
Naveed et al. Advances in Difference Equations        (2021) 2021:468 
https://doi.org/10.1186/s13662-021-03618-z

R E S E A R C H Open Access

Modeling the transmission dynamics of
delayed pneumonia-like diseases with a
sensitivity of parameters
Muhammad Naveed1*, Dumitru Baleanu2,3,4, Ali Raza5,6, Muhammad Rafiq7, Atif Hassan Soori1 and
Muhammad Mohsin8

*Correspondence:
nvdm4u@gmail.com
1Department of Mathematics, Air
University, PAF Complex E-9,
Islamabad, Pakistan
Full list of author information is
available at the end of the article

Abstract
Pneumonia is a highly transmitted disease in children. According to the World Health
Organization (WHO), the most affected regions include South Asia and sub-Saharan
Africa. 15% deaths of children are due to pneumonia. In 2017, 0.88 million children
were killed under the age of five years. An analysis of pneumonia disease is performed
with the help of a delayed mathematical modelling technique. The epidemiological
system contemplates subpopulations of susceptible, carriers, infected and recovered
individuals, along with nonlinear interactions between the members of those
subpopulations. The positivity and the boundedness of the ongoing problem for
nonnegative initial data are thoroughly proved. The system possesses
pneumonia-free and pneumonia existing equilibrium points, whose stability is
studied rigorously. Moreover, the numerical simulations confirm the validity of these
theoretical results.

Keywords: Pneumonia disease; Delayed model; Stability analysis; Numerical
simulations

1 Literature survey
In 2014, Mochan et al. presented the interhost immune response to bacterial pneumonia
infection in murine strains in a simple ordinary differential equation model dynamically
[1]. Drusano et al., in 2014, investigated the effects of granulocytes to eradicate bacterial
pathogens, and there was no role of antimicrobial therapy [2]. In 2015, Ndelwa et al. ex-
pressed the dynamic properties for the transfer of pneumonia along with screening and
medication mathematically and analysed to know the transmission and effects [3]. Kosasih
et al., in 2015, analysed a mathematical model of cough sounds by wavelet-based crackle
detection work for rapid diagnosis of bacterial pneumonia in children [4]. In 2016, César
et al. estimated particulate matter in a model mathematically and medications for both
pneumonia and asthma in children among the population [5]. Marchello et al., in 2016,
gave atypical bacterial pathogens as the main causes for lower respiratory diseases like
cough, bronchitis, CAP and analysed them [6]. In 2017, Cheng et al. provided an IAV-
SP model mathematically and dynamically. A quantitative risk-assessment framework to
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improve respiratory health due to COPD gave the hope for improvements [7]. Kosasih
et al., in 2017, gave a simple mathematical model showing the analysis of measurements
for pneumonia diagnosis among children clinically [8]. Tilahun et al., in 2017, proposed
a deterministic nonlinear model mathematically and analysed optical control strategies
for the bacterial disease pneumonia; results are shown graphically [9]. In 2018, Raj et al.
analysed the classification of asthma and pneumonia based upon mathematical features
of cough sound in the poor regions of the population [10]. Kizito et al., in 2018, presented
a mathematical model that shows the control of pneumonia spread by bacteria. Also, the
dynamics of treatment and formulation of vaccines were given [11]. In 2018, Mbabazi et
al. investigated a mathematical model nonlinearly that described the modelling of within-
host coinfection influenza A virus and pneumonia [12]. Tilahun et al., in 2018, proposed
a coinfection model for pneumonia-typhoid and mathematically analysed their charac-
teristic relationship in case of cure and medical strategies [13]. In 2019, Tilahun et al.
described a model of pneumonia-meningitis coinfection with the help of ordinary differ-
ential equations and some of the theorems. It explained different techniques for disease
clearance [14]. Diah et al., in 2019, reviewed mathematical models of pneumonia dynam-
ically followed by research in the past. An alternative method was proposed to estimate
the risk of pneumonia [15]. In 2019, Kosasih et al. explained the main cause of pneumo-
nia affecting children in early childhood in poor regions of the world [8]. In 2019, Tilahun
et al. analysed a coinfection mathematical model for pneumonia and bacterial meningi-
tis [16]. Mbabazi et al., in 2019, proposed a pneumococcal pneumonia model with time
delays mathematically, Hopf-bifurcation was analysed [17]. In 2020, Otoo et al. analysed
a model of pneumonia spread by bacteria. The analysis determined the effects of vacci-
nation to control the disease [18]. In 2020, Zephaniah et al. presented the dynamics of
mathematical models for pneumonia, showing the result graphically [19]. Ming et al., in
2020, described the spread of coronavirus pneumonia in Wuhan, China, and discussed
the increasing cases of infected people [20]. In 2020, Jung et al. demonstrated the obser-
vations using different clinical tests and showed the cause of disease, a novel pathogen
[21]. Adams et al., in 2020, showed the progress regarding pneumonia prevention and dif-
ferent strategies to treat and overcome bacterial pneumonia [22]. In 2013, Ong’ala et al.
developed a mathematical model for bacteremic pneumonia among children under five
years. Using stability of equilibrium points and bifurcation, they analysed the reducing
ways or the transfer rates between the carriers and the infected class [23]. Minuci et al.
presented the review of mathematical modelling of the inflammatory response in lungs
infections and injuries. They emphasised that mathematical modelling is a great tool for
understanding infectious diseases [24]. Huttinger et al., in 2017, developed a mechanistic
mathematical model explaining the dynamic relationship between streptococcus pneu-
monia (Sp), immune cells and epithelial tissues for the better understanding of complex
dynamically changing host–Sp interaction. They claimed that their model provides help to
plan better disease management strategies from the diagnostic and treatment perspective
[25]. In 2021, Wafula et al. presented an article describing optimal control treatment by de-
veloping a deterministic mathematical model pneumonia–HIV coinfection incorporating
the use of anti-pneumonia and ART treatment interventions as controls [26]. Oluwatobi
et al. studied the effect of treatment of pneumonia infection and investigated the basic and
effective reproduction numbers existence and the stability of equilibrium points [27]. Epi-
demiology has a significant role in different disciplines like medicine, engineering, chem-
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istry, physics, economics and many more. A diseases model is investigated with the help
of well-known branches of mathematics like spatio-temporal, stochastic, fractional and
fractal fractional [28–48].

Pneumonia is a terrible strain in developing regions such as Asia, Africa and Europe.
Pneumonia vaccination has been introduced in developed countries, and even the United
States is the largest donor for nefarious purposes. Delay modelling is a more general form
of deterministic modelling. The delayed analysis is a more realistic, close nature and au-
thentic tool to control infectious diseases. For example, in the recent strain of coronavirus,
the only control strategy is delaying tactics like public holidays, restriction in travel, face-
mask, hand sanitiser, social distancing etc. This article claims that precautionary measures
or delay tactics are the best revenge to control pneumonia-like diseases other than vacci-
nation or medication etc. That is a reason why we move in delay modelling.

The paper strategy is as follows: Sect. 1 presents literature survey regarding pneumonia-
like diseases. Section 2 deals with the formulation of the delayed model and its mathemat-
ical analysis. In Sects. 3 and 4 the stability of the model is described locally and globally,
respectively. Section 5 presents the sensitivity of the parameters involved in the model.
In Sect. 6 the numerical simulations with their results are given. Section 7 contains the
concluding remarks of the work.

2 Formulation of the model
The formulation of the model is based on the theory of population dynamics. The popu-
lation N(t) is the sum of the following classes: susceptible S(t), carriers C(t), infected I(t)
and recovered R(t). The modelling of pneumonia disease based on the law of mass ac-
tion is performed (see Fig. 1). Furthermore, some assumptions are fixed during the delay
modelling as follows:

• Newly recruited individuals are assumed to be in the susceptible class.
• The birth and death rates are approximately equal.
• Vertical transmission is to be considered.
• Susceptible types make attraction with the infected and carriers classes at any time

(t – τ ).
• Natural delay is assumed.
• An artificial delay term like e–μτ , τ ≥ 0 (a decay term) is used for controlling the

epidemic.

Figure 1 Flow chart of the pneumonia disease model
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Table 1 Physical applicability of the model

Parameters Descriptions Values (per day)/
Source [11]

μ The natural mortality rate of individuals. 0.5 (Assumed)
� Recruitment rate. 0.5 (Assumed)
θ The proportion of sensitive people involved in the careers. 0.536
σ Rate of mortality due to the disease. 0.53
β The recovery rate of the carriers. 0.515
ψ Rate of recovery of children who are infected with pneumonia. 0.614
π Signifies the rate of developing symptoms by the carriers 0.7096
η Rate of the treated individuals becoming susceptible. 0.00641
ω Represented as the coefficient of transmission for the subgroup involving carriers. 0.1124
δ The transmission rate of the disease among the population. 2 (PFE)

2.5 (PEE)
p The rate of contact is quite effective due to infection. 0.89–0.99
κ Nonlinear contact rate. ≥1

• Once recovered, they may have chances to get the disease again.
• The carriers may recover directly due to their internal immunity.
• The carriers and infected classes have inverse interactions with each other.
• Two types of death rates are considered: natural and due to the disease.
Table 1 presents the physical relevance of the constants as follows.
Based on the assumptions, the continuous model is defined with the help of the law of

mass action. The nonlinear delay differential equations (DDEs) present the transmission
flow of pneumonia type diseases as follows:

S′(t) = � – κpI(t – τ )S(t – τ )e–μτ – κpωC(t – τ )S(t – τ )e–μτ – μS(t) + ηR(t), (1)

C′(t) = θκpI(t – τ )S(t – τ )e–μτ + θκpωC(t – τ )S(t – τ )e–μτ – (μ + β + π )C(t), (2)

I ′(t) = κpI(t – τ )S(t – τ )e–μτ + κpωC(t – τ )S(t – τ )e–μτ

– θκpI(t – τ )S(t – τ )e–μτ – θκpωC(t – τ )S(t – τ )e–μτ + πC(t)

– (ψ + μ + σ )I(t), (3)

R′(t) = βC(t) + ψI(t) – (μ + η)R(t) (4)

with nonnegative initial conditions S = S0 ≥ 0, C = C0 ≥ 0, I = I0 ≥ 0, R = R0 ≥ 0 and
t ≥ 0, τ ≤ t.

2.1 Model properties
To preserve the meaningful analysis of the model, all the variables S(t), C(t), I(t), R(t) must
be nonnegative. Consequently, the outcomes are achieved after studying the model for any
time t ≥ 0τ ≤ t in a feasible region.

H =
{

(S, C, I, R)εR4
+ : N(t) ≤ �

μ
, S ≥ 0, C ≥ 0, I ≥ 0, R ≥ 0

}
.

Theorem 2.1 The solutions (S, C, I, R)εR4
+ of system (1)–(4) are positive at t ≥ 0, τ ≤ t with

given nonnegative initial conditions.
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Proof Obviously, system (1)–(4) is as follows:

dS
dt

∣∣∣∣
S=0

= (� – ηR) ≥ 0,
dC
dt

∣∣∣∣
C=0

= θκpISe–μτ ≥ 0,

dI
dt

∣∣∣∣
I=0

=
[
κpωCS(1 – θ )e–μτ + πC

] ≥ 0,
dR
dt

∣∣∣∣
R=0

= (βC + ψI) ≥ 0.

Since all the parameters and derivatives of the model are nonnegative, system (1)–(4)
admits a positive solution, as desired. �

Theorem 2.2 The solutions (S, C, I, R)εR4
+ of system (1)–(4) are bounded.

Proof Consider the population function:

N(t) = S(t) + C(t) + I(t) + S(t),

dN
dt

= � – μ(S + C + I + R) – σ I, N = S + C + I + R,

dN
dt

≤ � – μN .

Using Gronwall’s inequality [49], we have

N(t) ≤ N(0)e–μτ +
�

μ
, t ≥ 0,

limit−→∞ Sup N(t) ≤ �
μ

, as desired.
�

2.2 Analysis of the model
This section shows a brief discussion of the equilibria of the pneumonia delayed model.
We will discuss trivial pneumonia equilibrium (PnTE – D0), pneumonia-free equilibrium
(PnFE – D1) and pneumonia existing equilibrium (PnEE – D2) given by

D0 =
(
S0, C0, I0, R0) = (0, 0, 0, 0), D1 =

(
S1, C1, I1, R1) =

(
�

μ
, 0, 0, 0

)
and

D2 =
(
S∗, C∗, I∗, R∗),

S∗ =
�

μR0
or S∗ =

u1u2

κp[u1(1 – θ ) + πθ + ωθu2]e–μτ
,

C∗ =
�θu2(μ + η)(R0 – 1)

R0[{u1(μ + η) – ηθβ}u2 – ηψ{u1(1 – θ ) + πθ}] ,

I∗ =
�(μ + η)[u1(0.1 – θ ) + πθ ](R0 – 1)

R0[{u1(μ + η) – ηθβ}u2 – ηψ{u1(1 – θ ) + πθ}] ,

R∗ =
�[βθu2 + ψ{u1(1 – θ ) + πθ}](R0 – 1)

R0[{u1(μ + η) – ηθβ}u2 – ηψ{u1(1 – θ ) + πθ}] .

2.3 Reproduction number
The idea of reproduction number by using the next-generation matrix method is pre-
sented in [50]. The next-generation matrix method is implanted into system (1)–(4) to
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calculate the reproduction number R0. After taking the carriers and infected classes from
Eq. (1) to Eq. (4), along with the pneumonia-free equilibrium as follows:

[
C′

I ′

]
=

[
θκpω�e–μτ

μ

θκp�e–μτ

μ
κpω(1–θ )�e–μτ

μ

κp(1–θ )�e–μτ

μ

][
C
I

]
–

[
u1 0
–π u2

][
C
I

]
,

where u1 = (μ + β + π ) and u2 = (ψ + μ + σ ), θ1 = (1 – θ ),

A =

[
θκpω�e–μτ

μ

θκp�e–μτ

μ
κpωθ1�e–μτ

μ

κpθ1�e–μτ

μ

]
, B =

[
u1 0
–π u2

]
,

AB–1|D1 =

[
θκp�e–μτ (ωu2+π )

μu1u2
θκp�e–μτ

μu2
θ1κp�e–μτ (ωu2+π )

μu1u2
θ1κp�e–μτ

μu2

]
.

The spectral radius of AB–1|D1 is called reproduction number and is defined as

R0 =
κp�e–μτ

u1u2μ

[
θ (ωu2 + π ) + θ1

]
.

3 Local stability
In this section, we examine the local stability of the model at the equilibrium of the model
using the following recognised results.

The Jacobian matrix of system (1)–(4) and its elements are given below:

JPn =

⎡
⎢⎢⎢⎣

J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

⎤
⎥⎥⎥⎦ (5)

J11 = –κp(I + ωC)e–μτ – μ, J12 = –κpωSe–μτ , J13 = –κpSe–μτ , J14 = η, J21 = θκp(I + C)e–μτ ,
J22 = θκpωSe–μτ – u1, J23 = θκpSe–μτ , J24 = 0, J31 = κp(I + ωC)θ1e–μτ , J32 = κpωSθ1e–μτ +
π , J33 = κpSθ1e–μτ – u2, J34 = 0, J41 = 0, J42 = β , J43 = ψ , J44 = –(μ + η).

Theorem 3.1 The pneumonia trivial equilibrium (PnTE-D0), D0 = (S0, C0, I0, R0) =
(0, 0, 0, 0) is locally asymptotically stable if R0 = 1.

Proof The Jacobian matrix (5) at D0 = (S0, C0, I0, R0) = (0, 0, 0, 0) is as follows:

JPn |D0 =

⎡
⎢⎢⎢⎣

–μ 0 0 η

0 –u1 0 0
0 π –u2 0
0 β ψ –(μ + η)

⎤
⎥⎥⎥⎦ .

The detailed proof is given in Appendix 1. So, by the Routh–Hurwitz criterion, the pneu-
monia trivial equilibrium point (PnTE – D0) is locally asymptotically stable. �

Theorem 3.2 The pneumonia-free equilibrium, D1 = (S1, C1, I1, R1) = ( �
μ

, 0, 0, 0) is locally
asymptotically stable if R0 < 1.
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Proof The Jacobian matrix (5) at D1 = (S1, C1, I1, R1) = ( �
μ

, 0, 0, 0) is as follows:

JPn |D1 =

⎡
⎢⎢⎢⎢⎣

–μ
–κpω�e–μτ

μ

–κp�e–μτ

μ
η

0 θκpω�e–μτ

μ
– u1

θκp�e–μτ

μ
0

0 κpω�θ1e–μτ

μ
+ π

κp�θ1e–μτ

μ
– u2 0

0 β ψ –(μ + η)

⎤
⎥⎥⎥⎥⎦ .

The detailed proof is given in Appendix 2 since all the eigenvalues are negative. There-
fore, by Routh–Hurwitz criterion for the 2nd-degree polynomial, both fixed values of
x1, x0 > 0 if R0 < 1. Hence the pneumonia-free equilibrium (PnFE – D1) of system (1)–(4)
is locally asymptotically stable. In other circumstances, if R0 > 1, then the Routh–Hurwitz
condition does not hold. Thus, D1 is unstable. �

Theorem 3.3 Pneumonia existing equilibrium (PnEE – D2), D2 = (S∗, C∗, I∗, R∗) is locally
asymptotically stable if R0 > 1.

Proof The Jacobian matrix (5) at D2 = (S∗, C∗, I∗, R∗) is as follows:

JPn |D2 =

⎡
⎢⎢⎢⎣

–κp(I∗ + ωC∗)e–μτ – μ –κpωS∗e–μτ –κpS∗e–μτ η

θκp(I∗ + C∗)e–μτ θκpωS∗e–μτ – u1 θκpS∗e–μτ 0
κp(I∗ + ωC∗)θ1e–μτ κpωS∗θ1e–μτ + π κpS∗θ1e–μτ – u2 0

0 β ψ –(μ + η)

⎤
⎥⎥⎥⎦ .

The detailed proof is given in Appendix 3. By the Routh–Hurwitz criterion for the 4th-
degree polynomial, the given constraint has been verified if R0 > 1. Therefore pneumonia
existing equilibrium (PnEE – D2) of system (1)–(4) is locally asymptotically stable. �

4 Global stability
The following theorems are presented for the system’s stability (1)–(4) in the global sense.

Theorem 4.1 The pneumonia trivial equilibrium (PnTE – D0), D0 = (S0, C0, I0, R0) =
(0, 0, 0, 0) is globally asymptotically stable if R0 = 1.

Proof The Lyapunov function � : H → R is defined as follows:

� = S + C + I + R, ∀(S, C, I, R)εH,

d�

dt
=

dS
dt

+
dC
dt

+
dI
dt

+
dR
dt

,

d�

dt
= � – κpISe–μτ – κpωCSe–μτ – μS + ηR + θκpISe–μτ + θκpωCSe–μτ

– (μ + β + π )C + κpISe–μτ + κpωCSe–μτ – θκpISe–μτ – θκpωCSe–μτ + πC

– (ψ + μ + σ )I + βC + ψI – (μ + η)R,

d�

dt
= � – μN – σ I, N = S + C + I + R,

d�

dt
≤ � – μN , N ≤ �

μ
,
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d�

dt
≤ 0, if R0 = 1 and

d�

dt
= 0.

Hence D0 is globally asymptotically stable. �

Theorem 4.2 The pneumonia-free equilibrium (PnFE-D1), D1 = (S1, C1, I1, R1) =
( �

μ
, 0, 0, 0) is globally asymptotically stable if R0 < 1.

Proof Define the Lyapunov function U : H →R as follows:

U =
(

S – S1 – S1 log
S
S1

)
+ C + I + R, ∀(S, C, I, R)εH,

dU
dt

=
(

S – S1

S

)
dS
dt

+
dC
dt

+
dI
dt

+
dR
dt

,

dU
dt

=
(

S – S1

S

)[
� – κpISe–μτ – κpωCSe–μτ – μS + ηR

]

+
[
θκpISe–μτ + θκpωCSe–μτ – u1C

]

+
[
κpISθ1e–μτ + κpωCSθ1e–μτ + πC – u2I

]

+
[
βC + ψI – (μ + η)R

]
.

The detailed proof is given in Appendix 4. dU
dt ≤ 0 if R0 < 1 and dU

dt = 0 if S = S1, C = 0, I =
0 and R = 0. Since by the Lassalle invariance principle D1 is the only unique trajectory of
system (1)–(4), D1 is globally asymptotically stable. �

Theorem 4.3 The pneumonia existence equilibrium (PnEE-D2), D2 = (S∗, C∗, I∗, R∗) is
globally asymptotically stable if R0 > 1.

Proof Define the Volterra–Lyapunov function V : H →R as follows:

V =
(

S – S∗ – S∗ log
S
S∗

)
+

(
C – C∗ – C∗ log

C
C∗

)
+

(
I – I∗ – I∗ log

I
I∗

)

+
(

R – R∗ – R∗ log
R
R∗

)
, ∀(S, C, I, R)εH.

dV
dt

=
(

1 –
S∗

S

)
dS
dt

+
(

1 –
C∗

C

)
dC
dt

+
(

1 –
I∗

I

)
dI
dt

+
(

1 –
R∗

R

)
dR
dt

.

The detailed proof is given in Appendix 5. dV
dt ≤ 0 if R0 > 1 and dV

dt = 0 if S = S∗, C =
C∗, I = I∗andR = R∗. Since by the Lassalle invariance principle D2 is the unique trajectory
of system (1)–(4), D2 is globally asymptotically stable. �

5 Sensitivity analysis
We use the derivative-based local methods for the sensitivity analysis to take the partial
derivatives of outputs concerning inputs as presented in [51]. The study highlights the im-
portance of transmission rates that can change dynamics from pneumonia-free to pneu-
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monia existing.

Pnκ =
∂R0
R0
∂κ
κ

=
κ

R0
× ∂R0

∂κ
= 1 > 0, Pnp =

∂R0
R0
∂p
p

=
p
R0

× ∂R0

∂p
= 1 > 0,

Pn�
=

∂R0
R0
∂�
�

=
�

R0
× ∂R0

∂�
= 1 > 0,

Pnθ
=

∂R0
R0
∂θ
θ

=
θ

R0
× ∂R0

∂θ
=

θ

R0
× κp�e–μτ

[
(ωu2 + π ) – u1

u1u2μ

]
,

Pnω =
∂R0
R0
∂ω
ω

=
ω

R0
× ∂R0

∂ω
=

ω

R0
×

[
θκp�e–μτ

u1μ

]
> 0,

Pnτ =
∂R0
R0
∂ψ

ψ

=
ψ

R0
× ∂R0

∂ψ
=

ψ

R0
× κp�e–μτ θω

u1u2μ

[
1 –

[θ (ωu2 + π ) + u1(1 – θ )]
θωu2

]
> 0,

Pnμ =
∂R0
R0
∂μ

μ

=
μ

R0
× ∂R0

∂μ

= –
μ

R0
× κp�e–μτ

[
τ [θ (ωu2 + π ) + u1(1 – θ ) – θω – (1 – θ )]

u1u2μ

+
[θ (ωu2 + π ) + u1(1 – θ )][u1u2 + μu1+μu2]

(u1u2μ)2

]
< 0,

Pnσ =
∂R0
R0
∂σ
σ

=
σ

R0
× ∂R0

∂σ
=

σ

R0
× κp�e–μτ θω

u1u2μ

[
1 –

[θ (ωu2 + π ) + u1(1 – θ )]
θωu2

]
> 0,

Pnπ =
∂R0
R0
∂π
π

=
π

R0
× ∂R0

∂π
=

π

R0
× κp�e–μτ θω

u1u2μ

[
1 –

[θ (ωu2 + π ) + u1(1 – θ )]
u1

]
> 0,

Pnβ
=

∂R0
R0
∂β

β

=
β

R0
× ∂R0

∂β
=

β

R0
× κp�e–μτ θω

u1u2μ

[
1 –

[θ (ωu2 + π ) + u1(1 – θ )]
u1(1 – θ )

]
> 0.

After that, the conclusion from the results mentioned above is that κ , p,�, θ ,ω,ψ ,σ ,π ,β
are sensitive and μ is not sensitive, as desired.

6 Numerical simulations and results
Numerical simulations are presented by using the command build code of MATLAB soft-
ware like DDE’s-23. The parameters have been taken from the scientific literature, as
shown in [11] (see Table 1).

Example 1 (Results on pneumonia-free equilibrium (PnEE-D1) without delay) Figure 2(a)
to (d) shows the solution at the pneumonia-free equilibrium (PnEE-D1), when τ = 0, D1 =
(S1, C1, I1, R1) = (1, 0, 0, 0) with the nonnegative initial data and parameters presented in
Table 1. Therefore, the value of the reproduction number is R0 < 1. Moreover, Fig. 2(e)
shows the combined behaviour of the system.

Example 2 (Simulation on pneumonia existing equilibrium (PnEE-D2) without delay)
Fig. 3(a) to (d) displays the solution of system (1)–(4) at the pneumonia existing equi-
librium (PnEE-D2), when τ = 0, D2 = (S∗, C∗, I∗, R∗) = (0.8863, 0.01776, 0.0238, 0.04692).
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Figure 2 Subpopulations plots concerning the time of system (1)–(4) at the pneumonia-free equilibrium of
the model when τ = 0

Therefore, the value of the reproduction number is R0 > 1. Moreover, Fig. 3(e) shows the
combined behaviour of the system.

Example 3 (Results on pneumonia existing equilibrium) In this section, we have taken
the effect of system (1)–(4) with active practices of artificial delay tactics. Anti-pneumonia
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Figure 3 Time plots at the pneumonia existing equilibrium when τ = 0

ability could be increased as observed in Fig. 4(a) to (d). On the other hand, we can keep
the infectivity of pneumonia patients decreasing and even moving to zero.

Example 4 (Behavior of reproduction number with the efficiency of delay tactics) In Fig. 5,
let τ = 1, 2, 3. As apparent, the value decreases, which changes the dynamics of the system
of pneumonia disease from prevailing scenario to disease-free equilibrium.
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Figure 4 Subpopulations plots concerning the time of the system at the pneumonia existing equilibrium
with practical uses of different values of delay tactics like τ = 0.1, 0.2, 0.5, 1 respectively

Example 5 (Behavior of infective class at different values of the delay parameter) Fig. 6
exhibits that with the increase in the value of the delayed parameter, the infectivity reduces
gradually and is controlled.

Example 6 (D-simulations of the system) 2D graphics are widely used in animation, pro-
viding a realistic but flat view of movement on the screen. We plotted the two-dimensional
performance of the model with different subclasses for a better interpretation of the dy-
namics of pneumonia disease, as presented in Fig. 7(a)–(b) and 8(a)–(b) with and without
delay effect, respectively, as desired.

7 Conclusion
In this article, we investigated the mathematical analysis of pneumonia delayed epidemic
models with reliable delay strategies. The model is based on four types of subpopulations
like the susceptible, the carriers, the infected and the recovered. Dynamical analysis of
the model includes positivity, boundedness, equilibria and threshold parameter. The sen-
sitivity of the parameters is one of the outcomes of the model. Linearisation of the model
is developed by well-known results like the Jacobian and Routh–Hurwitz criterion. Lya-
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Figure 5 Simulation of the reproduction number with different values of the delay parameter

Figure 6 Subpopulation of the infected class concerning time with different delay values

punov theory and the Lassale invariance principle are investigated for the global stability
of the model. The following artificial control measures could support the eradication of
the disease in the population: the cleanness of hands, extensive use of fruits and vegeta-
bles, calm sleeping, staying away from smoking, vaccination to the children under five
years and being aware of your general health.

Appendix 1
Consider |JPn |D0 – λI| = 0

|JPn |D0 – λI| =

∣∣∣∣∣∣∣∣∣

–μ – λ 0 0 η

0 –u1 – λ 0 0
0 π –u2 – λ 0
0 β ψ –(μ + η) – λ

∣∣∣∣∣∣∣∣∣
= 0.
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Figure 7 Time plots of the system in two-dimensional way when τ = 0

By solving the above determinant, we have the negative eigenvalues

λ1 = –μ < 0, λ2 = –u1 < 0, λ3 = –u2 < 0, λ4 = –(μ + η) < 0.

Appendix 2
Consider |JPn |D1 – λI| = 0

|JPn |D1 – λI| =

∣∣∣∣∣∣∣∣∣∣

–μ – λ
–κpω�e–μτ

μ

–κp�e–μτ

μ
η

0 θκpω�e–μτ

μ
– u1 – λ

θκp�e–μτ

μ
0

0 κpω�θ1e–μτ

μ
+ π

κp�θ1e–μτ

μ
– u2 – λ 0

0 β ψ –(μ + η) – λ

∣∣∣∣∣∣∣∣∣∣
= 0.

The eigenvalues at D1 are as follows:

λ1 = –μ < 0, λ2 = –(μ + η) < 0.



Naveed et al. Advances in Difference Equations        (2021) 2021:468 Page 15 of 19

Figure 8 Time plots of the system in two-dimensional way when τ = 1

And the polynomial λ2 + x1λ + x0 = 0, where x1 = (u1 + u2)[1 – θκpω�e–μτ +κp�θ1e–μτ

μ(u1+u2) ], x0 =
u1u2[1 – κp�θ1e–μτ

μu2
– κp�e–μτ

μ
( ωu2+π

u1u2
)].

Appendix 3
Consider |JPn |D2 – λI| = 0

|JPn |D2 – λI| =

⎡
⎢⎢⎢⎣

–g1 – μ – λ –g2 –g3 η

g4 g5 – u1 – λ g6 0
g7 g8 + π g9 – u2 – λ 0
0 β ψ –(μ + η) – λ

⎤
⎥⎥⎥⎦ = 0,

where g1 = κp(I∗ + ωC∗)e–μτ , g2 = κpωS∗e–μτ , g3 = κpS∗e–μτ , g4 = θκp(I∗ + C∗)e–μτ , g5 =
θκpωS∗e–μτ , g6 = θκpS∗e–μτ , g7 = κp(I∗ + ωC∗)θ1e–μτ , g8 = κpωS∗θ1e–μτ , g9 = κpS∗θ1e–μτ .

After solving |JPn |D2 – λI| = 0, we have

λ4 + y3λ
3 + y2λ

2 + y1λ + y0 = 0,
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where y3 = [(μ + η) – g5 + u1 – g9 + u2 + g1 + μ],

y2 =
[
(g5 – u1)(g9 – u2) + g2g4 + g3g7 – (μ + η)(g5 – u1 + g9 – u2 – g1 – μ)

– (g1 + μ)(g1 – u1 + g9 – u2) – g6(g8 + π )
]
,

y1 =
[
(g1 + μ)(g5 – u1)(g9 – u2) + g2g4(g5 – u2) + g2g6g7 + g3g4(g8 + π )

+ g3g7(g5 – u1) – (βg4 + ψg7) – (μ + η)
{

(g1 + μ)(g5 – u1 + g9 – u2)

– (g5 – u1)(g9 – u2) + g6(g8 + π ) – g2g4 – g3g7
}

– g6(g8 + π )(g1 + μ)
]
,

y0 =
[
η
{
βg4(g9 – u2) + ψg7(g5 – u2) + βg6g7 – ψg4(g8 + π )

}
+ (μ + η)

{
(g1 + μ)(g5 – u1)(g9 – u2) – g6(g8 + π )(g1 + μ)

+ g2g4(g5 – u2) + g2g6g7 + g3g4(g8 + π ) + g3g7(g5 – u1)
}]

.

Appendix 4

dU
dt

=
(
S – S1)(�

S
– κpIe–μτ – κpωCe–μτ – μ +

ηR
S

)
+ θκpISe–μτ + θκpωCSe–μτ

– u1C + κpISθ1e–μτ + κpωCSθ1e–μτ + πC – u2I + βC + ψI – (μ + η)R,

dU
dt

=
(
S – S1)(�

S
– κpIe–μτ – κpωCe–μτ –

�

S1 + κpIe–μτ + κpωCe–μτ –
ηR
S1 +

ηR
S

)

– μC + κpωCSe–μτ – μI + κpISe–μτ – μR – ηR – σ I,

dU
dt

=
(
S – S1)[(

�

S
–

�

S1

)
+

ηR
S

–
ηR
S1

]
– μC

(
1 –

κpωSe–μτ

μ

)

– μI
(

1 –
κpSe–μτ

μ

)
– μR – ηR – σ I,

dU
dt

=
(
S – S1)(S1 – S

)[ �

SS1 +
ηR
SS1

]
– μC

(
1 –

κpωSe–μτ

μ

)

– μI
(

1 –
κpSe–μτ

μ

)
– μR – ηR – σ I,

dU
dt

= –
(
S – S1)2 �

SS1 –
(
S – S1)2 ηR

SS1 – μC
(

1 –
κpωSe–μτ

μ

)

– μI
(

1 –
κpSe–μτ

μ

)
– μR – ηR – σ I.

Appendix 5

dV
dt

=
(

S – S∗

S

)
dS
dt

+
(

C – C∗

C

)
dC
dt

+
(

I – I∗

I

)
dI
dt

+
(

R – R∗

R

)
dR
dt

,

dV
dt

=
(

S – S∗

S

)(
� – κpISe–μτ – κpωCSe–μτ – μS + ηR

)

+
(

C – C∗

C

)(
θκpISe–μτ + θκpωCSe–μτ – u1C

)
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+
(

I – I∗

I

)(
κpISθ1e–μτ + κpωCSθ1e–μτ + πC – u2I

)

+
(

R – R∗

R

)(
βC + ψI – (μ + η)R

)
,

dV
dt

=
(
S – S∗)(�

S
– κpIe–μτ – κpωCe–μτ – μ +

ηR
S

)

+
(
C – C∗)(θκpISe–μτ

C
+ θκpωSe–μτ – u1

)

+
(
I – I∗)(κpSθ1e–μτ +

κpωCSθ1e–μτ

I
+

πC
I

– u2

)

+
(
R – R∗)(βC

R
+

ψI
R

– (μ + η)
)

,

dV
dt

=
(
S – S∗)(�

S
– κpIe–μτ – κpωCe–μτ –

�

S∗ + κpIe–μτ + κpωCe–μτ –
ηR
S∗ +

ηR
S

)

+
(
C – C∗)(θκpISe–μτ

C
+ θκpωSe–μτ –

θκpISe–μτ

C∗ – θκpωSe–μτ

)

+
(
I – I∗)(κpS(1 – θ )e–μτ +

κpωCS(1 – θ )e–μτ

I
+

πC
I

– κpS(1 – θ ) – μτ

–
κpωCS(1 – θ )e–μτ

I∗ –
πC
I∗

)

+
(
R – R∗)(βC

R
+

ψI
R

–
βC
R∗ –

ψI
R∗

)
,

dV
dt

=
(
S – S∗)(�

S
–

�

S∗ +
ηR
S

–
ηR
S∗

)
+

(
C – C∗)(θκpISe–μτ

C
–

θκpISe–μτ

C∗

)

+
(
I – I∗)(κpωCS(1 – θ )e–μτ

I
–

κpωCS(1 – θ )e–μτ

I∗ +
πC

I
–

πC
I∗

)

+
(
R – R∗)(βC

R
–

βC
R∗ +

ψI
R

–
ψI
R∗

)
,

dV
dt

=
(
S – S∗)[(

S∗ – S
) �

SS∗ +
(
S∗ – S

) ηR
SS∗

]

+
(
C – C∗)[(

C – C∗)θκpISe–μτ

CC∗

]

+
(
I – I∗)[(

I∗ – I
)κpωCS(1 – θ )e–μτ

II∗ +
(
I∗ – I

)πC
II∗

]

+
(
R – R∗)[(

R∗ – R
) βC

RR∗ +
(
R∗ – R

) ψI
RR∗

]
,

dV
dt

= –
(
S – S∗)2 �

SS∗ –
(
S – S∗)2 ηR

SS∗ –
(
C – C∗)2 θκpISe–μτ

CC∗

–
(
I – I∗)2 κpωCSθ1e–μτ

II∗ –
(
I – I∗)2 πC

II∗ –
(
R – R∗)2 βC

RR∗

–
(
R – R∗)2 ψI

RR∗ .
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