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1. Introduction and Preliminaries

The quasi-pseudo metric space, which is obtained by relaxing the symmetry condition, is one of
the refinements of the notion of metric space. In the point view of fixed point theory, the lack of the
symmetry axiom leads to consider the orientation in this new structure. Roughly speaking, fixed points
for mappings are usually limits of the Picard sequence, which is constructed by the recursive iteration
of the operator by starting with an arbitrarily chosen point. On the other hand, in this new structure,
the distance function is not symmetric. Consequently, for an arbitrary initial value ξ0, the value of the
distance from its n-th iteration, Tnx0, to its limit, say x∗ (if exists), and the value of the distance from its
limit, x∗ (if exists), to its n-th iteration, Tnx0, need not be equal. Under this motivation, the notions of
start-point, end-point, ε-start-point, and ε-end-point were defined in [1]. In other words, fixed point has
been investigated in the oriented structure, quasi-pseudo metric space, under the names of start-point
and end-point. It is clear that, under the condition symmetry, the start-points and end-points coincide
with the fixed points [2–5].

An initial result in the theory of start-point was given in [1] in order to extend the idea of fixed
points for multi-valued mappings defined on quasi-pseudo metric spaces. A series of three papers,
see [1,6,7], has given a more or less detailed introduction to the subject. The theory of start-point came
to extend the idea of fixed points for multi-valued mappings that are defined on quasi-pseudo metric
spaces. More detailed introduction to the subject can be read in [1,6–13].
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In this paper, we investigate the existence of start-points and end-points for a class of mappings,
which are known as generalized weakly contractive multi-valued maps, in the context of left
K-complete quasi-pseudo metric space.

Intuitively, as we mentioned above, the appropriate framework for the theory of start-point
is the quasi-metric setting. For the sake of completeness, we recollect, in the present manuscript,
the necessary notations and fundamental concepts from the literature. We first recall the basic notions
regarding quasi-metric spaces as well as some additional definitions that are related to multi-valued
maps on these spaces[14–16]. For a general approach in metric fixed point theory for multi-valued
operators, see [17–19].

Definition 1 (See [1]). Let q : X × X → [0, ∞) be a function where X is a non-empty set. The function is
called a quasi-pseudometric (respectively, T0-quasi-metric) on X if (q1) and (q2) (respectively, (q1)

∗ and
(q2)) hold, where

(q1) q(ξ, ξ) = 0 for all ξ ∈ X,
(q1)

∗ q(ξ, η) = 0 = q(η, ξ) implies ξ = y, and
(q2) q(ξ, ζ) ≤ q(ξ, η) + q(η, ζ) for all ξ, η, ζ ∈ X.

Note that the condition (q1)
∗ is known as the T0-condition. Furthermore, for a quasi-pseudo metric

q on X, the function q−1 : X × X → [0, ∞), which is defined by q−1(ξ, η) = q(η, ξ) for all ξ, η ∈ X,
forms a quasi-pseudo metric on the same set X and is named as the conjugate of q. For a T0-quasi-metric
d on X, a distance function dq : X × X → [0, ∞), defined by dq(ξ, η) = max{q(ξ, η), q(η, ξ)} for all
(ξ, η) ∈ X× X, becomes a metric on X.

Remark 1. In some sources, the quasi-pseudo metric is called hemi-metric (see [20]). Moreover, T0-quasi-metric
is known also as a quasi-metric in the literature.

In what follows, we consider three well-known examples in order to illustrate the validity of
Definition 1.

Example 1 (Truncated difference). Set R+
0 := [0, ∞) and δ : R+

0 ×R+
0 → R+

0 be given, for any ξ, η ∈ X, by

δ(ξ, η) = max{0, ξ − η}.

Under these conditions, δ forms a T0-quasi-metric. Further, the pair (R+
0 , δ) becomes a T0-quasi-metric space.

Example 2 (cf. [21]). Let A, B be two non-empty set, such that A ∩ B 6= ∅. Set X = A ∪ B and
q : X× X → [0, ∞) be given, for any a, b ∈ X, by

q(a, b) =


0 if a = b,
3
2 if a ∈ A, b ∈ B,
2 if b ∈ A, a ∈ B,
1 otherwise.

Under these conditions, q forms a T0-quasi-metric. Further, the pair (X, q) becomes a T0-quasi-metric space.

Example 3 (cf. [22]). Set I := [0, 1], and define δ : I× I→ R+
0 be defined as

δ(ξ, η) =

{
ξ − η, : ξ ≥ η,
1, : ξ < η.

Under these conditions, δ forms a quasi-pseudo metric that is obviously not T0.
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For a quasi-pseudo metric space (X, q), we define an open ε-ball at a point ξ as follows: For ξ ∈ X
and ε > 0,

Bq(ξ, ε) = {η ∈ X : q(ξ, η) < ε}.

Let (X, q) be a quasi-pseudo metric space. We say that the sequence {ξn} is q-convergent to ξ (or
left-convergent to ξ), if

q(ξn, ξ) −→ 0,

and we denote this fact by ξn
q−→ ξ. More precisely, {ξn} converges to ξ with respect to τ(q).

In a similar manner, a sequence {ξn} is q−1-convergent to ξ (or right-convergent to ξ), if

q(ξ, ξn) −→ 0, (1)

fact denoted by ξn
q−1

−→ ξ. Actually, {ξn} converges to ξ with respect to τ(q−1)

A sequence {ξn}, in the setting of a quasi-pseudo metric space (X, q), is said to be dq-convergent
to ξ in the case the sequence converges to ξ from left and right, which is,

ξn
q−→ ξ and ξn

q−1

−→ ξ.

Moreover, it is denoted as ξn
dq−→ ξ (or, ξn −→ ξ, if there is no confusion).

Remark 2. From the definition of dq-convergence, we have

dq-convergence implies q-convergence.

The reverse implication does not hold in general, as demonstrated in the following example.

Example 4 (cf. [22]). Set I := [0, 1], and define q : I× I→ R+
0 be defined as

q(ξ, η) =

{
0 : ξ ≤ y
1 : ξ > y

Subsequently, it is evident that (X, q) forms a quasi-pseudo metric space.
Consider

ξn =

{
1
2 + 2−n : n is odd
1
3 + 3−n : n is even

It is easy to see that the sequence {ξn} is right-convergent (to 1/3) and left-convergent (to 1), but not
dq-convergent.

Definition 2 (See e.g., [1]). A sequence {ξn} in a quasi-pseudo metric space (X, q) is called left K-Cauchy if
for every ε > 0, there exists n0 ∈ N, such that

for all n, k : n0 ≤ k ≤ n q(ξk, ξn) < ε;

Similarly, we define right K-Cauchy sequences and observe that a sequence is left K-Cauchy with
respect to q if and only if it is right K-Cauchy with respect to q−1.

Example 5 (See [8]). Set I := (0, 1), and define δ : O×O→ R+
0 be defined as

q(ξ, η) =

{
ξ − η : ξ ≥ η

1 : ξ < η
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Let us define the sequence {ξn} given by ξn = (n + 1)−1. Subsequently,

q(ξr, ξs) < r−1

for all s > r; hence, {ξn} is left K-Cauchy. However, {ξn} is not right K-Cauchy, since whenever
ξ ∈ X, q(ξm, ξ) = 1 after a certain stage. On the other hand, if one considers the sequence {ηn} where
ηn = 1− (n + 1)−1, one could easily see that it is right K-Cauchy.

Definition 3 (See [1,13]). We say that (X, q) is left-K-complete if any left K-Cauchy sequence is q-convergent.
Furthermore, we say that quasi-pseudo metric space (X, q) is Smyth complete if any left K-Cauchy sequence is
dq-convergent.

It is easy to see that every Smyth-complete quasi-metric space is left K-complete [13], and the
converse implication does not hold.

Definition 4 ([1]). We say that a T0-quasi-metric space (X, q) is said to be bicomplete if the corresponding
metric dq on X is complete.

Example 6. Let us again consider Example 1. In that case, for any ξ, η ∈ X = [0, ∞), we have that
dq(ξ, η) = max{ξ− η, η− ξ} = |ξ− η|. We know that (R, | . |) is a complete metric space; hence, ([0, ∞), | . |)
is an example of bicomplete T0-quasi-metric space.

However, if we take the quasi-pseudo metric that is defined in Example 3, it is clear that (X, δ) is not
bicomplete, since (X, δ) is not even T0.

Definition 5 ([1]). Let A be a subset of a quasi-pseudo metric space (X, q). We say that A is bounded if there
exists a ∆ > 0, such that q(ξ, η) < ∆ whenever ξ, η ∈ A.

Example 7.

1. Let X = {a, b, c}. The map q : X × X → [0, ∞) defined by q(a,b) = q(a,c) = 0, q(b,a) = q(b,c) = 1,
q(c, a) = q(c, b) = 2 and q(ξ, ξ) = 0 for all ξ ∈ X is a bounded T0-quasi-metric on X. Indeed, for any
ξ, η ∈ X, q(ξ, η) ≤ 2.

2. The quasi-pseudo metric presented in Example 4 is bounded, as for any ξ, η ∈ X, q(ξ, η) ≤ 1.

Let (X, q) be a quasi-pseudo metric space. We set P0(X) := P0(X) \ {∅}, where P0(X) denotes
the power set of X.

Pcb(X) : = {A ∈P0(X) : A closed and bounded},
Pk(X) : = {A ∈P0(X) : A compact },
Pc(X) : = {A ∈P0(X) : A closed }.

For ξ ∈ X and A ∈P0(X), we set:

q(ξ, A) := inf{q(ξ, a), a ∈ A}, q(A, ξ) := inf{q(a, ξ), a ∈ A}.

We also define the map H : P0(X)×P0(X)→ [0, ∞] by

H(A, B) = max

{
sup
a∈A

q(a, B), sup
b∈B

q(A, b)

}
whenever A, B ∈P0(X).

Subsequently, the distance function H is called the Hausdorff extended quasi-pseudo metric on P0(X).
Notice that, here, the word "extended" is use to emphasize that H can attain the value ∞ as it appears
in the definition.
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Finally, we recall some concepts that are related to the classical fixed point notions in the setting
of a quasi-pseudo metric space.

Definition 6 (cf.[1]). Let (X, q) be a quasi-pseudo metric space and F : X →P0(X) be a multi-valued map.
Suppose that H is a Hausdorff quasi-pseudo metric on P0(X). We say that ξ ∈ X is

(i) a fixed point of F if ξ ∈ Fξ,
(ii) a strict fixed point if Fξ = {ξ},
(iii) a start-point of F if H({ξ}, Fξ) = 0, and
(iv) an end-point of F if H(Fξ, {ξ}) = 0.

In this context, we can also write H(η, Fη) := H({η}, Fη), η ∈ X. Notice that H({η}, Fη) =

sup
ψ∈Fη

q(η, ψ), while H(Fη, {η}) = sup
ψ∈Fη

q(ψ, η).

2. Main Results

In this section, we give a new start-point theorem for a generalized weakly contractive
multi-valued map.

As we dive into the topic, it could be very interesting to point out this known fact, which is always
good to remember. That is, if ξ is both a start-point and an end-point of a multi-valued F, then ξ is a
fixed point of F. In fact, Fξ is a singleton. Observe that a fixed point of a multi-valued F need not be a
start-point or an end-point. We provide the following three examples in order to illustrate that fact.

Example 8. Consider the T0-quasi-pseudo metric space (X, q), where X = {a, b, c} and q defined by
q(a,b) = q(a,c) = 0, q(b,a) = q(b,c) = 2, q(c,a) = q(c,b) = 4 and q(ξ, ξ) = 0 for ξ = a, b, c. The multi-valued
map F : X → P0(X) is considered by Fa = {a, b} and Fξ = X \ {ξ} for ξ = b, c. Obviously, a is a fixed
point for F. Moreover, since

H({a}, Fa) = max{q(a, a), q(a, b)} = 0,

we derive that a is a start-point, but, since

H(Fa, {a}) = max{q(a, a), q(b, a)} = 2 6= 0,

we derive that a is not an end-point. Furthermore, there is no other start-point or end-point for F.

Example 9. Consider the T0-quasi-pseudo metric space (X, q), as defined in the previous example (Example 8).
The multi-valued map F : X →P0(X) is considered by Fξ = {a, b} for ξ = a, b, c. Obviously, a, b are fixed
points for F. Again, a is a start-point, but not an end-point. Observe this time around that b is an end-point,
but not a start-point.

Example 10. Consider the T0-quasi-pseudo metric space (X, q), as defined in the previous example (Example 8).
The multi-valued map F : X →P0(X) is considered by Fa = {b}, Fb = {c}, Fc = {a}. The map F does not
have any fixed point. However, we can easily that a is the only start-point and c the only end-point for F.

Remark 3. So far in the examples, we have been obtaining fixed points. Let us observe what happens when we
are in the presence of a strict fixed point.

Example 11. Consider the T0-quasi-pseudo metric space (X, q), where X = {a, b, c} and q defined by q(a, b) =
q(a, c) = q(b, c) = 0, q(b, a) = 2, q(c, a) = q(c, b) = 4 and q(ξ, ξ) = 0 for ξ = a, b, c. We define, on X,
the multi-valued map F : X →P0(X) by Fa = {a} and Fb = Fc = {b, c} for ξ = b, c.

H({a}, Fa) = q(a, a) = 0,



Axioms 2020, 9, 141 6 of 11

and
H(Fa, {a}) = q(a, a) = 0,

i.e., a is is both a start-point and an end-point for F.
The point b is both a fixed point (which is not strict) and end-point for F, while c is neither a (strict) fixed

point nor a start-point nor an end-point for F.

In fact, the above example illustrates the following fact:

Lemma 1. Let X be non-empty set and H the Hausdorff quasi-pseudo metric that is derived by a quasi-pseudo
metric q. Let F : X →P0(X) be a multi-valued map. If ξ ∈ X is a strict fixed point, then ξ is both a start-point
and an end-point.

Proof. The result is immediate, since, for Fξ = {ξ}, we have

H({ξ}, Fξ) = q(ξ, ξ) = 0 = q(ξ, ξ) = H(Fξ, {ξ}) = 0.

We begin with the following intermediate result.

Lemma 2. Let (X, q) be T0-quasi-metric space and A ⊂ X. If A is a compact subset of (X, dq), then it is a
closed subset of (X, q). That is, Pk(X) ⊂Pc(X).

Proof. Let {ξn} be a sequence in A, such that q(ξ, ξn) → 0 for some ξ ∈ X. Because A is a compact
subset of (X, dq), there exists a subsequence {ξnk} of {ξn} and a point ζ ∈ A, such that dq(ζ, ξnk )→ 0.
Thus, we have q(ξnk , ζ)→ 0. While using the triangle inequality, we have

q(ξ, ζ) ≤ q(ξ, ξnk ) + q(ξnk , ζ).

Letting k→ ∞ in above inequality, we obtain ξ = ζ and ξ ∈ A. Thus, A is a closed subset of (X, q).

The concept of weakly contractive maps that appeared in [23] (Definition 1) is one of the
generalizations of contractions on metric spaces. In [23], the authors defined such maps for single
valued maps on Hilbert spaces and proved the existence of fixed points. Later, it was shown that most of
the results of [23] still hold in any Banach space, see e.g., Rhoades[24–29]. As it is expected, this notion
was extended to multi-valued maps and it was characterized in the setting of quasi-metric spaces.

In the literature, one of the useful auxiliary function is the comparison function that is initiated
by [30], and, later, discussed and investigated densely by Rus [31] and many others. A function
ϕ : [0, ∞)→ [0, ∞) is called a comparison function [30,31] if it is increasing and ϕn(t)→ 0 as n→ ∞
for every t ∈ [0, ∞), where ϕn is the n-th iterate of ϕ. A simple example of such mappings is ϕ(t) = kt

n ,
where k ∈ [0, 1) and n ∈ {2, 3, · · · }.

Let Γ be the family of functions γ : [0, ∞)→ [0, ∞) satisfying the following conditions:

(Γ1) γ is nondecreasing;

(Γ2)
+∞

∑
n=1

γn(t) < ∞ for all t > 0.

Subsequently, a function φ ∈ Γ is called (c)-comparison function, see also [31,32].

Lemma 3 ([31]). If γ : [0, ∞)→ [0, ∞) is a comparison function, then

1. each iterate γk of γ, k ≥ 1 is also a comparison function;
2. γ is continuous at 0; and,
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3. γ(t) < t for all t > 0.

The listed properties above are also valid for (c)-comparison functions, since the class of
(c)-comparison functions is a subclass of comparison functions.

For our own purpose, we introduce the (c)∗-comparison function, as follows:

Definition 7. A function γ : [0, ∞)→ [0, ∞) is called a (c)∗-comparison function if

(γ1) γ is nondecreasing with γ(0) = 0 and 0 < γ(t) < t for each t > 0; and,

(γ∗2 ) for any sequence {tn} of (0, ∞),
∞
∑

n=1
γ(tn) < ∞ implies

∞
∑

n=1
tn < ∞.

Definition 8. Let (X, q) be T0-quasi-metric space.

1. A multi-valued map F : X →P0(X) is called weakly contractive if there exists a (c)∗-comparison function
γ, such that, for each ξ ∈ X there exists η ∈ Fξ satisfying

H(η, Fη) ≤ q(ξ, η)− γ(q(ξ, η)). (2)

2. A single-valued map f : X → X is called weakly contractive if there exists a (c)∗-comparison function γ,
such that

q( f ξ, f η) ≤ q(ξ, η)− γ(q(ξ, η)), for every ξ, η ∈ X. (3)

The following is the main result of the paper.

Theorem 1. Let (X, q) be a left K-complete quasi-pseudo metric space, F : X → Pcb(X) be a weakly
contractive multi-valued mapping. Subsequently, F has a start-point in X.

Proof. Let ξ0 ∈ X be arbitrary. By (2), there exists ξ1 ∈ Fξ0, such that, for every ξ2 ∈ Fξ1, we have

q(ξ1, ξ2) ≤ H(ξ1, Fξ1) ≤ q(ξ0, ξ1)− γ(q(ξ0, ξ1)).

Again, by (2), there exists an element ξ2 ∈ Fξ1, such that, for every ξ3 ∈ Fξ2, we have

q(ξ2, ξ3) ≤ H(ξ2, Fξ2) ≤ q(ξ1, ξ2)− γ(q(ξ1, ξ2)) ≤ q(ξ1, ξ2) ≤ H(ξ1, Fξ1).

Continuing this process, we can find a sequence {ξn} ⊂ X, such that, for n ∈ {0, 1, 2, · · · },
we have

ξn+1 ∈ Fξn

and

q(ξn+1, ξn+2) ≤ H(ξn+1, Fξn+1) ≤ q(ξn, ξn+1)− γ(q(ξn, ξn+1)) ≤ q(ξn, ξn+1) ≤ H(ξn, Fξn).

Thus, the sequence {q(ξn, ξn+1)} is non-increasing and so we can conclude that
lim

n→∞
q(ξn, ξn+1) = l for some l ≥ 0. We show that l = 0. Suppose that l > 0. Subsequently, we have

q(ξn, ξn+1) ≤ q(ξn−1, ξn)− γ(q(ξn−1, ξn)) ≤ q(ξn−1, ξn)− γ(l),

and so
q(ξn+N , ξn+N+1) ≤ q(ξn−1, ξn)− Nγ(l),

which is a contradiction for N large enough. Thus, we have

lim
n→∞

q(ξn, ξn+1) = 0.
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For m ∈ N with m ≥ 3, we have

q(ξm−1, ξm) ≤ q(ξm−2, ξm−1)− γ(q(ξm−2, ξm−1)) · · ·
≤ q(ξ1, ξ2)− γ(q(ξ1, ξ2))− · · · − γ(q(ξm−2, ξm−1)).

Hence, we get

m−2

∑
k=1

γ(q(ξk, ξk+1)) ≤ q(ξ1, ξ2)− q(ξm−1, ξm).

Letting m→ ∞ in above inequality, we obtain

∞

∑
k=1

γ(q(ξk, ξk+1)) ≤ q(ξ1, ξ2) < ∞,

which implies, using (γ∗2), that

∞

∑
k=1

q(ξk, ξk+1) < ∞.

We conclude that {ξn} is a left K-Cauchy sequence. On account of the left K-completeness,

there exists ξ∗ ∈ X, such that ξn
q−→ ξ∗.

Given the function hξ := H(ξ, Fξ), observe that the sequence {hξn} = {H(ξn, Fξn)} is decreasing
and it converges to 0. Recall that h is τ(q)-lower semicontinuous (as supremum of τ(q)-lower
semicontinuous functions), which yields

0 ≤ hξ∗ ≤ lim inf
n→∞

hξn = 0.

Hence, hξ∗ = 0, i.e. H({ξ∗}, Fξ∗) = 0. This completes the proof.

Remark 4. It is clear that, if we replace the condition (2) by the dual condition

H(Fη, η) ≤ q(η, ξ)− γ(q(η, ξ)), (4)

then the conclusion of Theorem 1 would be that the multi-valued function F possesses an end-point. Moreover for
the multi-valued function F to admit a fixed point, it is enough that

Hdq(Fη, η) ≤ min{q(ξ, η)− γ(q(ξ, η)), q(η, ξ)− γ(q(η, ξ))}, (5)

where

Hdq(A, B) = max

{
sup
a∈A

dq(a, B), sup
b∈B

dq(A, b)

}
whenever A, B,∈P0(X).

If let γ(t) = (1− k)t for k ∈ [0, 1) in Theorem 1, then we obtain the following version of Nadler’s
theorem in the setting of left K-complete quasi-pseudo metric space.

Theorem 2. Let (X, q) be a left K-complete quasi-pseudo metric space and F : X →Pcb(X) be a multi-valued
mapping. If there exists k ∈ [0, 1), such that, for each ξ ∈ X, there exists η ∈ Fξ satisfying

H(η, Fη) ≤ kq(ξ, η),

then F possesses a start-point in X.

We conclude this part of the paper with the following illustrative example:
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Example 12. Let

X =

{
1
2n : n = 0, 1, 2, · · ·

}
∪ {0}

and let

q(ξ, η) =

{
η − ξ, if η ≥ ξ,

2(ξ − η), if ξ > η.

Subsequently, (X, q) is a left K-complete T0-quasi-metric space. Set γ(t) = t
2 for all t ≥ 0. Let F : X →

Pcb(X) be a multi-valued map defined as

Fξ =


{

1
2n+1 , 0

}
if ξ = 1

2n : n = 0, 1, 2, · · · ,

{0}, if ξ = 0.

We now show that F satisfies condition (2).

Case 1. ξ = 0, there exists η = 0 ∈ Fξ = F0 = {0} such that

0 = H(η, Fη) = H(0, F0) ≤ q(0, 0)− γ(q(0, 0)) = 0.

Case 2. ξ = 1
2n , there exists η = 0 ∈ Fξ =

{
1

2n , 0
}

, such that

0 = H(η, Fη) = H(0, F0) ≤ q
(

1
2n , 0

)
− γ

(
q
(

1
2n , 0

))
.

The map F satisfies the assumptions of Theorem 1, so it has a start-point, which, in this case, is 0.

In the case of a single-valued mapping, Theorem 1 produces the following existence result.

Theorem 3. Let (X, q) be a left K-complete quasi-pseudo metric space and f : X → X be a weakly contractive
single-valued mapping. Subsequently, f possesses at least one start-point in X, i.e., there exists ξ∗ ∈ X,
such that q(ξ∗, f ξ∗) = 0.

We conclude the paper with a start-point result for a multi-valued mapping satisfying a
stronger weakly contractive type condition. In this case, we can obtain a stability result for the
start-point problem.

Definition 9. Let (X, q) be T0-quasi-metric space. A multi-valued mapping F : X →P0(X) is called s-weakly
contractive if there exists a (c)∗-comparison function γ, such that, for each ξ ∈ X, there exists η ∈ Fξ satisfying

H(η, Fν) ≤ q(ξ, ν)− γ(q(ξ, ν)), for every ν ∈ X. (6)

Notice that any s-weakly contractive multi-valued mapping is weakly contractive,
but not reversely.

The following existence and stability result holds for s-weakly contractive multi-valued mappings.
For the sake of simplicity, we will present the result when γ(t) = (1− k)t, t ∈ [0, ∞), with some
k ∈ [0, 1).

Theorem 4. Let (X, q) be a left K-complete quasi-pseudo metric space and F : X →Pcb(X) be a multi-valued
mapping. Suppose that there exists k ∈ [0, 1), such that, for each ξ ∈ X, there exists η ∈ Fξ satisfying

H(η, Fν) ≤ kq(ξ, ν), for every ν ∈ X.
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Then:

(a) F possesses a start-point in X; and,
(b) the start-point problem for F is Ulam–Hyers stable with respect to the end-point problem for F, in the sense

that there exists C > 0, such that, for any ε > 0 and any ρ∗ ∈ X with H(Fρ∗, ρ∗) ≤ ε, there exists a
start-point ξ∗ ∈ X of F, such that q(ξ∗, ρ∗) ≤ Cε.

Proof.

(a) follows by Theorem 1. Denote, by ξ∗ ∈ X, a start-point of F.
(b) For any u ∈ Fξ∗, we can write

q(ξ∗, ρ∗) ≤ H(ξ∗, Fξ∗) + H(u, Fρ∗) + H(Fρ∗, ρ∗) = H(u, Fρ∗) + H(Fρ∗, ρ∗).

For ξ∗ ∈ X, there exists u∗ ∈ Fξ∗, such that H(u∗, Fρ∗) ≤ kq(ξ∗, ρ∗).

Thus,

q(ξ∗, ρ∗) ≤ 1
1− k

ε.
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