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Abstract
In this article, we present some new properties of the fractional proportional
derivatives of a function with respect to a certain function. We use a modified Laplace
transform to find the relation between the derivatives in the Riemann–Liouville
setting and the one in Caputo. In addition, we provide an integration by parts
formulas related to the considered operators.
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1 Introduction
For the last 30 years or more, some scientists have shown a great deal of interest in the
field of fractional calculus which addresses the derivatives and integrals with any order. As
a matter of fact, this interest has sprung out by the dint of the substantial results obtained
when these scientists used the tools in this calculus in order to study some models from
the real world [1–6].

One of the virtues of the classical fractional calculus is that there are a variety of deriva-
tives and integrals. Nevertheless, there has always been a need to develop this calculus
more and discover some new derivatives for the sake of better understanding the universe.
Some of the newly proposed fractional operators contain nonsingular kernels [7–14]. In
2011, Katugampola in [15, 16] proposed what he called generalized fractional operators
for the purpose of combining the Riemann–Liouville and Hadamard fractional operators.
The generalized derivatives were modified so that they cover the Caputo and the Caputo–
Hadamard fractional derivatives [17]. In other respects, local derivatives permit differ-
entiation and integration of noninteger order. In [18, 19], the authors introduced what
they called conformable derivative. It should be noted that the nonlocal fractional versions
of the conformable operators were discussed in [15, 16, 20]. However, more generalized
forms of these operators were discussed in [21].

The main disadvantage of the conformable derivative is that contrary to the other dif-
ferential operators it does not produce the function itself once the order is 0. To overcome
this, the authors in [22, 23] proposed a modification of the conformable derivative so that
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if the order of this derivative tends to 0 it gives the function itself and if the order tends to 1
it gives the first-order derivative of the function. Later, the authors in [24] presented a new
type of fractional operators generated from the above-mentioned modified conformable
derivatives. In addition, more generalized forms of these fractional operators were put for-
ward in [25], and it turned out that some of these operators coincided with some operators
mentioned before in [26–28].

In this work, orientated by the above-mentioned works, we continue our study on the
proportional fractional derivatives and integrals of a function with respect to another
function discovered in [25]. We present the effect of the fractional integral operators on the
differential operators and vice versa. In addition, we present the relation between the frac-
tional proportional derivatives in Riemann–Liouville and Caputo settings using a modi-
fied Laplace transform.

The article is organized as follows: Sect. 2 is devoted to some essential definitions for
fractional proportional derivative and integrals and their generalizations. In Sect. 3, we
apply the proportional fractional integrals on fractional derivatives, discuss the Laplace
transforms for the generalized fractional integrals and derivatives, and give some exam-
ples. In Sect. 4, we present an integration by parts formula, and we conclude our work in
Sect. 5.

2 Essential preliminaries
In this section, we present fundamental definitions, lemmas, theorems, and corollaries
needed for our findings in this article.

2.1 The proportional derivatives
Definition 2.1 (Modified conformable derivatives; [22, 23]) For � ∈ [0, 1], let the func-
tions κ0,κ1 : [0, 1] ×R → [0,∞) be continuous such that for all t ∈R we have

lim
�→0+

κ1(�, t) = 1, lim
�→0+

κ0(�, t) = 0, lim
�→1–

κ1(�, t) = 0, lim
�→1–

κ0(�, t) = 1,

and κ1(�, t) �= 0, � ∈ [0, 1), κ0(�, t) �= 0, � ∈ (0, 1]. Then the modified conformable differ-
ential operator of order � is defined by

D�f (t) = κ1(�, t)f (t) + κ0(�, t)f ′(t). (2.1)

The derivative given in (2.1) is called a proportional derivative. For more details about
the control theory of the proportional derivatives and their component functions κ0 and
κ1, we refer the reader to [22, 23].

For the restricted case when κ1(�, t) = 1 – � and κ0(�, t) = �, the proportional derivative
and its integral respectively read

D�f (t) = (1 – �)f (t) + �f ′(t) (2.2)

and

aI1,�f (t) =
1
�

∫ t

a
e

�–1
� (t–s)f (s) ds, (2.3)

where aI0,�f (t) = f (t).
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The nth order proportional integral has the form

(
aIn,�f

)
(t) =

1
�nΓ (n)

∫ t

a
e

�–1
� (t–τ )(t – τ )n–1f (τ ) dτ . (2.4)

Definition 2.2 ([24]) For � > 0 and α ∈ C, Re(α) > 0, the left and right proportional frac-
tional integrals of f are respectively defined as

(
aIα,�f

)
(t) =

1
�αΓ (α)

∫ t

a
e

�–1
� (t–τ )(t – τ )α–1f (τ ) dτ (2.5)

and

(
Iα,�

b f
)
(t) =

1
�αΓ (α)

∫ b

t
e

�–1
� (τ–t)(τ – t)α–1f (τ ) dτ . (2.6)

Definition 2.3 ([24]) For � > 0 and α ∈ C, Re(α) ≥ 0, the left and right proportional
derivatives of f are respectively given as

(
aDα,�f

)
(t) = Dn,�

aIn–α,�f (t)

=
Dn,�

t

�n–αΓ (n – α)

∫ t

a
e

�–1
� (t–τ )(t – τ )n–α–1f (τ ) dτ (2.7)

and

(
Dα,�

b f
)
(t) = �Dn,�In–α,�

b f (t)

= �Dn,�
t

�n–αΓ (n – α)

∫ b

t
e

�–1
� (τ–t)(τ – t)n–α–1f (τ ) dτ , (2.8)

where n = [Re(α)] + 1,

Dn,� = D�D� . . . D�︸ ︷︷ ︸
n times

and

(
�D�f

)
(t) := (1 – �)f (t) – �f ′(t), �Dn,� = �D�

�D� . . . �D�︸ ︷︷ ︸
n times

.

2.2 The fractional proportional derivative of a function with respect to another
function

Definition 2.4 (The proportional derivative of a function with respect to another function;
[25]) For � ∈ [0, 1], let the functions κ0,κ1 : [0, 1] ×R → [0,∞) be continuous such that
for all t ∈ R we have

lim
�→0+

κ1(�, t) = 1, lim
�→0+

κ0(�, t) = 0, lim
�→1–

κ1(�, t) = 0, lim
�→1–

κ0(�, t) = 1,

and κ1(�, t) �= 0, � ∈ [0, 1), κ0(�, t) �= 0, � ∈ (0, 1]. Let also g(t) be a strictly increasing con-
tinuous function. Then the proportional differential operator of order � of f with respect
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to g is defined by

D�,g f (t) = κ1(�, t)f (t) + κ0(�, t)
f ′(t)
g ′(t)

. (2.9)

As in the previous subsection, for the restriction κ1(�, t) = 1 – � and κ0(�, t) = �, (2.1)
becomes

D�,g f (t) = (1 – �)f (t) + �
f ′(t)
g ′(t)

. (2.10)

The corresponding integral of (2.10) of order n [25]

(
aIn,�,g f

)
(t) =

1
�nΓ (n)

∫ t

a
e

�–1
� (g(t)–g(τ ))(g(t) – g(τ )

)n–1f (τ )g ′(τ ) dτ . (2.11)

The left and right proportional integrals in their general forms are given as follows.

Definition 2.5 ([25]) For � ∈ (0, 1], α ∈C, Re(α) > 0, we define the left and right fractional
integrals of f with respect to g by

(
aIα,�,g f

)
(t) =

1
�αΓ (α)

∫ t

a
e

�–1
� (g(t)–g(τ ))(g(t) – g(τ )

)α–1f (τ )g ′(τ ) dτ . (2.12)

The right fractional proportional integral ending at b, however, can be defined by

(
Iα,�,g

b f
)
(t) =

1
�αΓ (α)

∫ b

t
e

�–1
� (g(τ )–g(t))(g(τ ) – g(t)

)α–1f (τ )g ′(τ ) dτ , (2.13)

(
aIα,�,g f

)
(t) =

1
�αΓ (α)

∫ t

a
e

�–1
� (g(t)–g(τ ))(g(t) – g(τ )

)α–1f (τ )g ′(τ ) dτ , (2.14)

and

(
Iα,�,g

b f
)
(t) =

1
�αΓ (α)

∫ b

t
e

�–1
� (g(τ )–g(t))(g(τ ) – g(t)

)α–1f (τ )g ′(τ ) dτ . (2.15)

Definition 2.6 ([25]) For � > 0, α ∈ C, Re(α) ≥ 0, and g ∈ C[a, b], where g ′(t) > 0, we
define the left fractional derivative of f with respect to g as

(
aDα,�,g f

)
(t) = Dn,�,g

aIn–α,�,g f (t)

=
Dn,�,g

t

�n–αΓ (n – α)

∫ t

a
e

�–1
� (g(t)–g(τ ))(g(t) – g(τ )

)n–α–1

× f (τ )g ′(τ ) dτ (2.16)

and the right fractional derivative of f with respect to g as

(
Dα,�,g

b f
)
(t) = �Dn,�,gIn–α,�,g

b f (t)

= �Dn,�,g
t

�n–αΓ (n – α)

∫ b

t
e

�–1
� (g(τ )–g(t))(g(τ ) – g(t)

)n–α–1
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× f (τ )g ′(τ ) dτ ,

where n = [Re(α)] + 1,

Dn,�,g = D�,gD�,g . . . D�,g︸ ︷︷ ︸
n times

and

(
�D�,g f

)
(t) := (1 – �)f (t) – �

f ′(t)
g ′(t)

, �Dn,�,g = �D�,g�D�,g . . . �D�,g︸ ︷︷ ︸
n times

.

Proposition 2.1 ([25]) Let α,β ∈ C be such that Re(α) ≥ 0 and Re(β) > 0. Then, for any
� > 0, we have

1.
(

aIα,�,ge
�–1
� g(x)(g(x) – g(a)

)β–1)(t) =
Γ (β)

Γ (β + α)�α
e

�–1
� g(t)(g(t) – g(a)

)α+β–1,

Re(α) > 0.

2.
(
Iα,�,g

b e– �–1
� g(x)(g(b) – g(x)

)β–1)(t) =
Γ (β)

Γ (β + α)�α
e– �–1

� g(t)(g(b) – g(t)
)α+β–1,

Re(α) > 0.

3.
(

aDα,�e
�–1
� g(x)(g(x) – g(a)

)β–1)(t) =
�αΓ (β)
Γ (β – α)

e
�–1
� g(t)(g(t) – g(a)

)β–1–α ,

Re(α) ≥ 0.

4.
(
Dα,�,g

b e– �–1
� g(x)(g(b) – g(x)

)β–1)(t) =
�αΓ (β)
Γ (β – α)

e– �–1
� g(t)(g(b) – g(t)

)β–1–α ,

Re(α) ≥ 0.

Theorem 2.1 ([25]) If � ∈ (0, 1], Re(α) > 0, and Re(β) > 0. Then, for f is continuous and
defined for t ≥ a, we have

aIα,�,g(
aIβ ,�,g f

)
(t) = aIβ ,�,g(

aIα,�,g f
)
(t) =

(
aIα+β ,�,g f

)
(t), (2.17)

Iα,�,g
b

(
Iβ ,�,g

b f
)
(t) = Iβ ,�,g

b
(
Iα,�,g

b f
)
(t) =

(
Iα+β ,�,g

b f
)
(t). (2.18)

Theorem 2.2 ([25]) Let 0 ≤ m < [Re(α)]+1 and f be integrable in each interval [a, t], t > a.
Then

Dm,�,g(
aIα,�,g f

)
(t) =

(
aIα–m,�,g f

)
(t) (2.19)

and

�Dm,�,g(Iα,�,g
b f

)
(t) =

(
Iα–m,�,g

b f
)
(t). (2.20)

Corollary 2.1 ([25]) Let 0 < Re(β) < Re(α) and m – 1 < Re(β) ≤ m. Then we have

aDβ ,�,g
aIα,�,g f (t) = aIα–β ,�,g f (t) (2.21)
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and

Dβ ,�,g
b Iα,�,g

b f (t) = Iα–β ,�,g
b f (t). (2.22)

Corollary 2.2 ([25]) Let f be integrable on t ≥ a and Re[α] > 0, � ∈ (0, 1], n = [Re(α)] + 1.
Then we have

aDα,�,g
aIα,�,g f (t) = f (t) (2.23)

and

Dα,�,g
b Iα,�,g

b f (t) = f (t). (2.24)

The generalized Caputo proportional fractional derivatives are given as follows.

Definition 2.7 ([25]) For � ∈ (0, 1] and α ∈C with Re(α) ≥ 0, we define the left derivative
of Caputo type starting at a by

(C
a Dα,�,g f

)
(t) = aIn–α,�,g(Dn,�,g f

)
(t)

=
1

�n–αΓ (n – α)

∫ t

a
e

�–1
� (g(t)–g(τ ))(g(t) – g(τ )

)n–α–1

× (
Dn,�,g f

)
(τ )g ′(τ ) dτ . (2.25)

The right derivative of Caputo type ending at b is defined by

(CDα,�
b f

)
(t) = In–α,�,g

b
(
�Dn,�,g f

)
(t)

=
1

�n–αΓ (n – α)

∫ b

t
e

�–1
� (g(τ )–g(t))(g(τ ) – g(t)

)n–α–1

× (
�Dn,�,g f

)
(τ )g ′(τ ) dτ , (2.26)

where n = [Re(α)] + 1.

Proposition 2.2 ([25]) Let α,β ∈ C be such that Re(α) > 0 and Re(β) > 0. Then, for any
� > 0 and n = [Re(α)] + 1, we have

1.
(C

a Dα,�,ge
�–1
� g(x)(g(x) – g(a)

)β–1)(t) =
�αΓ (β)
Γ (β – α)

e
�–1
� g(t)(g(t) – g(a)

)β–1–α ,

Re(β) > n.

2.
(CDα,�,g

b e– �–1
� g(x)(g(b) – g(x)

)β–1)(t) =
�αΓ (β)
Γ (β – α)

e
�–1
� (g(b)–g(x))(g(b) – g(t)

)β–1–α ,

Re(β) > n.

For k = 0, 1, . . . , n – 1, we have

(C
a Dα,�,ge

�–1
� g(x)(g(x) – g(a)k)(t) = 0 and

(CDα,�,g
b e– �–1

� g(x)(g(b) – g(x)
)k)(t) = 0.

In particular, (C
a Dα,�e

�–1
� g(x))(t) = 0 and (CDα,�

b e– �–1
� g(x))(t) = 0.
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2.3 The g-Laplace transforms
The g-Laplace transform was proposed by Jarad et al. [21].

Definition 2.8 Let f , g : [a,∞) →R be real-valued functions such that g(t) is continuous
and g ′(t) > 0 on [a,∞). The generalized Laplace transform of f is defined by

Lg
{

f (t)
}

(s) =
∫ ∞

a
e–s(g(t)–g(a))f (t)g ′(t) dt (2.27)

for all values of s, the integral is valid.

The generalized Laplace transforms of some elementary functions were given in the
following lemma.

Lemma 2.1 ([21])

1. Lg{1}(s) =
1
s

, s > 0.

2. Lg
{(

g(t) – g(a)
)β}

(s) =
Γ (β + 1)

sβ+1 , 
(β) > 0, s > 0.

3. Lg
{

eλ(g(t)–g(a))}(s) =
1

s – λ
, s > λ.

4. Lg
{

eλ(g(t)–g(a))f (t)
}

(s) = Lg{f }(s – λ).

The generalized Laplace transform of the derivative of f with respect to g is given as
follows.

Theorem 2.3 ([21]) Let the function f (t) ∈ Cg[a, T] and of g(t)-exponential order such that
f [1](t) is piecewise continuous over every finite interval [a, T]. Then the generalized Laplace
transform of f [1](t) = f ′

g′ (t) exists and

Lg
{

f [1](t)
}

(s) = sLg
{

f (t)
}

(s) – f (a). (2.28)

The generalized convolution integral is defined as follows.

Definition 2.9 ([21]) Let f and h be two functions which are piecewise continuous at
each interval [0, T] and of g-exponential order. The generalized convolution of f and h is
defined by

(f ∗g h)(t) =
∫ t

a
f (τ )h

(
g–1(g(t) + g(a) – g(τ )

))
g ′(τ ) dτ . (2.29)

The generalized convolution of two functions is commutative.

Lemma 2.2 ([21]) Let f and h be two functions which are piecewise continuous at each
interval [a, T] and of exponential order. Then

f ∗g h = h ∗g f . (2.30)
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Theorem 2.4 ([21]) Let f and h be two functions which are piecewise continuous at each
interval [a, T] and of g-exponential order. Then

Lg{f ∗g h}(s) = Lg{f }(s)Lg{h}(s). (2.31)

3 The main results
Lemma 3.1 For α > 1, � ∈ (0, 1], we have

(
aIα,�,gD1,�,g f

)
(t) =

(
D1,�,g

aIα,�,g f
)
(t) –

(g(t) – g(a))α–1e
�–1
� (g(t)–g(a))

Γ (α)�α–1 f (a) (3.1)

and

(
Iα,�,g

b �D1,�,g f
)
(t) =

(
�D1,�,gIα,�,g

b f
)
(t) –

(g(b) – g(t))α–1e
�–1
� (g(b)–g(t))

Γ (α)�α–1 f (b). (3.2)

Proof Using the Leibniz rule, we can prove that

α – 1
�α–1Γ (α)

∫ t

a
e

�–1
� (g(t)–g(τ ))(g(t) – g(τ )

)α–2f (τ )g ′(τ ) dτ = D1,�,gIα,�,g
a f (t).

Now, by using Definition 2.9,

(
aIα,�,gD1,�,g f

)
(t) = (1 – �)Iα,�,g f (t)

+
α – 1

�α–1Γ (α)

∫ t

a
e

�–1
� (g(t)–g(τ ))(g(t) – g(τ )

)α–1f ′(τ ) dτ .

Now, using the integration by parts formula, we obtain

(
aIα,�,gD1,�,g f

)
(t)

= (1 – �)Iα,�,g f (t) –
(g(t) – g(a))α–1e

�–1
� (g(t)–g(a))

Γ (α)�α–1 f (a)

+ (� – 1)Iα,�,g f (t) +
α – 1

�αΓ (α)

∫ t

a
e

�–1
� (g(t)–g(τ ))(g(t) – g(τ )

)α–2f (τ )g ′(τ ) dτ

= D1,�,gIα,�,g
a f (t) –

(g(t) – g(a))α–1e
�–1
� (g(t)–g(a))

Γ (α)�α–1 f (a).

(3.2) can be proved similarly. �

We can generalize Lemma 3.1 as follows.

Corollary 3.1 For α > m, � ∈ (0, 1], and m is a positive integer, we have

(
aIα,�,gDm,�,g f

)
(t) =

(
Dm,�,g

aIα,�,g f
)
(t)

–
m–1∑
k=0

(g(t) – g(a))α–m+ke
�–1
� (g(t)–g(a))

Γ (α + k – m + 1)�α–m+k

(
Dk,�,g f

)
(a), (3.3)
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(
Iα,�,g

b �Dm,�,g f
)
(t) =

(
�Dm,�,gIα,�,g

b f
)
(t)

–
m–1∑
k=0

(–1)k(g(t) – g(a))α–m+ke
�–1
� (g(t)–g(a))

Γ (α + k – m + 1)�α–m+k

× (
�Dk,�,g f

)
(b). (3.4)

Proof The proof can be done by mathematical induction. �

In the following theorems we present the impact of the fractional integral on the frac-
tional derivative of the same order.

Theorem 3.1 Let Re(α) > 0, n = –[– Re(α)], f ∈ L1(a, b), and (aIα,�,g f )(t), (Iα,�,g
b f )(t) ∈

ACn[a, b]. Then

(aIα,�,g
aDα,�,g f (t) = f (t)

– e
�–1
� (g(t)–g(a))

n∑
j=1

(
aIj–α,�,g f

)(
a+) (g(t) – g(a))α–j

�α–jΓ (α + 1 – j)
(3.5)

and

(Iα,�,g
b �Dα,�,g

b f (t) = f (t)

– e
�–1
� (g(b)–g(t))

n∑
j=1

(–1)j(Ij–α,�,g
b f

)(
b–) (g(b) – g(t))α–j

�α–jΓ (α + 1 – j)
. (3.6)

Proof By applying Corollary 3.1 and Theorem 2.1, we can observe that

(aIα,�
aDα,�f (t) = aIα,�Dn,�

aIn–α,�f (t)

= Dn,�
aIα,�

aIn–α,�f (t)

–
n–1∑
k=0

(t – a)α–n+ke
�–1
� (t–a)

Γ (α + k – n + 1)�α–n+k

(
Dk,�

aIn–α,�f
)
(a)

= f (t) –
n–1∑
k=0

(t – a)α–n+ke
�–1
� (t–a)

Γ (α + k – n + 1)�α–n+k

(
aIn–α–k,�f

)(
a+)

= f (t) – e
�–1
� (t–a)

n∑
j=1

(
aIj–α,�f

)(
a+) (t – a)α–j

�α–jΓ (α + 1 – j)
,

where the change of variable j = n – k has been used. Equation (3.6) can be analogously
proved. �

Theorem 3.2 For � > 0 and n = [Re(α)] + 1, we have

aIα,�,g(C
a Dα,�,g f

)
(t) = f (t) –

n–1∑
k=0

(Dk,�,g f )(a)
�kk!

(
g(t) – g(a)

)ke
�–1
� (g(t)–g(a)) (3.7)
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and

Iα,�,g
b

(CDα,�,g
b f

)
(t) = f (t) –

n–1∑
k=0

(–1)k(�Dk,�,g f )(b)
�kk!

(
g(b) – g(t)

)ke
�–1
� (g(b)–g(t)). (3.8)

Proof By the help of Theorem 3.1 with α = n, we have

aIα,�,g(C
a Dα,�,g f

)
(t) = aIα,�,g(

aIn–α,�,gDn,�,g f
)
(t) =

(
aIn,�,gDn,�,g f

)
(t)

= f (t)

– e
�–1
� (g(t)–g(a))

n∑
j=1

(aIj–n,�,g f )(a+)(g(t) – g(a))n–j

�n–jΓ (n – j + 1)

= f (t) –
n–1∑
k=0

(Dk,�,g f )(a)
�kk!

(
g(t) – g(a)

)ke
�–1
� (g(t)–g(a)).

Equation (3.8) can be proved similarly. �

Before we find the g-Laplace transform, we need to find the g-Laplace transform of the
nth order derivative of a function with respect to another function.

Theorem 3.3 Let the function f ∈ Cg[a, T] and of g-exponential order such that D�,g f is
piecewise continuous over every finite interval [a, T]. Then the generalized Laplace trans-
form of D�,g f exists and

Lg
{

D�,g f (t)
}

(s) = (�s + 1 – �)Lg
{

f (t)
}

(s) – �f (a). (3.9)

Proof Using (2.10) and Theorem 2.3, we have

Lg
{

D�,g f (t)
}

(s) = (1 – �)Lg
{

f (t)
}

+ �Lg
{

f [1](t)
}

(s)

= (1 – �)Lg
{

f (t)
}

+ �
(
sLg

{
f (t)

}
(s) – f (a)

)

= (�s + 1 – �)Lg
{

f (t)
}

(s) – �f (a). �

Using induction on n, we can prove the following corollary.

Corollary 3.2 Let f ∈ Cn–1[a,∞) be such that f [i], i = 1, 2, . . . , n – 1, are of exponential
order ect on each subinterval [a, T]. Then

Lg
{(

Dn,�,g f
)
(t)

}
(s) = (�s + 1 – �)nLg

{
f (t)

}
(s)

– �

n–1∑
k=0

(�s + 1 – �)n–1–k(Dk,�,g f
)
(a). (3.10)

Theorem 3.4 Let α ∈ C with Re(α) > 0 and � ∈ (0, ], n = [Re(α)] + 1. Assume that f is of
g-exponential order. Then

Lg
{(

aIα,�,g f
)
(t)

}
(s) =

1
(�s + 1 – �)α

Lg
{

f (t)
}

(s), s > c. (3.11)
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Proof From the convolution formula we have

Lg
{(

aIα,�,g f
)
(t)

}
(s) =

1
�αΓ (α)

Lg
{

e
�–1
� (g(t)–g(a))(g(t) – g(a)

)α–1 ∗g f (t)
}

(s)

=
1

�αΓ (α)
Γ (α)

(s – �–1
�

)α
La

{
f (t)

}
(s)

=
1

(�s + 1 – �)α
La

{
f (t)

}
(s). �

Theorem 3.5 For any α ∈C with Re(α) > 0 and � ∈ (0, 1], n = [Re(α)] + 1, we have

Lg
{(

aDα,�,g f
)
(t)

}
(s) = (�s + 1 – �)αFg(s)

– �

n–1∑
k=0

(�s + 1 – �)n–k–1(In–α–k,�,g f
)(

a+)
, (3.12)

where Fg(s) = Lg{f (t)}(s). In particular, if f is continuous at a, then

Lg
{(

aDα,�,g f
)
(t)

}
(s) = (�s + 1 – �)αFg(s).

Proof By applying Corollary 3.2 and Theorem 3.4, we have

La
{(

aDα,�f
)
(t)

}
(s) = Lg

{
aDn,�,g

aIn–α,�,g f )(t)
}

(s)

= (�s – 1 + �)nLg
{

aIn–α,�,g f )(t)
}

(s)

– �

n–1∑
k=0

(�s – 1 + �)n–1–k(Dk,�,g
aIn–α,�,g f

)(
a+)

= (�s + 1 – �)n(�s + 1 – �)α–nFg(s)

– �

n–1∑
k=0

(�s – 1 + �)n–1–k(
aIn–α–k,�,g f

)(
a+)

.

The last part follows by noting that (aIn–α–k,�f )(a+) vanishes for a continuous function f
on [a, b]. �

Theorem 3.6 Let α ∈C with Re(α) > 0 and � > 0, n = [Re(α)] + 1. If Fg(s) = L{f (t)}(s), then

La
{(C

a Dα,�f
)
(t)

}
(s) = (�s + 1 – �)αFa(s) – �

n–1∑
k=0

(�s + 1 – �)α–1–k(Dk,�f
)
(a). (3.13)

Proof

Lg
{(C

a Dα,�,g f
)
(t)

}
(s) = Lg

{(
aIn–α,�,gDn,�,g f

)
(t)

}
(s)

= (�s + 1 – �)α–nLg
{(

Dα,�,g f
)
(t)

}
(s)

= (�s + 1 – �)α–n

×
[

(�s + 1 – �)nFg(s)
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– �

n–1∑
k=0

(�s + 1 – �)n–1–k(Dk,�,g f
)
(a)

]

= (�s + 1 – �)αFg(s)

– �

n–1∑
k=0

(�s + 1 – �)α–1–k(Dk,�,g f
)
(a). �

Using the Laplace transform of the generalized proportional derivatives in Riemann–
Liouville settings in Theorem 3.5 and the Laplace transform in the Caputo in Theorem 3.6,
we can state the following relation that links the Caputo and Riemann–Liouville general
proportional fractional derivatives.

Corollary 3.3 For any α ∈C with Re(α) > 0 and � > 0, n = [Re(α)] + 1, we have

(C
a Dα,�f

)
(t) =

(
aDα,�,g f

)
(t)

–
n–1∑
k=0

�α–k

Γ (k + 1 – α)
(
g(t) – g(a)

)k–αe
�–1
� (g(t)–g(a))(Dk,�,g f

)
(a). (3.14)

Example 3.1 Consider the linear proportional fractional initial value problem

aDα,�,gy(t) – �αλy(t) = f (t),
(

aI1–α,�,gy
)(

a+)
= ya, 0 < α ≤ 1. (3.15)

Then y(t) is a solution of (3.15) if and only if it satisfies the integral equation

y(t) = ya�
1–αe

�–1
� (g(t)–g(a))(g(t) – g(a)

)α–1Eα,α
(
λ
(
g(t) – g(a)

)α)

+ �–α

∫ t

a
Eα,α

(
λ
(
g(t) – g(s)

)α)
e

�–1
� (g(t)–g(s))(g(t) – g(s)

)α–1

× f (s)g ′(s) ds, (3.16)

where Eα,β is the Mittag-Leffler function of two parameters [29]. Actually, applying Lg to
(3.15) and making use of Theorem 3.5 with n = 1, we obtain

(
(�s + 1 – �)α – λ�α

)
Yg(s) = �ya + Fa(s).

Hence,

Ya(s) =
�1–αya

(s – �–1
�

)α – λ
+

�–αFg(s)
(s – �–1

�
)α – λ

.

Applying the inverse of La and using the fact that [21]

Lg
{(

g(t) – g(a)
)α–1Eα,α

(
λ
(
g(t) – g(a)

)α)}
=

1
sα – λ

,

together with Theorem 2.4, we reach (3.16). Conversely, if y(t) has the representation
(3.16), then by the help of Proposition 2.1 it satisfies (3.15).
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Example 3.2 Consider the linear Caputo proportional fractional initial value problem

C
a Dα,�,gy(t) – �αλy(t) = f (t), y(a) = ya, 0 < α ≤ 1. (3.17)

Then y(t) is a solution of (3.17) if and only if it satisfies the integral equation

y(t) = yae
�–1
� (g(t)–g(a))(g(t) – g(a)

)α–1Eα

(
λ
(
g(t) – g(a)

)α)

+ �–α

∫ t

a
Eα,α

(
λ
(
g(t) – g(s)

)α)
e

�–1
� (g(t)–g(s))(g(t) – g(s)

)α–1

× f (s)g ′(s) ds, (3.18)

where Eα is the Mittag-Leffler function of one parameter [29]. Applying La to (3.17) and
making use of Theorem 3.6 with n = 1, we have

(
(�s + 1 – �)α – λ�α

)
Yg(s) = �ya(�s + 1 – �)α–1 + Fg(s).

Hence,

Yg(s) =
(s – �–1

�
)α–1ya

(s – �–1
�

)α – λ
+

�–αFg(s)
( �–1

�
– s)α – λ

.

Applying the inverse of La and using the facts that

Lg
{

(g
(
(t) – g(a)

)α–1Eα,α
(
λ
(
g(t) – g(a)

)α)}
=

1
sα – λ

and

Lg
{

Eα

(
λ
(
g(t) – g(a)

)α)}
=

sα–1

sα – λ
,

together with the convolution formula, we reach (3.18). Conversely, if y(t) has the repre-
sentation (3.18), then by the help of Proposition 2.2 one can easily show that it satisfies
(3.17).

4 Some integration by parts formulas
In this section, we present some integration by parts formulas.

Theorem 4.1 Let f , h, g ∈ Cn[a, b], g ′(t) > 0, α ∈R, n = [α] + 1, and � ∈ (0, 1]. Then

∫ b

a
f (t)

(C
a Dα,�,gh

)
(t)g ′(t) dt =

∫ b

a
h(t)

(CDα,�,g
b f

)
(t)g ′(t) dt

+ �

[ n–1∑
k=0

(
Dk,�,gh

)
(t)

(
Ik–α,�,g

b f
)
(t)

]∣∣∣∣∣
b

a

. (4.1)

Proof

∫ b

a
f (t)

(C
a Dα,�,gh

)
(t)g ′(t) dt
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=
∫ b

a
f (t)

1
�n–αΓ (n – α)

∫ t

a
e

�–1
� (g(t)–g(s))(g(t) – g(s)

)n–α–1

× (
Dn,�,gh

)
(s)g ′(s) dsg ′(t) dt

=
∫ b

a

(
Dn,�,gh

)
(s)

1
�n–αΓ (n – α)

∫ b

s
e

�–1
� (g(t)–g(s))(g(t) – g(s)

)n–α–1

× f (t)g ′(t) dtg ′(s) ds

=
∫ b

a

(
Dn,�,gh

)
(s)

(
Iα,�,g

b f
)
(s)g ′(s) ds

=
∫ b

a
(1 – �)

(
Dn–1,�,gh

)
(s)

(
Iα,�,g

b f
)
(s)g ′(s)

+ �

(
d
ds

(
Dn–1,�,gh

))
(s)(Iα,�,g

b f (s) ds

=
∫ b

a
(1 – �)

(
Dn–1,�,gh

)
(s)g ′(s) – �

(
Dn–1,�,gh

)
(s)

d
ds

((
Iα,�,g

b f
)
(s)

)

+ �
[(

Dn–1,�,gh
)
(s)

(
Iα,�,g

b f
)
(s)

]∣∣b
a.

The result is obtained by repeating the above procedure n – 1 times. �

Using Theorem 4.1 and the relation between the Caputo and Riemann–Liouville type
derivatives, we can conclude the following.

Corollary 4.1

∫ b

a
f (t)

(
aDα,�,gh

)
(t)g ′(t) dt =

∫ b

a
h(t)

(
Dα,�,g

b f
)
(t)g ′(t) dt

+ �

n–1∑
k=0

(
Dk,�,gh

)
(b)

(
Ik+1–α,�,g

b f
)
(b). (4.2)

Analogously, the following theorem and corollary can be proved.

Theorem 4.2 Let f , h, g ∈ Cn[a, b], g ′(t) > 0, α ∈R, n = [α] + 1, and � ∈ (0, 1]. Then

∫ b

a
f (t)

(CDα,�,g
b h

)
(t)g ′(t) dt =

∫ b

a
h(t)

(
aDα,�,g f

)
(t)g ′(t) dt

– �

[ n–1∑
k=0

(
Dk,�,gh

)
(t)

(
aIk–α,�,g f

)
(t)

]∣∣∣∣∣
b

a

.

Corollary 4.2

∫ b

a
f (t)

(
Dα,�,g

b h
)
(t)g ′(t) dt =

∫ b

a
h(t)

(
aDα,�,g f

)
(t)g ′(t) dt

+ �

n–1∑
k=0

(
�Dk,�,gh

)
(a)

(
aIk–α+1,�,g f

)
(a). (4.3)
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5 Conclusions
We presented the activities of the general fractional proportional integrals on the gen-
eral fractional proportional derivatives. These actions are indispensable for the study of
the qualitative aspects of differential and integral equations in the frame of the considered
operators. In addition, we heralded the suitable integral transforms of these operators that
we believe will help in discussing the stability of systems involving such fractional opera-
tors.

The proportional derivatives D� and the proportional derivative are defined only when
0 ≤ � ≤ 1, and higher-order derivatives are defined when we have a sequential of these
derivatives. This may cause some obstacles in dealing with equations containing such
derivatives. For this reason, we present the following definition of the proportional deriva-
tive of any order n ≤ � ≤ n + 1, n = 0, 1, . . . :

D�f (t) = (n + 1 – �)f (n)(t) + (� – n)f (n+1)(t),

which is equivalent to Definition 5.5 in [30]. It can be clearly observed that this derivative
is an interpolation between the nth derivative of the function and its derivative of order
n + 1. We believe that it would be interesting to work on such a definition.
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