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1 Introduction

We start a survey with a coupled fixed point for the conviction of multidimensional fixed
point because its notion emerged naturally from coupled fixed point. Opoitsev [12-15]
introduced coupled fixed point and published a number of papers in the period 1975—
1986.1In 2011, the concept of tripled fixed point was introduced by Berinde and Borcut [1],
which included three variables. Samet and Vetro [16] generalized this concept to a fixed
point of m-order in 2010. In 2012, quadruple fixed point was studied by Karapinar and
Berinde [5] for nonlinear contractions in the presence of partially ordered metric spaces.
After this beginning, a number of articles were devoted to the study of tripled, quadruple,
and also multiple fixed points (also known as “a multidimensional fixed point” or “an m-
tuplet fixed point”).

In 2016, Choban [2] generalized metric spaces as distance spaces. In 2017, Choban and
Berinde [3, 4] established multidimensional fixed point results for distance spaces in the
presence of certain contractive condition. In this paper we provide some useful remarks
with examples regarding distance spaces and establish multidimensional fixed point re-
sults for C-distance spaces with generalized contractive conditions. This point of view
allows us to reduce the multiple case of fixed point theorems to a one-dimensional case.
In the last section of this article an application of our results is added, which provides a
unique solution to a specified class of integral equations.

2 Preliminaries
Let us recall some fundamental concepts regarding distance spaces, which can be found
in [2] and [4].
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Definition 2.1 Let M be a nonempty set and o : M x M — R, then o is a distance on
M, if

1. o(&,n) > 0forall &, € M;

2. ifo(&,n)+0(n,&)=0,thené =nforall&,ne M;

3. ifé =n,theno(&,n)=0forall&,n e M.

Let o be a distance on M and the open ball with center § and radius r > 0 is denoted
and defined as B(&,0,r)={ne M :0(&,n) <r}.

Consider a distance space (M, o) and a sequence {§; : ¢ € N} in M and & € M. Then
{€y: 0 e N}):

1. converges to & if and only if limy_,, 0 (§,§5) = 0;

2. is Cauchy iflim, 5, o 0 (&5, &,) = 0.

If every Cauchy sequence in the distance space M converges to some & in M, then
(M, 0) is called complete distance space.

Note: Every metric space is a distance space but converse is not true in general.

Example 2.1 Let M =N, define

o(r,)=r—1v forallr,® € N,wherer > 9,

o, r)=9"t—r L.

Clearly,r -9 >0and 9! —r ! = % > 0. Then

r—1v
o(r,)+o(,r=0 & r-9+ =0
ri
v
& r—9=0 and =0
ro

& r=1.
Hence o is a distance on M but it is not a metric on M.
Now we include some important remarks with examples.

Remark In general, distance o is not a continuous function.

Example 2.2 Let M = {877 :9 e N}U {0}, and for all £ € M, 8 > 1, define

0, S =n
on=18"7 &=p"andn=0,
1, otherwise.

Clearly, in all cases o(§,7) > 0 and o(§,7n) + 0(n,§) =0 if and only if § = n. Thus o is a
distance on M. Let {&; : € N} be a null sequence, i.e., (§5)yeny = (B77) — 0and (y)gen =
(0,0,0,...) = 0. Then

O—(Eﬂ:nﬁ)za(ﬂiﬁ’o) =11 0(5777)=U(0:0)=0~
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Consider
|0 (Esms) =0 (Em)| =110 =1 £e.
So o is not a continuous function.

Remark A convergent sequence need not be Cauchy in a distance space.

Example 2.3 1f we consider the distance space in Example 2.2, then clearly the sequence

{877 : ® € N} is a convergent sequence that converges to 0, but it is not Cauchy because

lim o(B7,7")=1+¢€ foralr,®eN.

%, r—00

Remark Convergent sequence in a distance space may not have a unique limit.

Example 2.4 Let
M= {19’1 10 € N} U{0,a}, wherea> 1.
Now we define

o(@rt) =9 =r"| forall®,reN,

o(0,97") =07, 0(0,a) =2, o(a,0) =3,

B 1 _ 1 _ _
O'(ﬂ,l? l)zw, O'(l? 1,4):%, O'(l? 1,0)2219 1.
Then
lim 0(0,97") = lim ™' =0= lim o(97',0) = lim 297"
¥—00 ¥—00

¥ —00 ¥ —00

Also

lim a(a 19_1) = lim L =0= lim 0(19_1 a) = lim L

¥ —00 ’ =00 ¥ a? 9—00 ’ 900 B2a
The sequence (¥ 1)ycy converges to 0 and a which belong to M, which implies that 0
and a both are the limits of the sequence (9!)yen. Hence the convergent sequence in a

distance space may not have a unique limit point.

Definition 2.2 Let M # ¢ and o be a distance on M. Then (M, o) is called symmetric
spaceifo(&,n) =o(n,&) forall&,n e M.

Definition 2.3 A distance space (M, o) is called C-distance space if any Cauchy sequence
that converges has a unique limit point.

Definition 2.4 The function W : [0, 00) — [0,00) is called altering distance function if it

is semicontinuous, nondecreasing and W(0) = 0.
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Defining distance on the Cartesian product of distance spaces

Consider (M, o) as a distance space, r € N={1,2,...}. On M" define 6" as
Gr((glx .. -75}"): (771’ veey nr)) = SUP{G(&’, 77[) : i < r}-
Obviously, (M",¢”) is also a distance space.

Proposition 1 The distance space (M”,0") inherits the properties of the distance space

(M,o).
FixreNand I =(I'y,...,T,) a collection of mappings
{ri:(1,2,....,r > {1,2,...,r}:1<i<r}

Consider a distance space (M, o) and a mapping G : M" — M. The operator I'G: M" —
M, which is a composition of G and T, is defined as

IGE....8) =M1, n0)s

where

ni = GEr, -+ &)

for any point (&,...,&) € M"and i € {1,2,...,r}. A point » = (311,...,) € M" is called
[-multiple fixed point of G if it is a fixed point of I'G [4], i.e., if 5 = [ G(5¢) then

»#; = G,y .. 2r,) foranyie{l,2,...,r}.

Consider (M, o) as a distance space, r € N, with mapping G : M" — M, let ' = {I'; :
{1,2,...,r} > {1,2,...,r}: 1 <i < r}beacollection of mappings. For any > = (511,..., ;) €
M7, 3(1) = 'G(3¢) and s(¥ + 1) = T G(5¢(3)) for each ¥ € N. Then O(G, T, 5c) = {s(3): ¥ €
N} is a Picard sequence.

Proposition 2 Counsider (M, o) as a C-distance space. Then:

1. o(&,n) =0 ifand only if & = n;
2. If, for sc € M, the Picard sequence O(G, T, ») = {(¥) : ¥ € N} is convergent Cauchy
and its limit is a multiple fixed point of G with respect to the mappings T, i.e.,

w; = G(or, ), -, 0r,) foreachi € {1,2,...,r}.

We define contractive conditions which are similar to Kannan and Chatterjea contrac-
tions. The mapping G is called:
o T'-Kannan type contraction if there exists § € [0, %) such that

o (G(1,...,9,), Gy, ..., o))

< 8[sup{a(19;, G(®4,..., 19,))} + sup{o(w;, G(w, ...,a),))}]

i<r i<r

for all (%4,...,%), (w1,...,w,) EM " and1 <7 <r.
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o T'-Chatterjea type contraction if there exists § € [0, %) such that

O’(G(l?l, vees l?r), G(wl,. . .,a),))

< 8[sup{o(19;, Glwy,.. .,a),))} + sup{cr(a);, G®y,..., 19,))}]

i<r i<r

for all (¢4,...,%), (w1,...,w,) E M and 1 <7 <r.

3 Main results

Proposition 3 Consider (M, o) as a distance space, r € N, with a mapping G : M" —
M, and let T ={T;:{1,2,...,7} = {1,2,...,r} : 1 <{ < r} be a collection of mappings,
O =(,...,0) e M, = (w1, w,...,0,) € M". If there exists § € [0, %) such that

o (G@r,q),--»Or,(0), Glor,q)s - - Or())

<$ [sup{a (l?,’, G(ﬁr[(l), cees l?rl,(r)))} + sup{o (w;, G(wr{(l), s a)rl,(r))) }:I

i<r i<r

foreach 1 <i <r,then

o’ (FG(®),I'G(w)) <8[c" (9, T G()) + 0’ (0, T G(w))].
Proof Let us consider, for any 7 < r,

u; = G(r,)s---,91,7) and vy = G(or, ). 0Orm),
then

u=(uy,...,u,)=TG(), v=W1,...,v) = 'G(w).
Now we have

o’(FG(l‘}),I’G(w)) =o"(u,v) = sup {a(u;, V,’)}

1<i<r

= sup {0 (G@r.ay..., ;) Glor.ay -, or.¢)) }

1<i<r

< sup{8 sup {0(19,», G(ﬁrj(l),...,ﬁrl.(,)))}

i<r 1<j=r

+8 sup {o (), G(a)r,-(1),---,a)r,-(r)))}}

1<j<r

=8 sup {o (O, u)} +8 sup {o(w,vi)}

1<i<r 1<i<r

= 80" (%, u) + So”(w, V)

= 8[o” (2, TG(®)) + 0" (0, T G(w))]. O

Remark Consider a distance space (M, o). If G is a I'-Kannan type contraction, then I'G
is a Kannan contraction on the distance space (M", o).

Page 5 of 20
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Proposition 4 Consider (M, o) as a distance space, r € N, let G : M" — M be an op-
erator, I' = {T'; : {1,2,...,r} => {1,2,...,r} : 1 <1 < r} be a collection of mappings, ¥ =
(P,...,0) e M", w = (w1, w,...,w,) € M. If there exists § € [0, %) such that

o (G@r,q),--»Or,(0), Gl@r,q) - . Or(»))

<$ [sup{o (l?,’, G(a)r[(l), vy wri(’)))} + sup{a (a),', G(ﬁr[(l), ey ﬁr‘;(r))) }]

i<r i<r

foreach 1 <i <r, then
o’ (FG(®),T'G(w)) < 8[c" (9, T G(w)) + " (w, T G(¥))].
Proof The proof is similar to that of the above proposition. O

Remark Consider a distance space (M, o). If G is a I'-Chatterjea type contraction, then
"G is a Chatterjea contraction on the distance space (M",0").

Now we give an example of C-distance space.

Example 3.1 Let M = {8 — % : % € N} U {8}, where 8 > 1. For all £,5 € Z, where Z =
{B- % : 9 € N}, consider

1 1

0(§;ﬁ)=m, 0(,3,5)=W/33,

o(&,n) =& -7l

Define a sequence (§y)gen = B — % such that

1 1

o(B,&y) = Fﬁg’ o(&y,pB) = m,

o (&9, &) =& — &l

for all [, € N. Now to show (£y)sen is convergent, consider

1 1

U(ﬁ;éﬂ) +O'(§z9;,3) = Wﬂg + m

Applying limit ¥ — oo, we get
1911)11;0[0'(,3: gl?) + O-(Sr?r ﬂ)] = 0’

that is,
lim o(B,&s) — 0, lim o(&,8) — 0.
¥ —00 ¥—>00

This implies (§y)yen converges to 8 and
Lgiinooa(éméz) = llgigloo 1&» — &l =0

ensures that it is also Cauchy and the limit of a convergent Cauchy sequence is unique.
Hence (M, o) is a C-distance space.
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Remark
1. Every metric space is C-distance space but not conversely as already shown in the
above example.
2. In a C-distance space, distance o is not necessarily a continuous function.

3. Ina C-distance space, a convergent sequence need not be Cauchy.
Theorem 3.1 Cousider (M, o) as a complete C-distance space, with a mapping G : M" —
M. If G is a T'- Kannan type contraction, then any Picard sequence of a self-mapping T' G
on M" is Cauchy and G possesses a unique multidimensional fixed point.
Proof Since G is a I'-Kannan type contraction, then I'G is a Kannan contraction on

(M",0") and (M, o) is a complete C-distance space, so (M’,c”) is also a complete C-
distance space. Let »c € M" and

(1) = T G(3), (¥ +1) =T G((2)).
Firstly, we need to show that (3¢(9))sen is Cauchy, i.e., limp ;o0 07 (5¢(9), 22(I)) — 0 and
limy 1+ o 0" (2(0), 5(8)) — 0.

For this, consider

o (3 - 1), #(9)) = 0" (G (5(9 - 2)), T G(5( - 1)))

<8[o" (59 —2),PG(5c(9 = 2))) + 0" (3( = 1), T G(3( - 1)))],

1
where § € |:0, 5)

<8[0" (59 = 2),3( - 1)) + 0" (3( - 1), 2(9))].
This implies

o (3 - 1), #(9)) < %0'(%(19 ~2),3(9 - 1))

I
Q

"(PG(5(® - 3)), TG (9 - 2)))

<8 x 1‘%8[0’(%(19 -3),IG(3(¥ -3))

+ ar(%(ﬁ -2), l"G(J'f(l9 - 2)))]

S 2
< (ﬁ) o’ (3( - 3), (9 - 2))

5\ 72
< <1——8) ar(%(l),%(2)).

Applying limit ¥ — oo, we get

19li_)rrolo 0’(%(1? -1), %(19)) =0.
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Similarly, we can show that
ﬁlgr;o o (3(), 2(9 - 1)) = 0.
For ¢ > [, consider

" (5(9), (D) + 0" (5(0), (7))
=0 (IG(5( - 1)),I'G(3(I - 1))) + 6" (TG (3(I - 1)), T G(>(¥ - 1)))
<8[o7(e(® = 1), G(5c(9 = 1)) + 0" (5c(1 - 1), T G(5(I - 1))) ]
+8[07(3(1-1),TG(5(I - 1))) + 0" (5(8 = 1), T G(5¢(v - 1)))]
<807 (3( = 1), 5(9)) + 0" (3¢(I - 1), 5¢(1)) ]
+ 807 (el = 1), 5¢(1)) + 0" (5c(8 — 1), 3(9)) .

Applying limit /, % — oo over the above expression, we get

lim [o" (5(9), (D)) + 0" ((0), (9)) ] = 0,

?,l—o00

which implies (»2(1))y <y is Cauchy. Since (M”,¢") is complete, so a Cauchy sequence will
converge and the limit of that sequence in a C-distance space is the multidimensional fixed

point of G. Since that limit is unique, so a fixed point of the operator G will be unique. J

Example 3.2 Let M = {% : 9 € N} U {0}. Define, for all 9,/ € N,

0 1 B 1 1 0) - 1 _
o 15 —g: o 5’ —Ev U(E%Sl)‘@ﬂ“élh
then (M, o) is a C-distance space. Now

M XM:{@;U):&WEM}

and

02(€¢ 77) = Sup{‘f(gi» 771’)},

(<2

then (M?,0?) is also a C-distance space.
Now define a mapping G : M? — M such that

Gl &) =L forall (5,8) € M
and a mapping I' : M — M? such that

(&) = (T1(5), T2(8)),
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where I'; : {1,2} — {1,2} are defined as

ri(y neE) (1 2
(1) @) \2 1)
The mapping I'G : M? — M?2, which is the composition of G and T, is defined as follows:

I'G(£1,6) = (GEr, (1) Era2) GEry ), Era2)) = (% %)

Consider
& m
0 (G(&1,&),G(ni,m2)) =0 33 )
We need to show that

O—(G(glv %.2)7 G(nlr le)) =< ) [SUP{U (St’) G(Elr 52))} + Sl]p{O' (Th’, G(nh 772)) }]: (A)

<2 <2

where § € [0, %).
If§ = (0, 7-) and 7 = (3,0), then

1 1 1 1
oc|{Gl0,— ),G| —,0))=0|0,— )= —. (1)
191 7-92 3192 9192
Now consider

Sup{o'(%‘f: G(§1’$2))} + SUP{U(ﬁi; G(nl’ 772))}

<2 <2

) ranle ()]
3 1’512) Ni» 3

sl 51 n1 n
=supyo gl’g »O EZ,E +supyo nl:g O 7721?
= 0,0),0 (.0 11 0. L
=supy0(0, ),G(ﬂ—l, )}+sup{o(ﬁ—2,3_ﬂz),g< 3_192)}
~suplo, - 2 1
= sup ,4ﬁ1}+sup{3ﬁ2,992}

1 2
=—+ —.
491 30,

gl

<2

2)

From (1) and (2) we get

1 1/ 1 2
— <=+
9%, 3\4%1 3t

that is,

o(5(0:5,).6(5,0)) <3l (5v6(05, ) )} + ol (6 (50) )}
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Similarly, for other values of £ and 7, condition (A) is easily verified, so G is a I'-Kannan
type contraction. Then the mapping I'G is Kannan contraction and it has a fixed point.
Now &7 = 'G(£§77?) for & € M?. Choose & = (£),£Y)

1 g1y _ 0 £0\ _ £ &
(61,6,) =TG(§).8) = 33 )

2 g2\ _ 1 £1) _ £ &
(51’52)_FG($1’§2)_ 32732 )

(Eﬁ %-29) _ FG(§ﬂ71 %-1971) _ (E_{) ﬁ)
1:252 )~ 1 52 - 373’319 .

Applying limit ¥ — oo, we get
lim (&/,&)) = (0,0) = (01,0),
¥ —o00

which is a unique fixed point for I'G and a unique multidimensional fixed point for G, i.e.,
O; = G(Or,q1), Or;(2))-

Theorem 3.2 The mapping I’ G on a complete symmetric C-distance space (M, o) satisfies

generalized contraction if

o’ (FG(£),TG(n)) < gmax{o’(§,n),0"(§,TG(§)),0"(n,TG(n))}
forallg&,ne M",0<g<1,

then any Picard sequence of a self-mapping I' G on M" is Cauchy and G possesses a unique
multiple fixed point.

Proof Let sc € M", (1) = I'G(32), (¥ + 1) = T G(>2(8)). Consider

0" (3(9), (¥ + 1)) = 6" (TG(3(9 - 1)), T G(5(s3)))
< gmax{o”(5(9 - 1)), 2(9)),0" (3 — 1), T G(3¢( - 1)),
o’ ((9),I'G(5(9))}, whereq e (0,1)

< gmax{o” (>(9 — 1), #(9)),07 (5(9), 2¢( + 1)) }.
If
max{o” (s( — 1), 3(9)), 0" (3(9), (3 + 1)) } = 0" (3(9), (3 + 1)),
then

a’(%(ﬁ),%(z? + 1)) < qa’(%(z?), 2(D + 1)) < o’(%(ﬁ),%(ﬂ + 1)),

Page 10 of 20
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which is not possible, so
max{o” (s( — 1), 2(9)), 0" (5(9), (8 + 1)) } = " (3(9 - 1), 5(8)).
Thus

ar(%(ﬂ), »#(9 + 1)) < qar(%(ﬂ -1), %(19)).

< qPo" (D - 2), 3 - 1)).

< qﬁ_lo’(%(l), #(2)).
Hence
ﬁlgr;o o’ (#(9), #(¥ + 1)) =0.
Similarly, we can prove that

0.

lim o (5¢( + 1), 5(3))

¥ —00

Now, to show (»¢(1#))sen is a Cauchy sequence, for [ > ¢, consider

J’(%(l?), %(l))
=0"(FG((¥ - 1)), G(5(I - 1)))
< qmax{ar(%(z? - 1), 2(l - 1)),6’(%(19 -1), FG(%(L? - 1))),

0" (3(1-1),I'G(x(I-1)))}, wherege(0,1)

< qmax{a’(%(z? —1),2(l - 1)),ar(%(0 -1), %(ﬁ)),o’(%(l -1), %(l))}.

Now we consider the following cases.
Case 1: If

max{ar(%(ﬁ —1), (- 1)),0’(%(1.9 -1), %(z?)),o’(%(l -1), %(l))}

= 0" (39 — 1), 5(9)),
then inequality (5) gives
0" (5(9), (D) < qo” (5D ~ 1), (9)).
Apply limit [, — oo over the above expression and using (3), we get

l‘giinoo o’(%(ﬁ), %(l)) =0.

®3)

(4)

(5)

Page 11 of 20
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Case 2: If

max{ar(%(ﬁ —1),2(l - 1)),0’(%(19 -1), %(ﬁ)),or(%(l -1), %(l))}

= 0" (s2(l - 1), (D),
then inequality (5) implies
0" (s9), (1)) < g0 (5e(1 - 1), (D).
Again applying limit [, — oo over the above expression and using (3), we get
z,giinoo o’(%(ﬁ), %(l)) =0.
Case 3: If

max{ar(%(ﬁ - 1), 2(l - 1)),0’(%(19 -1), %(ﬁ)),or(%(l -1), %(l))}

= 0" (529 ~ 1), 51 - 1)),
then
0" (30), D) < qo” (30 = 1), (L~ 1)). (6)
Consider

o (3(¥ - 1), (1 - 1))
=0"(FG((? - 2)), I G(5(l - 2)))
< qmax{o” (3( - 2), (I - 2)),0" (3 - 2), TG (3(2 - 2))),
0" (5(1-2), I G((I-2)))}, wherege(0,1)

< gmax{o” (3 - 2), 5l - 2)),0" (3(9 - 2), 5(9 - 1)),0" (5l - 2), (I - 1)) }. (7)
Now, if

max{ar(%(ﬁ —2), 2(l - 2)),0’(%(19 —2), 2(0 — 1)),0’(%([ —2),2(l - 1))}

=0 (30 - 2), (0 - 1)),
then inequality (7) implies
o (3( - 1), (I - 1)) < go” (3(9 - 2), (9 - 1)).
Applying lim [, — oo over the above expression and using (5), we get

lim o”(5(9 - 1), (- 1)) =0.

[, —o0
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If
max{o” (s( - 2),3(I - 2)),0" (5( - 2),3¢( — 1)),07 (3(I - 2), (I - 1)) }
= qo” (sl - 2), (- 1)),
then (7) implies
0" (50 = 1), 5l - 1)) < go” (3¢ = 2), (I - 1)).
Applying limit /, % — oo over the above expression and using (3), we get

lim o”(5(9 - 1), (/- 1)) =0.

1,9 —o00

If
max{o” (5(9 - 2), 34(1 - 2)), 0" (3B = 2), (9 — 1)), 0" (31 - 2), (1 - 1))}
= 0" (59 — 2), (1 - 2),
then condition (7) gives
0" (se® = 1), 5l ~ 1)) < qo” (320 ~ 2), 31 - 2). (8)
Using (8) in (6) we get

0’(%(19), %(l)) < qa’(%(z? —1),2(l - 1))
< qzar(%(ﬁ —2), (I - 2))

< q3o’(%(19 —3),5(l - 3))

< qﬁ’lar(%(l), »x([ -9 - 2)).
Applying limit [, 9 — o0, it follows

lim ar(%(ﬁ), %(l)) =0.

Ly—o0

Similarly, we can show that
z,glinooo (%(l), %(19)) =0,

which implies (32(?))pen is Cauchy. Because of the completeness of space, a Cauchy se-
quence will converge, and from the proposition, the limit of a convergent Cauchy sequence
in a C-distance space is the multiple fixed point of the operator G. Since the space is C-
distance space, i.e., the limit of a convergent Cauchy sequence is unique, so a fixed point
of the operator G will be unique. O

Assuming I'; as identity maps in the above result, we define the following corollary.
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Corollary 1 If a mapping G on a complete C- distance space (M, o) satisfies
o (G&),Gn) < qo"(€,n) forall§,ne M,0<q<1,
then G possesses a unique multiple fixed point.
Proof The proof of this result can be easily deduced by using the above theorem. O

Theorem 3.3 If a self-mapping I' G on a complete C-distance space (M, o) satisfies

w(a'(FG(E), FG(n))) <O0Ms,) - oM, forall&,ne M,

where

MEJ] = max{a’(é, ), Ur('i:’ FG(S))’ Gr(ﬁ: FG("))) };

Y is defined in Definition 2.4, 0 : [0, 00) — [0, 00) is upper semicontinuous and ¢ : [0, 00) —
[0, 00) is a lower semicontinuous function with 6(0) = ¢(0) = 0 and

Jor§>0, Y(§)>06(5) - 9(8), )
then a Picard sequence is Cauchy and G possesses a unique multiple fixed point.
Proof If (%) = (9 + 1), then G has a fixed point. Suppose () # (¢ + 1). Let 3c € M’

»#(1) =T G(s¢), (9 + 1) = T G(5¢()).
To show o (32(), (¥ + 1)) is a decreasing sequence, consider

V(o7 (3(9), 29 + 1)) = ¥ (0" (TG(5(¥ - 1)), [ G(5(2))))

< OMo9-1),52(9)) — @ (Me9-1),52(9))» (10)
where

Mo(p-1),50(9) = max{a’(%(z? -1), %(19)),0'(%(19 -1), FG(%(& - 1))),
o’ (3(), T G(3())) }

= max{o” (5(9 — 1), 3(8)),0" (3(9), (3 + 1)) }.
If
Micp-15e() = 0" (5(0), (9 + 1)),
then condition (10) implies

W(a'(%(ﬁ), (0 + 1))) < 6‘(0'(%(19), (0 + 1))) - (p(ar(%(ﬁ), 2(0 + 1)))
< Y (o7 (5(9), 3 + 1)),
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which is a contradiction. Thus we get
Miy1),5e(0) = 07 (3 — 1), (9)),
then condition (10) implies

V(o7 (3(9), (9 + 1)) <0(0” (3(9 = 1), 3(9))) — (0" (5(8 - 1), 5¢(8)))
< Yo" (30 = 1), 3())). (11)

Since v is increasing
0" (3(9), (9 + 1)) <0 (3(¥ — 1), ().
Hence 0" (5(), (9 + 1)) is a decreasing sequence, so there exists r > 0 such that
19lgroloo (3¢(@), 5 + 1)) =r.
If r > 0 then apply limit ¥ — oo in inequality (11)
Y(r) < (r),
a contradiction, so r = 0. Hence
lim 0" (5¢(8), 5( + 1)) = 0.
¥ —o00
Similar steps can be followed to prove
ﬁlgr;o o’ (#(9 +1),2(9)) =0.
Hence
ﬁlgr;o [0 (5e(9), (9 + 1)) + 0" (3(9 + 1), 5(9)) ] = 0.
Now, to show
li ! ’ ’ ) =Y
l’ﬁl_r)noo[cr (5¢(9), (D)) + 0" (5(1), ()] = O

suppose that (5¢(9))pen is not Cauchy. Choose € > 0and § € (0, €), there exist subsequences
Uy, I, such that [, > 9, > p and

o’(%(ﬁp), %(lp)) > 4. (12)
Let [, be the smallest integer satisfying the above condition, then

Gr(%(ﬁp), »(l, — 1)) <. (13)
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Consider
Y (07 (5(8p), (L)) = ¥ (0" (PG(5(9, - 1)), [ G(5(l, - 1))))
< OMoc(,-1),520p-1) = @ Mic(,-1),5200,-1))5
where

M9, -1),1p-1) = Max{o” (s(Dy — 1), (L, — 1)), 07 (3(8, — 1), 52(3,)),
ar(%(lp -1), %(lp)) }

If
Mor(9,-1),5¢(1y-1) = 0 (32(8, = 1), ¢(9,)),
then

w(or(%(ﬁp)’ %(lp))) = 9(0’(%(19p - 1), %(ﬂp))) - ‘/’((’r(%(ﬁp -1, %(ﬁp)))
< ¥ (0" (5e(9, - 1), 5(8)))).

Since ¥ is nondecreasing, so
Gr(%(ﬁp), %(lp)) < ar(%(ﬁp -1), %(z?p)).
Apply limit /, % — oo, it follows
. lim o (5()), () < lim 0" (3(9, = 1), () =0,
a contradiction. Now, if
M, -1)ty-1) = 07 (56l = 1), 52(1y)),
then a similar argument as above leads to contradiction. Thus
Mos(9,-1),5¢(1,-1) = 0" (52(8p — 1), 52(l, — 1)),
then

12 (UV(%WP)’ %(lp)))
<0(o" (5(p — 1), 5¢(l, — 1)) — (0" (5¢(8, — 1), 3¢(], — 1)))
< 1//(0’(%(1917 - 1), (1, - 1)))

Consider
Y (o7 (3(9y — 1), 5¢(l, - 1))

=¥ (0" (N G((0, - 2)), TG, - 2))))

< OMie(py-2),5¢(1y-2) = PMoc(9,-2),5¢(0,-2))>
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where

M%(ﬁp—Z),%(lp—Z) = max{ar(%(ﬁp - 2); %(Zp - 2))1 Ur(%(l?p - 2)7 %(ﬁp - 1));

o (s(l, - 2), (1, - 1)) }
If
M9, -2)lt,-2) = 0" (5(0), = 2), 5(9), - 1))
or
Mic(9,-2),5e(1,-2) = 0 (32l = 2), 521, - 1)),
both lead to contradiction. The only option we are left with is
M9, -2),(t,-2) = 0" (5(9) = 2), 52(l, - 2)).
It follows that

Y (o7 (5(8p — 1), 5¢(l, - 1)))
< 9(0’(%(% —-2), 2, - 2))) - go(o’(%(l?p —-2),2(l, - 2)))
< 1//(0’(%(1919 -2), (1, - 2)))

Continuing this process, it follows that
w(ar(%(’?p)’ %(lp))) < 1/}(0'(%(1), %(lp o/ 1))))'
Since ¢ is nondecreasing, so
0" (), 5(4) < o (1) (1, — (9 ~ 1)
Applying limit p — oo and using (12) and (13) in the above inequality results in

§ < lim o’(%(l?p), %(lp)) < lim or(%(l), %(lp - (0 - 1))) <34,

p—>00 p—>00

which is a contradiction. So
plirgloa (5¢(), (1)) = 0.
Similarly,
plin;oo (%(lp), %(L‘)p)) =0,
then we have

lim [0 (5¢(9,), (1)) + 0" (54(L,), 5(9,)) ] = 0.

p—>00
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Hence (5¢(1))gen is Cauchy, and since the space is complete, there will be some v € M”
such that

lim 0" (3(9),v) =0 and 0121010 o’ (v, 3(8)) = 0.

¥ —00

In a C-distance space, the limit of a convergent Cauchy sequence is a multidimensional
fixed point of G, and the uniqueness of limit ensures that G possesses a unique multiple
fixed point. d

Corollary 2 If a mapping ' G on a complete C-distance space (M, o) satisfies

¥ (0"(PGE),TGM)) < ¥ (Me,) - 9(Ms,)  forall§,ne M,

where

Mg, = max{a’(é, n), Gr('i:’ FG(&)): Ur(’?, FG(’?)) };

Y defined in Definition 2.4, ¢ : [0,00) — [0,00) a lower semicontinuous function with
©(0) =0 and

f0V§>O, @(&) >0,

then a Picard sequence of a self-mapping I'G on M" is Cauchy and G possesses a multiple
fixed point, which will be unique.

4 An application
Theory of differential and integral equations is arising with fundamental tools such as
fixed point theory, functional analysis, and topology. Most of the problems of applied
mathematics are reduced to finding fixed points of certain mappings. For solving various
problems of integral calculus, researchers have tried to generalize contractive conditions,
mappings, and metric spaces, see [6—11, 17].

Let a,b € R with a < b, and let I = [a, b]. Consider M = C(I), the space of all continuous
real-valued functions defined on I, with the distance

oo, B) = nt1a]x|a(t) -B@)| foralla,pe M,p>1,

then (M, o) is a complete C-distance space.

Consider the following system of equations:

(o) =+ / T (m18), 1) .., (00 it
ni(0) = + f TG0, i1 (0 o 71y 00y 200y 7 (00) (14)

fori=1,2,...,r, where ;s are elements of M, u € I and J : R" — R is a mapping verify-
ing:
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(i) J is continuous;

(ii) forall (x1,%2,...,%), W1, Y2,...,9r) € R,

S

V(xlyxenuxr) —/'()’1;)’2’~~,yr)| = k({glai(r)‘-l'xl —J’i|p> ’

where k, A1, As,..., A, are real numbers.
Define a mapping G : M" — M for all n = (51,13, ...,n,) in M" and w € R such that

GO s 1)) = 0 + / T (11 8), 12 (@) ..., 0, 0)) s

Clearly, G € C(I). Now, to prove the existence of solution of system (14), we need to prove
that G has a multiple fixed point.
For (n1,n2,...,ny), (61,€25..., &) € M, consider

U(G(Th» N2yeees ﬂr); G(El’ SZ: ‘o 1§r))

= n;gX’G(nlr M25eees nr)(t) - G(glr %-Zr L] %‘r)(t) }P

= max
tel

(w+/ J(m1(), m2(w), ..., (1)) du)

r

_ <w . / J(61(0), £2(00), . (1) du)

p

/ T(m@), (), ..., n,w)) = J (51(w), E2(w), ..., () ) dus

= maXx
tel

p

< n}g}X(/ (m(), ma(w), ... ne () = J (E1(w), E2(0), ..., & () | du)

¢ 1\2

<max( [ (ks (masl0 - 5001))” d)
¢ RV

= kA ntlgx(/ (U(Th‘; S,-))I_’ du)

< kro (n;,&)(b - a)’

<kx sup o(n;, )b —a)f

1<i<r

= kkﬁr((ﬁb N2seees nr)7 (El’%-Zr .. ¢éjr))(b - a)p

with A = maxj<;<, A;. If kA(b — a)? < 1, then by Corollary 1 G has a unique multiple fixed
point, which is a solution of system (14).
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