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Abstract. This paper aims to investigate the several generalizations by newly
proposed generalized K-fractional conformable integral operator. Based on

these novel ideas, we derived a novel framework to study for C̆ebys̆ev and

Pólya-Szegö type inequalities by generalized K-fractional conformable integral
operator. Several special cases are apprehended in the light of generalized

fractional conformable integral. This novel strategy captures several existing

results in the relative literature. We also aim at showing important connections
of the results here with those including Riemann-Liouville fractional integral

operator.

1. Introduction. Fractional calculus is the generalization of derivatives and inte-
grals of arbitrary non-integer order. This discipline has earned greater popularity
because of its application in numerous areas [4, 6, 7, 14, 18, 28]. The contem-
porary studies have motivated on developing some of fractional integral operators
and their applications in several areas of sciences. An extensive form of fractional
operators and their generalizations have been started with the classical Riemann-
Liouville fractional operators, (see, e.g., [17, 28, 47]). Amongst a wide range of
the fractional operators evolved, due to their fertile applications in masses areas of
sciences, the Riemann-Liouville fractional integral operator has been appreciably
introduced. Integrations with kernels are applied in several mathematical compli-
cations consisting of quantum theory, spectral analysis, statistical analysis, and the
concept of probability distributions.
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Conformable derivatives are nonlocal fractional derivatives. They can be called
fractional since we can derive up to arbitrary order. However, since in the commu-
nity of fractional calculus nonlocal fractional derivatives only are used to be called
fractional, we prefer to replace conformable fractional by conformable (as a type of
local fractional). Conformable derivatives and other types of local fractional deriva-
tives or modified conformable derivatives in [5] can gain their importance by the
ability of using them to generate more generalized nonlocal fractional derivatives
with singular kernels (see, [1, 2, 13, 15, 16, 19, 21, 22, 26]).

Recently, the research in fractional calculus had been progressed to generalize
the present variants through the progressive mind and innovative techniques. The
fractional integral operators are the use of noteworthy significant strategies amongst
researchers, see [33, 35, 36, 37, 38, 41, 43]. On account of their potential outcomes
to be utilized for the presence of nontrivial and positive solutions of distinct kind
of fractional differential equations, our findings concerning fractional integrals are
appreciably essential.

An enormous heft of present literature comprises of generalizations of several
variants by fractional integral operators and their applications [23, 32, 44, 45]. In
[42], authors investigated the continuous research by showing the developed form
of generalized Grüss type integral inequalities for generalized K-fractional integrals.
Certain Hermite-Hadamard type inequalities for generalized K-fractional integrals
are acquired by Agarwal et al. [3]. Set et al. [46] derived the C̆ebys̆ev type inequal-
ities using generalized Katugampola integrals via Polya-Szego inequality. Rashid et
al. [40] employed the generalized K-fractional integral operators for deriving Polya-

Szegö and C̆ebys̆ev type inequalities. Khan et al. [25] obtained a generalization of
Hermite-Hadamard type inequalities via conformable fractional integrals. Nisar et
al. [30] used modern technique to derive C̆ebys̆ev type inequalities via generalized
fractional conformable integrals.

Many famous versions mentioned in the literature are direct effects of the nu-
merous applications in optimizations and and transform theory. In this regard
Pólya-Szegö integral inequality is one of the most intensively studied inequality.
This inequality was introduced by Pólya-Szegö [29]:

b∫
a

f2(λ)dλ
b∫
a

g2(λ)dλ( b∫
a

f(λ)g(λ)dλ
)2

≤ 1

4

(√
QR

qr
+

√
qr

QR

)2

. (1)

The constant 1
4 is best feasible in (1) make the experience it cannot get replaced by

a smaller constant.
By using Pólya-Szegö inequality, Dragomir and Diamond [12] derived the func-

tional as follows:

|T(f, g)| ≤ (Q− q)(R− r)
4(b− a)

√
qrQR

b∫
a

f(λ)dλ

b∫
a

g(λ)dλ,

∀ λ ∈ [a, b] and q,Q, r,R ∈ R, where two positive function f and g on [a, b] satisfying
0 < q ≤ f(λ) ≤ Q <∞ and 0 < r ≤ g(λ) ≤ R <∞.

It is extensively identified that Pólya-Szegö and C̆ebys̆ev type inequalities in
continuous and discrete cases play a considerable job in examining the qualitative
conduct of differential and difference equations, respectively, further to numerous
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new branches of mathematics. Inspired by Pólya-Szegö and C̆ebys̆ev [9, 29], our

intention is to show more general versions of Pólya-Szegö and C̆ebys̆ev type in-
equalities.
C̆ebys̆ev [9] introduced the well-known celebrated functional and is defined as

follows:

T(f, g) =
1

b− a

b∫
a

f(λ)g(λ)dλ−
( 1

b− a

b∫
a

f(λ)dλ
)( 1

b− a

b∫
a

g(λ)dλ
)
, (2)

where f and g are two integrable functions on [a, b]. If f and g are synchronous,
i,e., (

f(λ)− f(ω)
)(
g(λ)− g(ω)

)
≥ 0,

for any λ, ω ∈ [a, b], then T(f, g) ≥ 0.
The functional (2) has vast applications in probability, numerical analysis, quan-

tum, and statistical theory. The main concern of this research is to obtain integral
inequalities by generalized conformable K-fractional integral can focus a predeter-
mined number of complex problems on one hand and on the other hands their
applications can likewise catch various sorts of complexities, in this manner assem-
bling these generalizations can help us to comprehend the complexities of existing
nature in a vastly improved manner. Fractional integrals inequalities have fasci-
nated the attention of practically all scientists from various fields of science. It
is noted that the generalized K-fractional conformable estimate is able to appreci-
ate some kind of self-similarities. Alongside facet with numerous applications, the
functional (2) has been gained plenty of interest to yield a variety of fundamental
inequalities (see, for example, [3, 5, 8, 9, 10, 11, 27, 32, 39, 46, 48, 49, 50]).

Firstly, the C̆ebys̆ev inequalities for fractional integral operators are established
by Belarbi and Dahmani in [8]. They demonstrated the subsequent outcomes via
Riemann-Liouville fractional integral operators.

Throughout the paper, for the results concerning to [9] and [29], it is assumed
that all functions are integrable in the Riemann sense.

Theorem 1.1. Assume that there are two synchronous functions f and g defined
on [0,∞). Then

Iδ(fg)(λ) ≥ Γ(δ + 1)

λδ
Iδf(λ)Iδg(λ), (3)

for all λ > 0, δ > 0.

Theorem 1.2. Assume that there are two synchronous functions f and g defined
on [0,∞). Then

λδ

Γ(δ + 1)
Iγ(fg)(λ) +

λγ

Γ(γ + 1)
Iδ(fg)(λ) ≥ Iγg(λ)Iδf(λ) + Iγf(λ)Iδg(λ), (4)

for all λ > 0, δ > 0, γ > 0.

Theorem 1.3. Assume that there are n positive increasing functions fi ; i =
1, 2, ..., n defined on [0,∞). Then

Iδ
( n∏
i=1

fi

)
(λ) ≥

(
Iδ(1)

)1−n n∏
i=1

Iδfi(λ), (5)

for all λ > 0, δ > 0.
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Theorem 1.4. Assume that there are two functions f and g defined on [0,∞) such
that f is increasing, g is differentiable, and there exists a real number µ := inf

λ≥0
ϕ′(λ).

Then

Iδ(fg)(λ) ≥
(
Iδ(1)

)−1
Iδf(λ)Iδg(λ)− µλ

δ + 1
Iδf(λ) + µIδ(λg(λ)), (6)

for all λ > 0, δ > 0.

Here we demonstrate some preliminaries for fractional calculus.
We mention the right and left sided generalized conformable fractional derivative

operators introduced by [24] as follows:
Let f be a conformable integrable function on the interval [a, b]. The right and

left sided generalized conformable fractional derivative operators %ζI
δ
a+ and %

ζI
δ
b− of

order 0 < δ < 1, % ∈ (0, 1] with a ≥ 0 are defined by:

%
ζI
δ
a+f(λ) =

λ−%

Γ(1− δ)
Tζ

λ∫
a

(λζ+% − xζ+%
ζ + %

)−δ
f(x)x%dζx, λ > a (7)

and

%
ζI
δ
b−f(λ) =

λ−%

Γ(1− δ)
Tζ

b∫
λ

(xζ+% − λζ+%
ζ + %

)−δ
f(x)x%dζx, b > λ (8)

respectively, %ζI
0
a+f(λ) =%

ζ I
0
b−f(λ) = f(λ) and Here T% denotes the conformable de-

rivative of order % and Γ denotes the gamma function given by Γ(δ) =
∞∫
0

e−λλδ−1dλ.

The left and right generalized fractional conformable integral operator are pre-
sented respectively in [24] as follows:

%
ζI
δ
a+f(λ) =

1

Γ(δ)

λ∫
a

(λζ+% − xζ+%
ζ + %

)δ−1 f(x)

x1−ζ−% dx, λ > a (9)

and

%
ζI
δ
b−f(λ) =

1

Γ(δ)

b∫
λ

(xζ+% − λζ+%
ζ + %

)δ−1 f(x)

x1−ζ−% dx, λ < b, (10)

where δ ∈ C, R(δ) > 0, ζ ∈ (0, 1], % ∈ R with ζ + % 6= 0, and Γ is the well-known
gamma function.

Remark 1. In the above equations (9) and (10):

(i) If % = 0, then we get the generalized left and right fractional integrals in the
sense of Katugampola [20] are given respectively.

ζI
δ
a+f(λ) =

1

Γ(δ)

λ∫
a

(λζ − xζ
ζ

)δ−1 f(x)

x1−ζ dx, λ > a (11)
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and

ζI
δ
b−f(λ) =

1

Γ(δ)

b∫
λ

(xζ − λζ
ζ

)δ−1 f(x)

x1−ζ dx, λ < b, (12)

where δ ∈ C, R(δ) > 0, ζ ∈ (0, 1].

(ii) If % = 0 and ζ = 1, then we get the subsequent Riemann-Liouville type frac-
tional operators:

Iδa+f(λ) =
1

Γ(δ)

λ∫
a

(λ− x)δ−1f(x)dx, λ > a (13)

and

Iδb−f(λ) =
1

Γ(δ)

b∫
λ

(x− λ)δ−1f(x)dx, λ < b, (14)

where δ ∈ C, R(δ) > 0.

We employ the more general form of the subsequent one-sided generalized K-
fractional conformable for conformable integrable function f :

%
ζI
δ;Kf(λ) =

1

KΓK(δ)

λ∫
0

(λζ+% − xζ+%
ζ + %

) δ
K−1 f(x)

x1−ζ−% dx, (15)

where K > 0, δ ∈ C, R(δ) > 0, ζ ∈ (0, 1], % ∈ R with ζ + % 6= 0, with ΓK is the
K-gamma function given by

ΓK(δ) :=

∞∫
0

λδ−1e−
λk

k dλ, <(δ) > 0,

with the properties ΓK(δ +K) = δΓK(δ) and ΓK(K) = 1.

Remark 2. In the above Equation (15):
(i) Letting K = 1, then (15) becomes the generalized fractional conformable integral
operator:

%
ζI
δf(λ) =

1

Γ(δ)

λ∫
0

(λζ+% − xζ+%
ζ + %

)δ−1 f(x)

x1−ζ−% dx. (16)

(ii)Letting K = 1 along with % = 0, then (15) becomes the subsequent Riemann-
Liouville type fractional conformable integral operator:

ζI
δf(λ) =

1

Γ(δ)

λ∫
0

(λζ − xζ
ζ

)δ−1 f(x)

x1−ζ dx. (17)
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(iii) Letting K = 1 along with % = 0 and ζ = 1 then (15) reduces to the following
Riemann-Liouville type fractional integral operator:

Iδf(λ) =
1

Γ(δ)

λ∫
0

(
λ− x

)δ−1
f(x)dx. (18)

Our present paper has been inspired by the resource of the above-defined work.
The primary objective of this paper is to bulid up the novel idea of generalized con-
formable K-fractional integral which is the generalized form of fractional operators
reported in [24]. Moreover, we generalize some integral inequalities of Pólya-Szegö

types and C̆ebys̆ev type for generalized K-fractional conformable integral operator.
The concept is relatively new and appears to have opened new doors of research
towards different areas of science including meteorology, quantum mechanics, bio-
sciences, chaos, image processing, power-law, biochemistry, physics, and several
others.

2. Pólya-Szegö types inequalities involving the generalized K-fractional
conformable integrals. In this section, we shall derive certain Pólya-Szegö type
integral inequalities for real-valued integrable functions via generalized K-fractional
conformable integral operator defined in (15).

Lemma 2.1. For K > 0, δ ∈ C with R(δ) > 0. Suppose there two real-valued in-
tegrable functions f and g defined on [0,∞). Assume that there exist four positive
integrable functions θ1, θ2, χ1 and χ2 on [0,∞) such that

(I) 0 ≤ θ1(τ) ≤ f(λ) ≤ θ2(τ), 0 ≤ χ1(τ) ≤ g(λ) ≤ χ2(τ),
(
τ ∈ [0, λ], λ > 0

)
.

then for λ > 0 and % > 0, the following inequality holds:

1

4

(
%
ζI
δ;K[(θ1χ1 + θ2χ2

)
fg
]
(λ)
)2

≥%ζ I
δ;K[χ1χ2f

2
]
(λ)%ζI

δ;K[θ1θ2g
2
]
(λ), (19)

where ζ ∈ (0, 1], % ∈ R, ζ + % 6= 0.

Proof. From Condition (I), for τ ∈ [0, λ], λ > 0, we have( θ2(τ)

χ1(τ)
− f(τ)

g(τ)

)
≥ 0. (20)

Analogously, we have (f(τ)

g(τ)
− θ1(τ)

χ2(τ)

)
≥ 0. (21)

Multiplying (20) and (21), we obtain[
θ1(τ)χ1(τ) + θ2(τ)χ2(τ)

]
f(τ)g(τ) ≥ χ1(τ)χ2(τ)f2(τ) + θ1(τ)θ2(τ)g2(τ). (22)

By taking product on both sides of (22) by 1
KΓK(δ)τ1−ζ−%

(
λζ+%−τζ+%

ζ+%

) δ
K−1

and in-

tegrating the ensuing inequality w.r.t τ over (0, λ), we get

%
ζI
δ;K[(θ1χ1 + θ2χ2

)
fg
]
(λ) ≥%ζ I

δ;K[χ1χ2f
2
]
(λ) +%

ζ I
δ;K[θ1θ2g

2
]
(λ).

Applying the AM −GM inequality, i.e., µ+ ν ≥ 2
√
µν, µ, ν ∈ R+, we have

%
ζI
δ;K[(θ1χ1 + θ2χ2

)
fg
]
(λ) ≥ 2

√
%
ζI
δ;K
[
χ1χ2f2

]
(λ)%ζI

δ;K
[
θ1θ2g2

]
(λ),
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which leads to
1

4

(
%
ζI
δ;K[(θ1χ1 + θ2χ2

)
fg
]
(λ)
)2

≥%ζ I
δ;K[χ1χ2f

2
]
(λ)%ζI

δ;K[θ1θ2g
2
]
(λ).

Therefore, we obtain the inequality (23) as required.

Corollary 1. Let two real-valued integrable functions f and g defined on [0,∞),
satisfying

(II) 0 < q ≤ f(τ) ≤ Q <∞, 0 < r ≤ f(τ) ≤ R <∞,
(
τ ∈ [0, λ], λ > 0

)
.

Then for λ > 0 and % > 0, we have

%
ζI
δ;Kf2(λ) %ζI

δ;Kg2(λ)

%
ζI
δ;Kfg(λ)

)2 ≤ 1

4

(√
qr

QR
+

√
QR

qr

)2

.

Corollary 2. If we choose K = 1, then under the assumption of Lemma 2.1 reduces
to generalized fractional conformable integral inequality

1

4

(
%
ζI
δ
[(
θ1χ1 + θ2χ2

)
fg
]
(λ)
)2

≥ %
ζI
δ
[
χ1χ2f

2
]
(λ) %ζI

δ
[
θ1θ2g

2
]
(λ). (23)

Remark 3. If we choose K = 1 along with % = 0 and ζ = 1, then under the
assumption of Lemma 2.1 reduces to Lemma 3.1 in [31].

Lemma 2.2. Assume all conditions of lemma 2.1 hold. Then for λ > 0 and γ, δ > 0
the following inequality holds:

%
ζI
γ;Kθ1θ2(λ)%ζI

δ;Kχ1χ2(λ)%ζI
γ;Kf2(λ)%ζI

δ;Kg2(λ)(
%
ζI
γ;Kθ1f(λ)%ζI

δ;Kχ1g(λ) +%
ζ I

γ;Kθ2f(λ)%ζI
δ;Kχ2g(λ)

)2 ≤
1

4
, (24)

where ζ ∈ (0, 1], % ∈ R, ζ + % 6= 0.

Proof. Applying condition (I) to prove (24), we get( θ2(τ)

χ1(ρ)
− f(τ)

g(ρ)

)
≥ 0

and (f(τ)

g(ρ)
− θ1(τ)

χ2(ρ)

)
≥ 0,

which imply that( θ1(τ)

χ2(ρ)
+
θ2(τ)

χ1(ρ)

)f(τ)

f(ρ)
≥ f2(τ)

g2(τ)
+
θ1(τ)θ2(τ)

χ1(ρ)χ2(ρ)
. (25)

Multiplying both sides of (25) by χ1(ρ)χ2(ρ)g2(ρ), we have

θ1(τ)f(τ)χ1(ρ)g(ρ) + θ2(τ)f(τ)χ2(ρ)g(ρ) ≥ χ1(ρ)χ2(ρ)f
2(τ) + θ1(τ)θ2(τ)g

2(ρ). (26)

By taking product on both sides of (26) by

(
λζ+%−τζ+%

ζ+%

) δ
K−1(

λζ+%−ρζ+%
ζ+%

) γ
K−1

KΓK(δ)τ1−ζ−%KΓK(γ)ρ1−ζ−%
and

integrating the ensuing inequality w.r.t τ and ρ over (0, λ), we get(%
ζ
Iγ;Kθ1f

)
(λ)
(%
ζ
Iδ;Kχ1g

)
(λ) +

(%
ζ
Iγ;Kθ2f

)
(λ)
(%
ζ
Iδ;Kχ2g

)
(λ)

≥
(%
ζ
Iγ;Kf2)(λ)(%

ζ
Iδ;Kχ1χ2

)
(λ) +

(%
ζ
Iδ;Kg2)(λ)(%

ζ
Iγ;Kθ1θ2

)
(λ).

Applying the AM −GM inequality, we get(%
ζ
Iγ;Kθ1f

)
(λ)
(%
ζ
Iδ;Kχ1g

)
(λ) +

(%
ζ
Iγ;Kθ2f

)
(λ)
(%
ζ
Iδ;Kχ2g

)
(λ)
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≥ 2
√(%

ζ
Iγ;Kf2

)
(λ)
(%
ζ
Iδ;Kχ1χ2

)
(λ) +

(%
ζ
Iδ;Kg2

)
(λ)
(%
ζ
Iγ;Kθ1θ2

)
(λ),

which leads to the desired inequality in (24). The proof is completed.

Corollary 3. Let two real-valued integrable functions f and g defined on [0,∞)
satisfying (II). Then for λ > 0 and γ, δ > 0, we have

%
ζI
γ;Kf2(λ)%ζI

δ;Kg2(λ)

%
ζI
γ;Kf(λ)%ζI

δ;Kg(λ)
)2 ≤ ΓK(γ +K)ΓK(δ +K)(ζ + %)

γ+δ
K − 2

4(λ)
(ζ+δ)(γ+δ)

K

(√
qr

QR
+

√
QR

qr

)2

.

Corollary 4. If we choose K = 1, then under the assumption of Theorem 2.2, we
have a new inequality for generalized fractional conformable integral

%
ζI
γθ1θ2(λ)%ζI

δχ1χ2(λ)%ζI
γf2(λ)%ζI

δg2(λ)(%
ζ
Iγθ1f(λ)%ζI

δχ1g(λ) +%
ζ I

γθ2f(λ)%ζI
δχ2g(λ)

)2 ≤
1

4
.

Remark 4. If we choose K = 1 along with % = 0 and ζ = 1, then Theorem 2.2
reduces to Lemma 3.3 in [31].

Theorem 2.3. Suppose conditions of Lemma 2.1 are satisfied. Then for λ > 0 and
γ, δ > 0, the following inequality holds:

%
ζI
δ;K(θ2fg

χ1

)
(λ)%ζI

γ;K(χ2fg

θ1

)
(λ) ≥%ζ I

δ;Kf2(λ)%ζI
γ;Kg2(λ), (27)

where ζ ∈ (0, 1], % ∈ R, ζ + % 6= 0.

Proof. Using condition (I), we have

1

KΓK(δ)

λ∫
0

(λζ+% − τ ζ+%
ζ + %

) δ
K−1 θ2(τ)

τ1−ζ−%χ1(τ)
f(τ)g(τ)dτ

≥ 1

KΓK(δ)

λ∫
0

(λζ+% − τ ζ+%
ζ + %

) δ
K−1 f2(τ)

τ1−ζ−% dτ,

which implies

%
ζI
δ;K(ρ2fg

χ1

)
(λ) ≥ %

ζI
δ;Kf2(λ). (28)

Analogously, we obtain

1

KΓK(γ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) γ
K−1 χ2(ρ)

ρ1−ζ−%θ1(ρ)
f(ρ)g(ρ)dρ

≥ 1

KΓK(γ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) γ
K−1 g2(ρ)

ρ1−ζ−% dρ,

from which one has

%
ζI
γ;K(χ2fg

ρ1

)
(λ) ≥%ζ I

γ;Kg2(λ). (29)

Multiplying (28) and (29), we get the desired inequality (27).
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Corollary 5. Let two real-valued integrable functions f and g defined on [0,∞)
satisfying (II). Then for λ > 0 and %, δ > 0, we have

%
ζI
δ;Kf2(λ) %ζI

γ;Kg2(λ)
%
ζI
γ;Kfg(λ) %ζI

δ;Kfg(λ)
≤ QR

qr
.

Corollary 6. If we choose K = 1, then under the assumption of Theorem 2.3, we
have a new result for generalized fractional conformable integral

%
ζI
δ
(θ2fg

χ1

)
(λ)%ζI

γ
(χ2fg

ρ1

)
(λ) ≥ %

ζI
δf2(λ)%ζI

γg2(λ).

Remark 5. If we choose K = 1 along with % = 0 and ζ = 1, then Theorem 2.3
reduces to Lemma 3.4 in [31].

3. C̆ebys̆ev types inequalities involving the generalized K-fractional con-
formable integrals. In this part, we investigate the left and right generalized
K-fractional conformable integrals defined in (15), which generalize the Riemann-
Liouville fractional integrals.

Theorem 3.1. For K > 0, δ ∈ C with R(δ) > 0. Suppose there are two integrable
functions f and g which are synchronous on [0,∞). Then(%

ζ
Iδ;Kfg

)
(λ) ≥ Γ(δ +K)(ζ + %)

δ
K

λ(ζ+%) δK

(%
ζ
Iδ;Kf

)
(λ)
(%
ζ
Iδ;Kg

)
(λ), (30)

where ζ ∈ (0, 1], % ∈ R, ζ + % 6= 0.

Proof. Since f and g are synchronous on [0,∞), one obtains(
f(τ)− f(ρ)

)(
g(τ)− g(ρ)

)
≥ 0, (31)

on the other hand

f(τ)g(τ) + f(ρ)g(ρ) ≥ f(τ)g(ρ) + g(τ)f(ρ). (32)

By taking product on both sides of(32) by 1
KΓK(δ)τ1−ζ−%

(
λζ+%−τζ+%

ζ+%

) δ
K−1

and inte-

grating the ensuing inequality w.r.t τ over (0, λ), we get

1

KΓK(δ)

λ∫
0

(λζ+% − τ ζ+%
ζ + %

) δ
K−1 f(τ)g(τ)

τ1−ζ−% dτ

+
1

KΓK(δ)

λ∫
0

(λζ+% − τ ζ+%
ζ + %

) δ
K−1 f(ρ)g(ρ)

τ1−ζ−% dτ

≥ 1

KΓK(δ)

λ∫
0

(λζ+% − τ ζ+%
ζ + %

) δ
K−1 f(τ)g(ρ)

τ1−ζ−% dτ

+
1

KΓK(δ)

λ∫
0

(λζ+% − τ ζ+%
ζ + %

) δ
K−1 g(τ)f(ρ)

τ1−ζ−% dτ.

It follows that(%
ζ
Iδ;Kfg

)
(λ) + f(ρ)g(ρ)

1

KΓK(δ)

λ∫
0

(λζ+% − τ ζ+%
ζ + %

) δ
K−1 dτ

τ1−ζ−%
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≥ g(ρ)
(%
ζ
Iδ;Kf

)
(λ) + f(ρ)

(%
ζ
Iδ;Kg

)
(λ).

Thus, we obtain (%
ζ
Iδ;Kfg

)
(λ) +

λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K
f(ρ)g(ρ)

≥ g(ρ)
(%
ζ
Iδ;Kf

)
(λ) + f(ρ)

(%
ζ
Iδ;Kg

)
(λ), (33)

where
λ∫

0

(λζ+% − τ ζ+%
ζ + %

) δ
K−1 dτ

τ1−ζ−% =
λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K
.

Again taking product on both sides of (33) by 1
KΓK(δ)ρ1−ζ−%

(
λζ+%−ρζ+%

ζ+%

) δ
K−1

and

integrating the ensuing inequality w.r.t ρ over (0, λ), we get(%
ζ
Iδ;Kfg

)
(λ)

1

KΓK(δ)ρ1−ζ−%

λ∫
0

(λζ+% − ρζ+%
ζ + %

) δ
K−1 dρ

ρ1−ζ−%

+
λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K

1

KΓK(δ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) δ
K−1

f(ρ)g(ρ)
dρ

ρ1−ζ−%

≥
(%
ζ
Iδ;Kf

)
(λ)

1

KΓK(δ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) δ
K−1 g(ρ)dρ

ρ1−ζ−%

+
(%
ζ
Iδ;Kg

)
(λ)

1

KΓK(δ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) δ
K−1 f(ρ)dρ

ρ1−ζ−% .

It follows that

λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K

(%
ζ
Iδ;Kfg

)
(λ) +

λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K

(%
ζ
Iδ;Kfg

)
(λ)

≥
(%
ζ
Iδ;Kf

)
(λ)
(%
ζ
Iδ;Kg

)
(λ) +

(%
ζ
Iδ;Kf

)
(λ)
(%
ζ
Iδ;Kg

)
(λ),

establishes the desired result.

Corollary 7. For K > 0, δ ∈ C with R(δ) > 0. Suppose two integrable functions
f and g which are synchronous on [0,∞). Then(

ζ
Iδ;Kfg

)
(λ) ≥ Γ(δ +K)(ζ)

δ
K

λ(ζ) δK

(
ζ
Iδ;Kf

)
(λ)
(
ζ
Iδ;Kg

)
(λ),

for all ζ ∈ (0, 1].

Proof. Letting % = 0 in Theorem 3.1, then we get the desired inequality associating
conformable K-fractional integral.

Corollary 8. For K > 0, δ ∈ C with R(δ) > 0. Suppose two integrable functions
f and g which are synchronous on [0,∞). Then(

Iδ;Kfg
)

(λ) ≥ Γ(δ +K)

λ
δ
K

(
Iδ;Kf

)
(λ)
(
Iδ;Kg

)
(λ),
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for all ζ ∈ (0, 1].

Proof. Letting % = 0 and ζ = 1 in Theorem 3.1, then we get the inequality involving
K−fractional integral.

Remark 6. If we choose K = 1 in Theorem 3.1, then we get Theorem 2.1 in [30]
and if we choose ζ = 0, % = 0 along with K = 1 in Theorem 3.1, then we will attain
Theorem 1.1 in [8].

Theorem 3.2. For K > 0, δ, γ ∈ C with R(δ), R(γ) > 0. Suppose there are two
integrable functions f and g which are synchronous on [0,∞). Then

λ(ζ+%) γK

Γ(γ +K)(ζ + %)
γ
K

(%
ζ
Iδ;Kfg

)
(λ) +

λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K

(%
ζ
Iγ;Kfg

)
(λ) (34)

≥
(%
ζ
Iδ;Kf

)
(λ)
(%
ζ
Iγ;Kg

)
(λ) +

(%
ζ
Iγ;Kf

)
(λ)
(%
ζ
Iδ;Kg

)
(λ), (35)

where ζ ∈ (0, 1], % ∈ R, ζ + % 6= 0.

Proof. Continuing the inequality (33) from Theorem 3.1, we have(%
ζ
Iδ;Kfg

)
(λ) +

λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K
f(ρ)g(ρ)

≥ g(ρ)
(%
ζ
Iδ;Kf

)
(λ) + f(ρ)

(%
ζ
Iδ;Kg

)
(λ). (36)

By taking product on both sides of (36) by 1
KΓK(γ)ρ1−ζ−%

(
λζ+%−ρζ+%

ζ+%

) γ
K−1

and in-

tegrating the ensuing inequality w.r.t ρ over (0, λ), we get(%
ζ
Iδ;Kfg

)
(λ)

KΓK(γ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) γ
K−1 dρ

ρ1−ζ−%

+
λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K

1

KΓK(γ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) γ
K−1 f(ρ)g(ρ)dρ

ρ1−ζ−%

≥
(%
ζ
Iδ;Kf

)
(λ)

1

KΓK(γ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) γ
K−1 g(ρ)dρ

ρ1−ζ−%

+
(%
ζ
Iδ;Kg

)
(λ)

1

KΓK(γ)

λ∫
0

(λζ+% − ρζ+%
ζ + %

) γ
K−1 f(ρ)dρ

ρ1−ζ−% .

Therefore, we have

λ(ζ+%) γK

Γ(γ +K)(ζ + %)
γ
K

(%
ζ
Iδ;Kfg

)
(λ) +

λ(ζ+%) δK

Γ(δ +K)(ζ + %)
δ
K

(%
ζ
Iγ;Kfg

)
(λ)

≥
(%
ζ
Iδ;Kf

)
(λ)
(%
ζ
Iγ;Kg

)
(λ) +

(%
ζ
Iγ;Kf

)
(λ)
(%
ζ
Iδ;Kg

)
(λ),

establishes the desired result.
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Corollary 9. For K > 0, δ, γ ∈ C with R(δ), R(γ) > 0. Suppose there are two
integrable functions f and g which are synchronous on [0,∞). Then

λ
ζγ
K

Γ(γ +K)(ζ)
γ
K

(
ζ
Iδ;Kfg

)
(λ) +

λ
ζδ
K

Γ(δ +K)(ζ)
δ
K

(
ζ
Iγ;Kfg

)
(λ)

≥
(
ζ
Iδ;Kf

)
(λ)
(
ζ
Iγ;Kg

)
(λ) +

(
ζ
Iγ;Kf

)
(λ)
(
ζ
Iδ;Kg

)
(λ),

for all ζ ∈ (0, 1].

Proof. Letting % = 0 in Theorem 3.2, then we get the desired inequality associating
K conformable fractional integral.

Corollary 10. For K > 0, δ, γ ∈ C with R(δ), R(γ) > 0. Suppose there are two
integrable functions f and g which are synchronous on [0,∞). Then

λ
γ
K

Γ(γ +K)

(
Iδ;Kfg

)
(λ) +

λ
δ
K

Γ(δ +K)

(
Iγ;Kfg

)
(λ)

≥
(
Iδ;Kf

)
(λ)
(
Iγ;Kg

)
(λ) +

(
Iγ;Kf

)
(λ)
(
Iδ;Kg

)
(λ),

for all ζ ∈ (0, 1].

Proof. If we choose % = 0 and ζ = 1 in Theorem 3.2, then we get the inequality
involving K-fractional integral.

Remark 7. Letting K = 1 in Theorem 3.2, then we get Theorem 2.2 in [30] and if
we choose ζ = 0, % = 0 with K = 1 in Theorem 3.2, then we will attain Theorem
1.2 in [8].

Theorem 3.3. For K > 0, δ ∈ C with R(δ) > 0. Suppose there is n positive
increasing functions on [0,∞) is (f)i, i = 1, 2, ..., n. Then

%
ζI
δ;K
( n∏
i=1

fi

)
(λ) ≥

(%
ζ
Iδ;K(1)

)1−n n∏
i=1

(%
ζ
Iδ;Kfi

)
(λ), (37)

where λ > 0, τ ∈ [0, 1], % ∈ R, δ ∈ C.

Proof. To demonstrate this hypothesis, we employ the mathematical induction on
n. Evidently, for n = 1, one has(%

ζ
Iδ;K(f1)λ

)
≥
(%
ζ
Iδ;K(f1)λ

)
∀λ > 0

vailds. For n = 2, there are two positive and increasing functions f1 and f2, conse-
quently we have (

f1(λ)− f1(ω)
)(
f2(λ)− f2(ω)

)
≥ 0.

Hence, by applying theorem 3.1, we obtain(%
ζ
Iδ;K(f1f2)(λ)

)
≥
(%
ζ
Iδ;K(1)

)−1(%
ζ
Iδ;K(f1)

)
(λ)
(%
ζ
Iδ;K(f2)

)
(λ).

By induction hypothesis

%
ζI
δ;K
( n−1∏
i=1

fi

)
(λ) ≥

(%
ζ
Iδ;K(1)

)2−n n−1∏
i=1

(%
ζ
Iδ;Kfi

)
(λ). (38)
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Since fi; i = 1, 2, ..., n, are positive increasing functions on R+, therefore ϕ :=
n−1∏
i=1

fi

is increasing on R+. Let ψ := fn. Utilizing Theorem 3.1 for the function f and g,
we have

%
ζI
δ;K
( n−1∏
i=1

fi
)
(λ) = %

ζI
δ;K(fg)(λ) ≥

(
%
ζI
δ;K(1)

)−1
(
%
ζI
δ;K
( n−1∏
i=1

fi
))

(λ)
(%
ζ
Iδ;Kfn

)
(λ).

By using (3.3), one obtains

%
ζI
δ;K
( n−1∏
i=1

fi
)
(λ) ≥

(
%
ζI
δ;K(1)

)−1(
%
ζI
δ;K(1)

)2−n
(
%
ζI
δ;K
( n−1∏
i=1

fi
))

(λ)
(
%
ζI
δ;Kfn

)
(λ),

establishes the result.

Corollary 11. For K > 0, δ ∈ C with R(δ) > 0. Suppose there is n positive
increasing functions on [0,∞) are (f)i, i = 1, 2, ..., n. Then

ζI
δ;K
( n∏
i=1

fi

)
(λ) ≥

(
ζ
Iδ;K(1)

)1−n n∏
i=1

(
ζ
Iδ;Kfi

)
(λ), (39)

where λ > 0, % ∈ R, and δ ∈ C.

Proof. Letting % = 0 in Theorem 3.3, then we get the corollary involving con-
formable K-fractional integral.

Corollary 12. For K > 0, δ ∈ C with R(δ) > 0. Suppose there is n positive
increasing functions on [0,∞) are (f)i, i = 1, 2, ..., n. Then

Iδ;K
( n∏
i=1

fi

)
(λ) ≥

(
Iδ;K(1)

)1−n n∏
i=1

(
Iδ;Kfi

)
(λ), (40)

where λ > 0, % ∈ R, and δ ∈ C.

Proof. Letting % = 0 and ζ = 1 in Theorem 3.3, then we get the corollary involving
conformable K -fractional integral.

Remark 8. Letting K = 1 in Theorem 3.3, then we get Theorem 2.3 in [30] and if
we take ζ = 0, % = 0 with K = 1 in Theorem 3.3, then we will attain Theorem 1.3
in [8].

Theorem 3.4. For K > 0, δ ∈ C with R(δ) > 0. Suppose there are two functions
f, g : R+

0 → R such that f is increasing and g is differentiable with g′ bounded below,
and let µ = infλ∈R+

0
g′(λ). Then(

%
ζI
δ;Kfg

)
(λ) ≥ Γ(δ+K)(ζ+%)

δ
K

λ(ζ+%) δK

(
%
ζI
δ;Kf

)
(λ)
(
%
ζI
δ;Kg

)
(λ)

− µλ
δ+K

(
%
ζI
δ;Kf

)
(λ) + µ

(
%
ζI
δ;KIf

)
(λ). (41)

where I(λ) is the identity function.

Proof. Let h(λ) = g(λ) − µλζ+%. We have to show that h is differentiable and
increasing on R+

0 . As simultaneously of Theorem 3.3, for simplicity, let p(λ) :=
µλζ+%, one obtains(

%
ζI
δ;Kϕ(ψ − p)(λ)

)
≥ Γ(δ +K)(ζ + %)

δ
K

λ(ζ+%) δK

(
%
ζI
δ;Kf

)
(λ)
(
%
ζI
δ;K(ψ − p)

)
(λ)
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=
Γ(δ +K)(ζ + %)

δ
K

λ(ζ+%) δK

(
%
ζI
δ;Kf

)
(λ)
(
%
ζI
δ;Kg

)
(λ)

−Γ(δ +K)(ζ + %)
δ
K

λ(ζ+%) δK

(
%
ζI
δ;Kf

)
(λ)
(
%
ζI
δ;Kp

)
(λ). (42)

We have (
%
ζI
δ,Kϕ(ψ − p)

)
(λ) =

(
%
ζI
δ,Kϕfg

)
(λ)− µ

(
%
ζI
δ,KIf

)
(λ) (43)

and (
%
ζI
δ,Kp

)
(λ) =

µλ(ζ+%) δK + 1

Γ(δ +K + 1)(ζ + %)
δ
K
. (44)

Finally using (43) and (44) in (46), we acquire the proof.

Corollary 13. For K > 0, δ ∈ C with R(δ) > 0. Suppose there are two functions
f, g : R+

0 → R such that f is increasing and g is differentiable with g′ bounded below,
and let µ = infλ∈R+

0
g′(λ). Then(

ζ
Iδ;Kfg

)
(λ) ≥ Γ(δ+K)(ζ)

δ
K

λ(ζ) δK

(
ζ
Iδ;Kf

)
(λ)
(
ζ
Iδ;Kg

)
(λ)

− µλ
δ+K

(
ζ
Iδ;Kf

)
(λ) + µ

(
ζ
Iδ;KIf

)
(λ). (45)

where I(λ) is the identity function.

Proof. If we choose % = 0 in Theorem 3.4, then we get the desired corollary , which
involves conformable K-fractional integral.

Corollary 14. For K > 0, δ ∈ C with R(δ) > 0. Suppose there are two functions
f, g : R+

0 → R such that f is increasing and g is differentiable with g′ bounded below,
and let µ = infλ∈R+

0
g′(λ). Then

(
I
δ;K

fg
)

(λ) ≥
Γ(δ +K)

λ

(
I
δ;K

f
)

(λ)
(
I
δ;K

g
)

(λ)−
µλ

δ +K

(
I
δ;K

f
)

(λ) + µ
(
I
δ;K

If
)

(λ). (46)

where I(λ) is the identity function.

Proof. Letting % = 0 and ζ = 1 in Theorem 3.4, then we get the desired corollary,
which involves K−fractional integral.

Remark 9. Letting K = 1 in Theorem 3.4, then we get Theorem 2.4 in [30] and if
we take ζ = 0, % = 0 with K = 1 in Theorem 3.4, then we will attain Theorem 1.4
in [8].

4. Conclusion. We have applied the left and right generalized K-fractional con-
formable integrals and generalized several consequences to ones for our newly defined
generalized K-fractional conformable integrals related to a positive and decreasing
function. Our findings consist of K-analogs of many earlier outcomes in the litera-
ture. Moreover, numerous precise cases for other integral operators may be derived
from our generalizations. The outcomes acquired can be applied to affirm the exis-
tence of nontrivial answers of fractional differential equations of various problems.
Such a potential connection needs further investigation. We conclude that the re-
sults derived in this paper are general in character and give some contributions to
inequality theory, some applications for establishing the uniqueness of solutions in
fractional boundary value problems, modelling and simulation. We can formulate
the several fractional versions of the postulates for special functions and derived
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the rules for determining difference equations involving dirac delta. This inter-
esting aspect of fractional calculus is worth further investigation. Our generalized
K-fractional conformable integrals in this paper generalize well-known fractional in-
tegral operators such as Riemann-Liouville fractional integral operators. Finally, we
state that possible future works can be in proving new inequalities in the frame of
new generalized integrals. The integrals correspond to certain fractional derivatives
with nonsingular kernels, for example. See the papers [2, 24].

Acknowledgments. The authors thank the National Natural Science Foundation
of China for financial support.
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