
x |£ (i (1)) = 7, (wy (1))
(55)
whete %, () = f(t,w, (6, %,) and ¥, (1) = f (bw, |0~ 7] —||w1 w5
(1), ?wz). Using (H,), we have
7, 0= %0, 0] =100, 0.7, 0) - S 0.7, @) 1 @)E) =A@ @=L () —w (1)
<Lyfw, (8) = w, (O] + Ly| %, () = %, ), Thus, from (55), we have
(56)

which implies

L, T®
|/V(w1)(t) - ./V(wz)(t)| Sm ) ?tqatx ]|w1 (t) - w, (t)| +

re-opt
L2)|5p1‘f - Tl‘f|r(g —E+1)

LT(2-&T¢¢

- max (6t)|w1(t)—w2(t)|+ max t|w1(t) wz(t)|

te (tq tye 1] (1 - L2)|6P1*‘5 _ T17’5|I‘(9 —&E+1) ¢e (fq tq+1]
T2 - 8L
+ max qligﬂ (D) - w, (t)| + max qL3|w1 (t,) —w, (t, )l
te (tytgn ] ty te (tytgn

re-%
+ max qlt—tl|t17_VL4|wl(tl)—wz(tl)|,q:l,2,...,r

te (tytgn ] .
(58)
By further simplification, we obtain the following
inequality:
L,T® L,STT (2 - §)(0p% * +T%°)
N (w,) - N (w < +q(Ly; +2L,TT (2 = &) l|lw; — w, | o
" ( 1) ( 2)“% l—L )r(9+1) |6P1 - Tl f|1—~(9 E+ 1) q( 3 4 ) " 1 2"96’
(59)
L,T® LSTT (2 - &)(6p% ¢ +T°)

Ly+2L,TT(2 - 1.
(1-L )F(g+1) (1- 2)|5p15 TIE‘F(Q £+ 1) +q(Ls + 2L, TT (2 - §)) <
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Therefore, by Banach contraction theorem, problem (2)
has a unique fixed point.

4. Stability Analysis

In this section, we study Hyers-Ulam stability of problem (2).

Theorem 3. If assumptions (H,) — (H;) and the inequality

L,T® L,TT (2 - &)(0p% ° +T%")
(1-L)(o+1) (1-L,)|op" " =T+ 1)
+q(Ly +2L,IT(2- &) <1,
(60)

DL (1)
Bh(ty) = I ofh(t5)) + b
A(52ih(tq)) = Z4(h(tg)) + 6o

h(0) = 0, {DER(T) =

In light of Corollary 1, the solution problem (61) is given
by

= f(t.h(t), (DEh(1)) + $(2),

ve (0,1], q

85D5h(p) + ¢,

re-6or

11
are satisfied, then problem (2) is Hyers-Ulam stable.

Proof. Let h be any solution of inequality (6), then by Re-
mark 1, we have

o€ (1,2],

61
=1,2,...,r, (61)

0<8<&<1,0<p<l,g=1,2,...,r.

Jo(t— ne 1%() Jf( )9 1¢()

o

re-&6Hr

Pp-m !
o[ e L

r(2-ot 8JP (p-n)¥ !

o)l g P

+((Splf—:rl Vo Te-9

'1)“’ '

CRE

_ T (T _ 081 q _
e o T o= 3 (TGS ) -3 (TG )

1

rQ-é&

J-T (T - ,7)9—5—1

T Tasg Vi

tel0,t;],q=12,...,r,

1=1

_ 0l
ho) - | jo(t D e, (nydy +j G

(5"

o

rQ2-o6t

Pp-n !
6]0 o

_ o e-é-1
N, (dy

_ _ o e-é-1
re-ot 5r (p—1n) o () +

(8"t -1 " Jo T(e-8) (8p" -

1 (8p1_5 - Tl_g) o T'(e-%) =1

[
Tl‘f) o T(e-9

_ et q _
re-o6e JT(T n)° ¢(f7)d’1—tz<%j‘(h

) tz(¥¢)

¢q> te(tptp]a=12...1
(62)
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where %, (t) = f(t,h(t), %, (t)). Now if w is a unique
solution of problem (2), then for ¢ € &, consider

t 1 1
0 -wol= [ 5 )9 %00 = ZuCldn+ | = )9 19 (n)ldy + m—‘t)t
0 ' €|
AR
Lo re-9t (* (- T(2- &)t
'6Ior(7|%(q) %,(;1)|d;7+|8 lf_Tlf"SIo T(o-&) l¢(ﬂ)|dﬂ+m
T et i1
'Jo(r(gni)—f)w’“(”)_%(””dﬂj %Isb(n)ldn

tz(r(z v) 7. () - 7, (e ))|)+tz(r(2 v)|¢q'> lj (h(t] ))—Jl(w(tf))|+§;|¢q'

q _ q
3 =SS0 -2+ 3 =)o) e (talam

(63)

where %, (t) = f(t,w(t), %, (t)). By using assumption
(H,) — (H;), Remark 1, we have from (63)

LT® L,STT (2 - §)(0p% * +T9°%)
h - < Ly +2L,TT (2 - h—wlg
|| w||@< l( LZ)F(9+ 1) (1_ z)"SPl - 1_E|F(Q—E+ 1)+Q( 3+ 2Ly ( f)) || w"&?
(64)
T®  STT(2-8)(6p% * +T°°")
2q4TT (2 - .
[F(QJrl) '6p15 T £|1"(9 i )+q+ qIT(2-¢§) e
Let
L,T® L,STT (2 - )(0p% ° +T%°)
= L, +2L,TT(2-¢)),
T (AL (o+1) (1—L2)y6p1‘f—T1‘f|r(g—£+1)+Q( s +2LAT@=0)
(65)
T®  STT(2-8)(6p F + 1)
&, = 2qTT (2 - &),
2T+ 1) |op"* =" (e - £+ 1) Far4ITR-9)
then where € = &,/1 — &,; &, < 1. This shows that problem (2) is

Hyers-Ulam stable. Moreover, by setting (€)=
and ¥ (0) = 0, then the solution of problem (2) is generalized
Hyers-Ulam stable.

€ = Ge, (66)
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Theorem 4. If assumptions (H,) — (H,) and the inequality

. L,T® L,6TT (2 - E)((?pQ_E + TQ_E)
! (1—L2)F(Q+1) (1-1, )|6p1 = 1’5|F(g—€+1)
+q(Ly +2L,TT(2-8)) <1,
(67)

n® !

h(t) - w(e) < jo( o

9,00 - 7 Gl + | S

r2-ot Sr(p—mg‘f‘l
|op'* -1 S0 T(e-9)

_ T _e-é-1
. rQ-4ot 6J (T-n)
=1

tz(r(z

q q
+;|¢q|+2(t

By using assumption (H,) - (H,), Remark 2, we have
from (68)

Ih—wlg <& lh-wlg +e</§+ |5p17€

e
I'(o)

|?h (n -, (’7)|d’7 + |8p1—£

13

are satisfied, then problem (2) is Hyers-Ulam-Rassias stable.

Proof. From the proof of Theorem 3, we can write

1
¢ (m)ldn

_ _peél
r2-ot ar o)) 16 ()ld

—Tl‘g‘ o T'(p-9)

re-or (Tr-pot!
d ) d
N U %<n>|n+|p ] | F g ol
(68)
re- d - -
7,006 )~ 7, o))+ 3 (“E2 o] )+ S0 -7, wle)
. 1=1
re- d re-
(20D - 7, )+ S e-e)(H )
1=1
te(tpty]a=12...r
which implies that
€&, (0(t) + ¢)
h—wg<—2 2~
oTpre-9 | Tpre-9 ), Ih=wlg <—5—% 70)
S et
Ih - wlg <Ee(6(¢) + ¢),
+e(q+2qIT(2 - 7)< & |h—wlg + &5 (0(t) + @)e,
where
(69)
L,T° LT - H(8p% F + T %) +q(Ly +2L,TT (2 - ) <1
UL (1-L)|op" " -1 F[r(e-¢+1)
(71)

Blop'* -

T+ 6T (2- &) + TR (2 - §)

%3 = |8p1,g B Tl,g|

+(q+2qTT (2 -)).
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Therefore, problem (2) is Hyers-Ulam-Rassias stable. Example 1
5. Example
Consider the following implicit fractional system with given
impulsive conditions.
s | ex3/2
1) sin| ,D; w(t)'
cD w(t) = lw , teS=[01],t#t,q=r=1,
e T V) LI AT A
w(0) =
1 12 + +|52,"
€120 (1) = - lw(p)l +]§ tt;(p)l
) 4\ 72e83(1 +lw (p)| +]§2, w (p)|) s (72)
-
w(ty) :4O|w( 1)|_ ,
+|w (t)]
£)
ADPw(t,) = |w(t))]
32+ w ()|

Obviously, the given function f is continuous. We see
0=5/M4, &=v=1/2, T=1, §=1/4, andp=1/5. For
w,w, € Band ?wl’ ?wz € C(S8, R)andt € S,

|£(tw, (0, %0,) - F(tws (0, 7.,,)]
<oe (o (0 = w, 0] +[%, - 7))

which satisfies (H,) with L, = L, = 1/26. Further, for
t, =1/5, let

(73)

7 ) = g ey
_ 1 (74)
I (w(t))) = %, wherew, € 3.
For any w,, w, € 93, we have
@l )] |

|7 (wy () = 7 (w, (1))

40 +[w (£)] 40 +]w ()|
1 _
SE'“’l (t,

) —w, (tI)|>
IIMmi_ lw(t)] |

|%%WD|9+WMM

|7 (wy (87)) = (wy (¢

1 _
< 3—2 |w1 (tl

) —w, ()],

(75)

which satisfy the 2nd and 3rd inequalities of (H,) with
Ly =1/40and L, = 1/32.

For o=1/5, E=v=1/2, T=1, §=1/4,p=1/4L, =
L, =1/26,L; = 1/40, and L, = 1/32, we have

E+T‘~”£))

T -&+1)

L,T® L,8TT (2 - §)(8p°
(1I-L)f(e+ 1) " (1-Ly)[op"* -

&, =

+q(L; + 2L,TT (2 - £)) = 0.301 + 0.009 + 0.08 = 0.39 < 1.

(76)

Therefore, by Theorem 2, problem (72) has a unique
solution. By Theorem 4, problem (52) is Hyers-Ulam stable
and consequently generalized Hyers-Ulam stable.

Further, assuming @ (¢) = 1, we have

_ 1 Jl (1= @21
0

1
r(372) ndn<3ym 77

20 (¢ ’
ol @) VT

Consequently,

(3/2)-
OI

B 1 ! (3/2)-2 1
00 =y |, 00 s
(78)

which satisfies (H,) with = 1/3VII and @ (t) = 1; there-
fore, by Theorem 4, the solution of (72) is Hyers-Ulam-
Rassias stable corresponding to (®,y). With the help of
Matlab, we plot the result by using the RK4 method in
Figure 1.
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FIGURe 1: Graphical presentation of result of Example 1.

6. Conclusion

In this paper, using Schaefer’s fixed point theorem, we have
derived sufficient conditions for at least one solution to a
class of IFODEs under NCFBC 2. Similarly, using the
Banach contraction theorem, we obtained conditions under
which problem 2 has unique solution. Moreover, by the
application of qualitative theory and nonlinear functional
analysis, we established results concerning to various kinds
of Hyers-Ulam stability. The concerned results have been
verified by a suitable example.
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