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1. Introduction

Fractional calculus plays a substantial role in different branches of physics, fluid mechanics,
diffusive transport, electrical networks, electromagnetic theory, biological sciences and groundwater
problems etc. [1-4]. Many researchers have modelled several physical phenomena using the
fractional-order differential equations. As we know that, solving a linear differential equation is
easier than that of nonlinear differential equations; therefore, numerous methods have been
recommended for solving such type of equations. Some of the numerical and analytical methods for
solving linear and nonlinear FDE are, Finite Element Method(FEM), time-space spectral method,
compact numerical method [7,18,19], Adomian Decomposition Method (ADM) [5,6], Variational
Iteration Method (VIM) [8-9], Homotopy Analysis Method (HAM) [10] and HPM [11]. Each of the
above methods has its own advantages and disadvantages.

Daftardar-Gejji and Jafari presented a powerful method, namely called the new iterative method
which works without any small or large parameter in the equation like other perturbation methods.
The proposed method has been used in literature for the solution of different nonlinear differential
equations [12,13].

In the present work, NIM has been extended to the solution of fractional order Roseau-Hyman
equation and system of Inhomogeneous fractional order partial differential equations. The fractional
order Roseau-Hyman equation has the following form [14-16].

3 2
Y (rt) 0 Y(g,t) YY) ox(r,t) +36Y(r,t) 0 Y(z,t)
or or or or

p , t>0, Q)

oY (r,t)
q

where, g is the parameter describes order the fractional derivative such that0 <q<1, t time,and r
represents spatial coordinate. Eq (1) has appeared in the study of the formation of patterns in liquid
drops.

The system of inhomogeneous fractional order partial differential equations has the following
form [17].

o'Y(r,t) ow(r,t) _

T or =Y(r,t) +w(r,t)=-2, .
Ow(rt) ox(rt) .

P + p Y(r,t) +w(r,t)=-2.

The whole paper is divided into six sections. The introduction and literature survey are given in
section 1, while section 2 is devoted to the basic definitions from the fractional calculus. The third
section contains the fundamental theory of a new iterative method for general fractional order PDE’s.
In section 4, the proposed method is tested upon fractional order Roseau-Hyman equation and system
of inhomogeneous fractional order partial differential equations. In section 5, the listed results are
compared with HPM, VIM, LVIM, and LADM solution, which show the precision of the planned
method. The conclusions of the paper are presented in the last section.
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2. Preliminaries

To investigate our problems with the help of NIM, we need some basic definitions from
fractional calculus.
Definition 1. The Riemann-Liouville’s (R-L) fractional integral is defined as

1 ¢ ol i
— | (r— f(&)d if «>0,t>0,
T @) Jy(r=¢) f(5)ds )
f (&) if =0,
where I denotes the gamma function,
oo —T
r'(p) = f e rP ldr p € C.
0

Definition 2. The Riemann-Liouville fractional derivative of function f (t) f with order a is defined

as

1 d" ,
fo(r):mdrnjo(r—g) f(&)dé  if @>0,t>0, (4)

where n is a positive integer which satisfiesn—1<a <n.
Definition 3. Fractional derivative of order « in the Caputo sense, is defined as:
For ne N,r > 0,t > —1land ¢ € C;:
nea| O .
I 6t"f(r) if n~-1<a<n, neN
DY f(r)= (%)

S(f(r)  ifaen.

Definition 4. If neN, n—1<a <n and f eC/”, u>-1 then

Ir“[Df‘f(r)]:r(r)+_nzl:f“)(§)ﬂ r>0 (6)

r(i+1)’ '

Remarks: Basic properties of fractional integration are, when f€C,, A>-1, «, =0 and
&= -1:

o« IO =1F©,

o (1m)rw = (1f1g)ro,

. I8t = T+ iy+a
r(y+a+1)
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3. New iterative method

The new iterative method is presented for fractional order partial differential equation as
follows:
Let us consider fractional order PDE’s

DEX(r,7)=¥(Y(r,7)+ f), (7)
subject to the initial condition
Y(r,0)=g(m), 8)

where W denotes nonlinear functions of Y . According to the fundamental idea of NIM, and using
Eq (8) above Eq (7) takes the form

(r,0) = g(m) + == [ ¥ (0, 1) ©)

Assuming that the solution of Eq (7) has series form
(r,t) = Y=o (1, 0). (10

r

1 a-
The decomposition of nonlinear operator ¥(Y(r.t)) =mf‘I’(Y(r,t)) dr as follows
0

W(:ZOY(r,t)j (Y(r,t)) +k§;{ (gnr,t)j—y/(gr(r,t))}. (11)

Hence general equation of (7) takes the following form
o) © k k-1
Y, ()= 3., ()= gm)+ (¥, (r) +z{w[zmmj—w(zrmmj} )
k=0 k=1 i=0 i=0
from the above we have

Y, (r,t)=g(m),
() w1, (),

Yz(r,t)=1//(Y0(r,t)+Yl (r,t))—t//(YO(r,t)), (13)
Yoo (2)=w (Yo (rt)+ X, (rt) 4t X, (rt)) =y (X (rt) + X, (rot) 4t X, (1))
k=1,23..
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4. Convergence

Let Y is the series solution achieved by NIM and E the error of the solution of (8). Clearly E,
satisfies (8), so, we can write

E(r) = f(r) +Y(E@)). (14)
The recurrence relation is given as,
E,=f,
E, = N(E,), (15)

E..=N(E,+E +E,+..+E),n=123 4.
If [N(r)—N(y)|<k|x-y|,0<k <1, then

E,=f,
[Efl=[NEo)|<K]E], (16)
[E2[[=IIN(Es + ED = N(Eo)| < k[[E,[| < k*[[E]

|Ey.a] =[INCE; + ..+ E, )= N(Ey + ..+ E, . )|
<k||E,[|<k*|E,[|,n=0,1,2,3...........

Thus,E, ., —0,as n—o, which proves the convergence of the new iterative method.

n+1

5. Numerical examples

To illustrate efficiency and precision of the NIM, the following fractional order differential
equations are taken as test examples. All computational work has been done with the help of
Mathematica 10.

5.1. Fractional order Roseau-Hyman equation

First, we consider time fractional Roseau-Hyman equation given as

q 3 2
o'Y(r,t) =Y(r,t)a Y(Z,t) () 6Y(r,t)+38Y(r,t) 0 Y(Z,t)’ (17)
ott or or or or
Subject to initial condition
(r,0) = _?88 cos? G) (18)

For special case =1, exact solution for Eq (17) can be found in [14] and & is an arbitrary constant
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Y(r,t)= %Bgcosz (r—TgtJ (19)

By applying | “to both sides Eq (17), we get the equivalent integral form of (16) is

o°Y(r,t) ox(r,t) _ox(r,t) 8°Y(r,t)
Y(r,t):YO(r,t)+IQ(Y(r,t)T+Y(r,t) o +3 p» pra (20)
The nonlinear term is
3 2
N () = 19 1(r ) X0y g XY g XLY XY ) 21)
or or or or
Using NIM formulation discussed in section 3, we get the approximations as
8 ; 252t“sin(£j
Y,(r,t)=—ecos’| — |, Y, (rt)=———2,
o(r1)=5-ecos [4) (=" 3r )
g™ cos[;j &'t*sin (;j
Y,(rt)=——F-, Y,(rt)=——>=2,
(1D 3r(+2q) (1Y 6I°(1+30) 22)
gt cos(g) £°t*sin (;)
Y,(rt)=—=, Y. (rt)=————m>—=,
(1) 12T (1+ 4q) (1Y) 24T (1+5q)
£'t* cos (;j £%"sin (;j
Y. (rt)=———=, Y. (rit)=———=....
("= Z8r s eq) ()= Geras7a)
The expression for the solution of Y(r,t) is given as
- n=7
Y(r) =Y, (r,t)+ > Y(r,t). i=123,.. (23)
i=1

Forqg =1.0, the seventh order NIM solution for Roseau-Hyman equation is

Y(r,t)=—§gcosz(£j+lg3t2 cos(i)—igst“cos(i}r 1 g7t6cos(£] —Egztsin(ij
3 4) 6 4) 288 4 ) 34560 4 3 4
Jrig“ﬁsin(i)—L get"’sin(ﬁj — gst7sin(£j :
36 4 ) 2880 4 483840 4

Similarly for q=0.7, the seventh order NIM solution is
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T(r,t) = —%g cos? G) +0.268347737615720845% cosGJ —0.0177525012240548065°% % cos(%) +
0.000639488977537147 1¢"t199990599395999 ¢y Gj —0.73369827034911045%"" sin Gj +

0.07583961083057564 (2055589999999 g Gj —0.0035821560860175£°t* sin Gj +

0.00010286014612875396.5°t* 8999999999999 gy (%j

5.2. Fractional Order inhomogeneous system
Consider time fractional inhomogeneous system given as [17]

o"Y(r,t) ow(r,t)

-Y(r,t)+w(r,t)=-2,
= ~ Xy

My (r,t) OY(r,t (24)
l/(;t(q’ )+ ér’ )—Y(r,t)+://(r,t)=—2.
With initial condition as
Y =1+e'
{ (r,0)=1+e", (25)
w(r,0)=-1+¢".
Forq =1, exact solution for system (23) is [17]
Y :1 r+t
(rit)=1+e"", (26)
w(rt)=—1+e""
By applying | %to both sides of Eq (24), we get the equivalent integral form of (23) given as
Y(r,t)=Y,(r,t)+ I“(M+Y(r,t)—y/(r,t)—2j,
or
(27)
() = (1) +1° (%w(r,t)—w,t) —2}
Here nonlinear terms are in Eq (25)
NI (r, 1) = l‘*(ww(r,t)—w(r,t)—zj,
r (28)

oY(r,t)
or

N(w(r,t)):lq( +Y(r,t)—w(r,t)—2j.
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Using NIM formulation discussed in section 3, we get the approximations as

Y (rt)=1+¢" rary-_t
o(rt)y=1+¢", 3(r')—m:
1 et
lt = r’ 1t =- ]
Wo(r ) +€ l//z(r ) T(L+3q)
e't’ et
Y,(rt)=—, Y,(rt)=——,
! r(l+q) ! 1+ 4q) (29)
(rt):_i (rt):i
YT T ) Vel T Ty ag)
ry2q r{5q
(= —— T = —
I'1+2q) I'(1+5q)
et et™
A)=——, ) =— .
w,(r,t) T(1+ 2q) ws(r,t) T(1+50)
The expression for the solution of Y(r,t)and w(r,t)is given as
n=5
Y(r,t)=>_Y(r,t)
= i=12.3,... (30)

P = 3w ().

- .etd e"t* e"t* e"t* et™
Y(r,t)=1+e"+ + + + :
rd+q) r@+2g) r@+3q) r@a+4g r@E+5q)
e't’ et et et et

w(rt)=-1+e" —

F(l+q) T@+2q) TA+3q) T(+4q) T@+5q)

6. Results and discussion

We implemented NIM for finding the approximate solutions of Roseau-Hyman and fractional
order inhomogeneous partial differential equations. The results obtained by NIM for Roseau-Hyman
and fractional order inhomogeneous partial differential equations with VIM, HPM and LADM in the
form of tables and figures in section 3.

Table 1 shows the approximate solution obtain by NIM for Roseau-Hyman equation at different
values of g Table 2 shows the comparison of absolute errors of NIM with VIM and HPM for
Roseau-Hyman equation. Table 3 shows the numerical solution obtained by the proposed method for
y(r,t) and y(r,t) inhomogeneous partial differential equations at q=0.5. Similarly Table 4 shows the
residuals obtain by the NIM y(r,t) and w(r,t) inhomogeneous partial differential equations at g=0.5. It
is clear that for the fractional order inhomogeneous system, NIM has the same solution like LADM
and LVIM, mention in [17]. That is why, we listed only NIM solution as well as residual obtain by
NIM in Tables 3 and 4.
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Table 1. NIM Solution for Eq (17) at different values of g at ¢=1.0.

Solution Solution Solution Exact
[ t q=0.7 0=0.9 g=1.0 g=1
0.2 -1.302026382 —1.296886512 —1.294567416 —1.294567416
/4 0.4 —1.316024885 —1.315094415 -1.313795239 -1.313795239
1.0 —1.320505052 —1.325168954 -1.326557167 -1.326557168
0.2 -1.177509671 —1.165865484 -1.161042461 -1.161042461
/2 0.4 -1.216132042 —1.208017039 -1.203223634 -1.203223634
1.0 -1.241129500 ~1.241413136 -1.240043707 -1.240043707
0.2 —0.975221742 —0.958845962 —0.952253273 —0.952253273
3l 0.4 —1.032588076 —1.018523975 -1.010966095 -1.010966095
1.0 —1.074297190 -1.070157378 -1.066238790 -1.066238790
0.2 —0.725959101 —0.707344790 —0.699986113 —0.699986113
T 0.4 —0.793335893 —0.775463826 —0.766292088 —0.766292088
1.0 —0.845406828 —0.837473817 —0.831602639 —0.831602639
Table 2. Comparison of absolute errors obtained by NIM with HPM and VIM for, g=1.0
at ¢=1.0for Eq (17).
r=nx r =3z/2
t HPM [14] VIM[14] NIM HPM [14] VIM[14] NIM
0.1  1.0000x107™ 5.0000x107* 2.2204x107% 1.0000x107** 2.0000x107% 5.5511x107
0.2 1.7360x10° 5.0000x107%° 4.2188x107% 1.2378x10°° 3.0000x107% 4.7185x107
03 1.3182x10° 5.0000x107%° 1.4099x107* 9.4375x10°° 3.0000x107%° 1.1491x107
0.4  55542x10°® 1.0000x10°%° 1.8807x10 3.9925x10°® 9.0000x10 1.1549x10°%
05  1.6948x107 4.0000x107% 1.4008x107 1.2233x1077 1.9000x10°° 6.8706x107*
06 4.2165x1077 7.0000x107%° 7.226x107 3.0561x107" 6.1000x10°° 2.9458 x1072
0.7 9.1117x1077 1.2000x10°° 2.8266x107% 6.6309x1077 1.8300x10°® 1.0081x107%
08  1.7761x10° 2.1000x10°° 9.4025x107* 1.2978x10° 3.9300x10°® 2.9252x10°
09 3.1998x10° 4,0000x10°° 2.7141x107% 2.3474%x10°° 8.2200x10°® 7.4833x10°"
1.0 54173x10° 8.6000x10°° 7.0042x107% 3.9903x10°° 1.5230x107" 1.7332x107%°
Table 3. The approximate solution obtained by the NIM, for Eq (24) at g=0.5.
g=0.5 g=0.5
t r NIM Solution y(r,t) NIM Solution w(r,t) Residual y(r,t) Residual w(r.t)
-4 1.0240330988 —0.9855237049 -3.08085x10°° -3.08085x10°°
-3 1.0655328735 —0.9606493501 —8.37462x10°° -8.37462x10°°
-2 1.1775819155 —0.8930338435 —2.27646x10°° —2.27646x10°°
005 -1  1.4827176940 —0.7092355840 —6.18806x10°° —6.18806x10°°
2.3121627361 —0.2096210694 -1.68209x107* -1.68209x10™*
45668281215 1.14847226845 -4.57239%x10™* —4.57239%x107
10.695644068 4.84015425729 -1.24290x10°° -1.24290x10°°
-4 1.0272304344 —0.9867467269 -1.74279x10°° -1.74279x10°°
0.1 -3 1.0740199950 —0.9639739783 —4.73740%x10°° —4.73740%x10°°
-2 1.2012072075 —0.9020711198 -1.28776x10™* -1.28776x10™
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g=0.5 g=0.5
t r NIM Solution y(r,t) NIM Solution w(r,t) Residual y(r,t) Residual w(r.t)
-1 1.5469378961 —0.7338017046 -3.50049x107* -3.50049x107*
0.1 0 2.4867313443 —0.2763980109 -9.51533x10™* -9.51533x10™*
5.0413547970 0.9669564137 —2.58653x10°° —2.58653x10°°
2 11.985541307 4.3467356902 —7.03093x10°° —7.03093x10°°

Table 4. Absolute errors obtained by 5™ order approximate solution of NIM for Eq (24) at g=1.0.

NIM Solution y(r,t) NIM Solution w(r,t) Absolute Error y(r,t)  Absolute Error w(r,t)

-4 1.0192547017 —0.9825776253 2.886>10"° 2.664>10"°
-3 1.0522339705 —0.9526410756 7.771<10°7 7.660%<10 "
-2 1.1422740715 —0.8712655064 2.131x10™* 2.098x107
0.005 -1  1.3867410234 —0.6500622508 1.563x10™ 5.662x107"
0 2.0512710963 —0.0487705754 4.241x107% 1.540x107*
1 3.8576511180 1.5857096593 1.151x107* 4.187x107"
2 8.7679011063 6.0286887558 1.138x10* 1.139x107%
-4 1.0202419114 —0.9834273245 3.679x10°" 3.588x107"
-3 1.0552322005 —0.9549507976 1.000x10* 9.755x107"
-2 1.1495686192 —0.8775435717 2.718x107% 2.651x107%
0.1 -1 1.4065696597 —0.6671289162 7.391x107* 7.209x107%
0 2.1051709180 —0.0951625819 2.009x10™ 1.959x107%
1 4.0041660238 1.4596031112 5.461x10™ 5.326x107"
2 9.1661699124 5.6858944442 1.484x107% 1.447x107%

Figures 1-4 show the 3D plots obtain by NIM for y(r,t) and exact solution for y(rt) of
Roseau-Hyman equation respectively. Figures 5 and 6 shows the 2D plot of exact verses NIM
solution and convergence of NIM for different values of q for (r,t) respectively. Similarly, Figures
7 and 8 show, 2D graph for residual obtained by the NIM for Roseau-Hyman equation for g=0.5 and
0.7 respectively.

Figures 9-12 show the 3D plots obtain by NIM for y(r,t) and exact solution of inhomogeneous
partial differential equations respectively at different values of g. Figures 13 and 14 show the 2D plot
of exact verses NIM solution and convergence of NIM for different values of q for y(r,t) part of
inhomogeneous partial differential equation respectively.

Figure 1. NIM solution for Eq (17) at g =0.5.

AIMS Mathematics Volume 6, Issue 2, 1348-1365.
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Figure 5. NIM solution verses exact solution for Eq (17) at t=0.1.
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Figure 6. NIM solution for Eq (17) for different values of g at t=0.1.
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Figure 7. Residual obtained by NIM for Eq (17) t=0.1.
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Figure 10. NIM Solution of y(r,t) for Eq (24) when g=0.7.
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Figure 12. Exact Solution of y(r,t) for Eq (24).
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Figure 13. NIM solution of y(r,t) verses exact solution for Eq (24) at t=0.1.
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Figure 19. NIM solution of w(r,t) verses exact solution for Eq (24) at t=0.1.
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Figure 20. NIM solution of y(r,t) for Eq (24) for different values of q, at t=0.1.

Figures 15-18 show the 3D plots obtain by NIM for w(r,t) and exact solution of inhomogeneous
partial differential equations respectively at different values of g. Figures. 19 and 20 shows the 2D
plot of exact verses NIM solution and convergence of NIM for different values of q for y(r,t) part of
inhomogeneous partial differential equation respectively.

From the numerical values and graphs, it is clear that NIM is very powerful tool for solution of
coupled fractional order system of partial differential equations. The accuracy of the NIM can further
be increased by taking higher order approximations.

7. Conclusion

In the current article, we presented some FDE’s arising in modern sciences. A novel and classy
technique which is identified as NIM, is applied for fractional order problems. For pertinence and
unwavering quality of the proposed method, the fractional order Roseau-Hyman equation and the
system of fractional order non-homogeneous equations. It has been explored through graphical and
tabulated results that the current method gives a precise and meriting investigation about the physical
occurring of the problems. Also, the current method is favored when contrasted with other technique
in light of its better pace of convergence. This course rouses the scientists towards the execution of
the present method for other non-linear FDE’s.
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