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NEW ASPECTS OF FRACTIONAL BLOCH MODEL ASSOCIATED

WITH COMPOSITE FRACTIONAL DERIVATIVE

Jagdev Singh1, Devendra Kumar2,* and Dumitru Baleanu3,4

Abstract. This paper studies a fractional Bloch equation pertaining to Hilfer fractional operator.
Bloch equation is broadly applied in physics, chemistry, nuclear magnetic resonance (NMR), magnetic
resonance imaging (MRI) and many more. The sumudu transform technique is applied to obtain the
analytic solutions for nuclear magnetization M = (Mx,My,Mz). The general solution of nuclear mag-
netization M is shown in the terms of Mittag-Leffler (ML) type function. The influence of order and
type of Hilfer fractional operator on nuclear magnetization M is demonstrated in graphical form. The
study of Bloch equation with composite fractional derivative reveals the new features of Bloch equa-
tion. The discussed fractional Bloch model provides crucial and applicable results to introduce novel
information in scientific and technological fields.
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1. Introduction

Nuclear magnetic resonance (NMR) is a physical occurrence broadly employed in physics, chemistry, medical
science, and engineering for studying the complex materials. The Bloch equations are a collection of the macro-
scopic equations which are applied to compute nuclear magnetization M = (Mx,My,Mz) as a function of time
during relaxation times ρ1 and ρ2 are presented. Bloch equations were proposed by Felix Bloch in the year 1946
and they are employed for a representation of the NMR. NMR is controlled with the aid of the Bloch equation,
which connects a macroscopic system of magnetization to the employed radiofrequency, static magnetic fields
and gradient. Many researchers studied the characteristic and application of Bloch equation, for more details
see [14, 19, 20, 22, 24, 33, 39]. Fractional calculus is a particular outlook of applied mathematics that related
with derivatives and integrals of arbitrary orders. Recently, remarkably amount of research work in this special
branch has been appeared in different scientific, technological, financial and several other field. In fact, novel
features of FC are affected by different useful applications such as mathematical biology, fluid flow problems,
turbulence, electrochemistry, controlled thermonuclear fusion, astrophysics, image processing, plasma physics,
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stochastic dynamical processes, control theory and several others. In view of the above considered details, it is
worthy that FC has emerged as a crucial new mathematical key for the solution of distinct issues in the field of
science and engineering. The principal benefit of calculus of arbitrary order is to model real world problems with
complete memory influence. Many researchers have studied principal outcomes in the structure of monogram,
books and quality research articles connected to applications of FC in distinct important directions, for further
information; see [1, 3, 6, 7, 10, 15–18, 21, 23, 27–31, 34–38]. Generally physical problems related to fractional
operators capable to represent the effective physical interpretation of the model in comparison to integer order
derivatives and integrals. The non-integer order model describes the physical system having more accuracy,
with high-order dynamics and with complex nonlinear phenomena. It occurs because of two reasons such that
(i) choice to choose the order of fractional order derivatives while it is not employable to derivative of integer
order (ii) as derivative of integer order is local in nature, so it does not narrate complete history and physical
nature of system while derivative of arbitrary order has a non-local characteristic, therefore, it yields the whole
history and physical aspects of the real world problem.

To mange above analyzed facts, we examine the physical model having arbitrary order derivative. Physical
models of arbitrary orders have been nicely controlled. It has been shown that the physical models demonstrate
the novel characteristic with full history of the problem, for complete study and implementation of the outcomes,
see [1, 3, 6, 7, 10, 15–18, 21, 23, 27–31, 34–38]. Several mathematicians suggested new operators of fractional
nature time to time, after working on these operators it was analyzed by several researchers that these operators
hold few restrictions. In the similar manner, Hilfer [15] suggested a composite derivative of fractional order
which is a modified and crucial derivative of arbitrary order. Here, we use this notable derivative of fractional
order to Bloch equation. The main objective of this paper is to describe the novel characteristic of Bloch
equation associated to Hilfer fractional derivative. Further, we demonstrate the influences of parameters of
fractional nature on behavior of solution of Bloch equation. Actually the capacity for modeling the differential
equations of fractional oreder as a function of time is an appealing in addition entrancing fact for researchers,
mathematician and scientist as well. The NMR is a physical occurrence broadly employed in physics, medical
science, chemical sciences and engineering to study the complex problems. By analyzing the all above considered
physical importance of Bloch equation, powerful memory nature of composite fractional derivative, the authors
are encouraged to study the proposed research work. The foundation of the article is laid on in six sections like:
In Section 2, we discussed some important mathematical formulas and definition. In Section 3, Bloch equation
pertaining to Hilfer fractional derivative is constructed. Approximate analytical results of fractional Bloch
equation is expressed by applying Sumudu transform method, in Section 4. Section 5 provides the numerical
outcomes and graphical behavior of solution of the non-integer order Bloch equation. Lastly, in Section 5 the
conclusion moreover future physical results are pointed out.

2. Mathematical overture

Some principal mathematical postulate which are applied in the present paper are presented as

Sumudu transform (ST)

The ST [32] for a function h(ξ)on a set is represented as

S[h(ξ), q] =

∫ ∞
0

h(qξ)e−ξdξ, q ∈ (−γ1, γ2). (2.1)

The basic characteristic and outcomes associated to sumudu transform are discussed by several authors, see
[2, 4, 5, 8, 9, 11–13, 26].
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Riemann–Liouville integral operator

For a function h(ξ), the Riemann–Liouville (RL) type integral operator [21] of order γ > 0 is given as

Iγb+h(ξ) =
1

Γ(γ)

∫ ξ

b

h(u)

(ξ − u)1−γ
du, γ ∈ C. (2.2)

RL fractional derivative

Suppose γ > 0, additionally γ, ξ ∈ R then RL derivative of non-integer order [21] is represented in the
following manner

0D
γ
ξ h(ξ) =

1

Γ(n− λ)

dn

dξn

∫ ξ

0

h(u)

(ξ − u)γ+1−n du, n− 1 < γ < n, n ∈ N. (2.3)

=
dnh(u)

dξn
, if γ = n ∈ N. (2.4)

Caputo fractional operator

Suppose γ > 0, and γ, ξ ∈ R then Caputo type operator of arbitrary order [7] is given as

0D
γ
ξ h(ξ) =

1

Γ(n− λ)

∫ ξ

0

h(n)(ξ)

(ξ − u)γ+1−n du, n− 1 < γ < n, n ∈ N. (2.5)

Hilfer derivative of fractional order

Suppose h : [e, f ]→ R, 0 < γ ≤ 1, 0 ≤ η ≤ 1, then Hilfer derivative of non-integer order [15] of a function h(ξ)
is given in the following way

0D
γ,η
b+ h(ξ) =

(
I
η(1−γ)
b+

d

dξ

(
I
(1−η)(1−γ)
b+ h(ξ)

))
. (2.6)

If set η = 0 and η = 1, in these cases, Hilfer derivative of fractional order converts to the RL derivative of
arbitrary order described as equation (2.4) and in Caputo derivative of fractional order given as equation (2.5),
respectively.

ST of Hilfer derivative of fractional order

The ST of Hilfer derivative of fractional order [9, 12] is expressed as

S[0D
γ,η
ξ h(ξ); q] = q−γ h̄(q)− q−η(γ−1)−1I(1−η)(1−γ)0+ h(0+). (2.7)

To analyze the more characteristic of Hilfer derivative, see [30].
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3. Construction of fractional Bloch equation

The replacement of time derivative by fractional derivative in Bloch equation recommends a number of
attractive and useful possibilities concerning magnetization relaxation and spin dynamics. In the present paper,
we consider the standard Bloch equations [14, 20].

dMz(ξ)

dξ
=
M0 −Mz(ξ)

ρ1
,

dMx(ξ)

dξ
= µ0My(ξ)− Mx(ξ)

ρ2
, (3.1)

dMy(ξ)

dξ
= −µ0Mx(ξ)− My(ξ)

ρ2
.

“ The nomenclature of model (3.1) is describes as Mx(ξ) represents the system magnetization of x component,
My(ξ) describes the system magnetization of y component, Mz(ξ) indicates the system magnetization of z
component. M0 denotes the equilibrium magnetization, ρ1 shows spin-lattice relaxation time, ρ2 indicates spin–
spin relaxation time, in addition µ0 represents resonant frequency specified by Larmor relationship µ0 = αC0,
where C0 indicates static magnetic field of z-component and α

2π designates the gyromagnetic ratio.”
As above mention in Section 1, the principal characteristic of FC and to describe the efficient physical aspects

of system (3.1), in this study we change the classical time derivative by a fractional operator in Hilfer sense. In
this case, the newly modified fractional Bloch equation model is given in the following manner

λγ−11 0D
γ,η
ξ Mz(ξ) =

M0 −Mz(ξ)

ρ1
,

λγ−12 0D
γ,η
ξ Mx(ξ) = µ0My(ξ)− Mx(ξ)

ρ2
, (3.2)

λγ−12 0D
γ,η
ξ My(ξ) = −µ0Mx(ξ)− My(ξ)

ρ2
.

The time constants λ1 and λ2 of fractional nature are required on to the left hand side of model (3.3) to control
the consistent set of units for magnetization. Model (3.2) can also be represented in the following way

0D
γ,η
ξ Mz(ξ) =

M0 −Mz(ξ)

ρ
′
1

,

0D
γ,η
ξ Mx(ξ) = µ̄0My(ξ)− Mx(ξ)

ρ
′
2

, (3.3)

0D
γ,η
ξ My(ξ) = −µ̄0Mx(ξ)− My(ξ)

ρ
′
2

,

where µ̄0 = µ0

λγ−1
2

, 1
ρ
′
1

=
λ1−γ
1

ρ1
and 1

ρ
′
2

=
λ1−γ
2

ρ2
each components holds the units of (sec)−γ .

The initial conditions (ICs) as

I
(1−η)(1−γ)
0+ Mx(0) = c1 = 0,

I
(1−η)(1−γ)
0+ Mz(0) = c2 = 0, (3.4)

I
(1−η)(1−γ)
0+ My(0) = c3.
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4. Analytical results of fractional Bloch equation associated
with Sumudu transform method

Here to analyze the new physical aspects and to evaluate the consequences of fractional parameters on the
solution of discussed model (3.3), we solve system (3.3) by employing a poweful in addition efficient ST method.
Primarily we use ST on model (3.3), then we get

q−γS[Mz(ξ)]− q−η(γ−1)−1I(1−η)(1−γ)0+ Mz(0) = S

[
M0 −Mz(ξ)

ρ
′
1

]
,

q−γS[Mx(ξ)]− q−η(γ−1)−1I(1−η)(1−γ)0+ Mx(0) = S

[
µ̄0My(ξ)− Mx(ξ)

ρ
′
2

]
, (4.1)

q−γS[My(ξ)]− q−η(γ−1)−1I(1−η)(1−γ)0+ My(0) = S

[
−µ̄0Mx(ξ)− My(ξ)

ρ
′
2

]
.

Now by utilizing equation (3.4) in to equation (4.1) and on rationalization, we get

S[Mz(ξ)] =
ρ
′

1

q−γρ
′
1 + 1

p−η(γ−1)−1Mz(0) +
M0

q−γρ
′
1 + 1

. (4.2)

Further, by using the inverse ST technique on both sides equation (4.2) and applying outcomes of Chaurasia
and Singh [8] moreover on rationalizing the deriving equations, we obtain

Mz(ξ) = I
(1−η)(1−γ)
0 Mz(0) ξ

γ−η(γ−1)−1

Eγ,γ−η(γ−1)(
−ξγ

ρ′1
) +

M0

ρ′1
ξ
γ

Eγ,γ+1(
−ξγ

ρ′1
). (4.3)

The solutions for Mx(ξ) and My(ξ) can be obtained by solving the corresponding differential equations of
arbitrary order. It is supposed that

M+(ξ) = Mx(ξ) + iMy(ξ), (4.4)

with

I
(1−η)(1−γ)
0 M+(0) = I

(1−η)(1−γ)
0 Mx(0) + iI

(1−η)(1−γ)
0 My(0). (4.5)

Now we can merge two equations for x component and y component of the magnetization, discussed above
to provide

0D
γ,η
ξ (Mx(ξ) + iMy(ξ)) = µ̄0 (My(ξ)− iMx(ξ))− 1

ρ′2
(Mx(ξ) + iMy(ξ)) . (4.6)

By using equation (4.4), we have

0D
γ,η
ξ (M+(ξ)) = −iµ̄0M+(ξ)− 1

ρ′2
M+(ξ), (4.7)

Taking ST on both sides of equation (4.7), we get

S[M+(ξ)] =
q−η(γ−1)−1I

(1−η)(1−γ)
0 M+(0)

q−γ + a
, (4.8)
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where a = −
(
iµ̄0 + 1

ρ′2

)
.

Now taking inverse ST on both the sides of equation (4.8) and utilizing equation (4.4), we have

Mx(ξ) + iMy(ξ) = I
(1−η)(1−γ)
0 (Mx(0) + iMy(0))Eγ,γ−η(γ−1)(−aξγ). (4.9)

On comparing the real and imaginary parts, we get

Mx(ξ) = I
(1−η)(1−γ)
0 Mx(0)Eγ,γ−η(γ−1)(−aξγ), (4.10)

and

My(ξ) = I
(1−η)(1−γ)
0 My(0)Eγ,γ−η(γ−1)(−aξγ). (4.11)

4.1. Particular cases of fundamental outcomes

Hilfer derivative of fractional order has two very special cases as follows

(i) If put η = 1 then, Hilfer operator reduces into Caputo derivative and the fractional Bloch equation (3.3)
reduces into fractional Bloch equation pertaining to Caputo fractional derivative.

(ii) If we set η = 0 then, Hilfer derivative converts into RL derivative and fractional Bloch equation (3.3)
reduces into fractional Bloch equation with RL arbitrary order derivative. It should be noted that for RL

approach the integral type ICs I
(1−γ)
0+ Mx(0) = c1 = 0, I

(1−γ)
0+ Mz(0) = c2 = 0 and I

(1−γ)
0+ My(0) = c3 should

be taken [15, 25]. The same condition happens for 0 < η < 1 and0 < γ < 1, where the nonlocal ICs of

the type I
(1−η)(1−γ)
0+ Mx(0) = c1 = 0, I

(1−η)(1−γ)
0+ Mz(0) = c2 = 0 and I

(1−η)(1−γ)
0+ My(0) = c3 is observed

[15, 25].

5. Numerical simulation and discussion for fractional
Bloch model

Here, we discuss about Bloch equation pertaining to Hilfer operator. The analytical expressions for the
magnetization components (Mx,My,Mz) of Bloch equation are analyzed by applying a powerful technique i.e.
ST method. The general solutions of the magnetization components (Mx,My,Mz) are described in type of ML
function. The affect of Hilfer non-integer derivative on magnetization components (Mx,My,Mz) can be seen
simply via Figures 1–7.

We demonstrate the numerical results of magnetization components (Mx,My,Mz) at distinct values of γ
and η. In Figure 1a–c, we take η = 1 and γ = 1, 0.95, 0.90, 0.85. In Figures 2a and b we take η = 0 and
γ = 1, 0.95, 0.90, 0.85. In Figure 3a and b, we put the values as γ = η = 1, γ = η = 0.95, γ = η = 0.90, γ =
η = 0.85. Figure 4a–d represents the dynamic interrelation between the components Mx(ξ) and My(ξ) for
η = 1, γ = 1, 0.95, 0.90, 0.85. Figure 5a–c shows the dynamic interrelation between the components Mx(ξ) and
My(ξ) for η = 1, γ = 0.95, 0.90, 0.85. Figure 6a–c expresses dynamic relationship into components Mx(ξ) and
My(ξ) for γ = η = 0.95, γ = η = 0.90, γ = η = 0.85. Figure 7a–d shows the whole trajectory of magnetization in
three dimension (3D) for γ = 1, 0.95, 0.90, 0.85. The solution of fraction Bloch model is attained by employing
ST having the initial condition as Mx(0) = 0,My(0) = 100,Mz(0) = 0 and particular parameters as µ̄0 =
1, ρ′1 = 1(s)γ , ρ′2 = 20(ms)γ ,M0 = 100. Figures 1–7 demonstrates the important characteristic of magnetization
components of fractional Bloch equation w.r.t. time ξ at distinct order as well as type of Hilfer fractional
operator. Further, Figures 1–7 reveals that discussed system is strongly dependent on the order as well as type
of Hilfer operator. The crucial facts and novel nature of magnetization components (Mx,My,Mz) can be easily
observe at the various values of γ and η.
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Figure 1. Plots of system magnetization with respect to ξ at η = 1 for distinct values of γ (a)
Characteristic of Mx(ξ); (b) Behavior of My(ξ); (c) Nature of Mz(ξ).
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Figure 2. Plots of system magnetization with respect to ξ at η = 0 for several values of γ (a)
Characteristic of Mx(ξ); (b) Behavior of My(ξ).

Figure 3. Plots of system magnetization with respect to ξ for various values of γ and η (a)
Characteristic of Mx(ξ); (b) Behavior of My(ξ).
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Figure 4. 2D phase plane of solutions Mx(ξ) and My(ξ) at η = 1 having ρ
′

2 = 20(ms)γ , µ̄0 = 1
with Mx(0) = 0 and My(0) = 100 for (a) γ = 1, (b) γ = 0.95, (c) γ = 0.90 and (d) γ = 0.85.
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Figure 5. 2D phase plane of solutions Mx(ξ) and My(ξ) at η = 0 having ρ
′

2 = 20(ms)γ , µ̄0 = 1
with Mx(0) = 0 and My(0) = 100 for (a) γ = 1, (b) γ = 0.95, (c) γ = 0.90 and (d) γ = 0.85.
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Figure 6. 2D phase plane of solutions Mx(ξ) and My(ξ) at ρ
′

2 = 20(ms)γ , µ̄0 = 1 with Mx(0) =
0 and My(0) = 100 for (a) γ = η = 0.95, (b) γ = η = 0.90 and (c) γ = η = 0.85.
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Figure 7. 3D phase plane of M = (Mx,My,Mz) having ρ
′

2 = 20(ms)γ , ρ
′

1 = 20(s)γ , µ̄0 = 1
with Mx(0) = 0 in addition My(0) = 100 for (a) γ = 1, (b) γ = 0.95, (c) γ = 0.90 and (d)
γ = 0.85.
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6. Concluding remarks

Here, we have discussed new aspects of the Bloch equation pertaining to Hilfer fractional derivative. The
solutions of the magnetization components (Mx,My,Mz) for fractional Bloch equation have been analyzed
by applied an authentic Sumudu transform algorithm. The graphical behavior of magnetization components
(Mx,My,Mz) have been shown on many arbitrary order values. The relative analysis for magnetization compo-
nents (Mx,My,Mz) shows novel aspects about the studied fractional Bloch equation that was never evaluated
earlier for any type of Bloch equation.

Lastly, by observing all the key facts studied in all the sections and concluding statements, it would be very
beneficial when researchers, mathematician would consider the attained outcomes of this article into cogitation
when analyzing the results behind the Bloch equation details. The studied fractional Bloch equation system
provides basic moreover beneficial consequences to introduce new details in physical sciences. Further, new
investigations can be conducted to analyze its validity for more general and broader applications.
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