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1. Introduction

Let Cm×n be the set of all m×n complex matrices. The symbol r(A) represents the rank of A ∈ Cm×n.
The symbol Z+ denotes the set of all positive integers. The index of A ∈ Cn×n, denoted by Ind(A),
is the smallest nonnegative integer k such that r(Ak) = r(Ak+1). Let A ∈ Cn×n

k be the set of all n × n
complex matrices with index k. The symbol CCM

n stands for the set of all core matrices (or group inverse
matrices), i.e.,

CCM
n = {A|A ∈ Cn×n, r(A) = r(A2)}.

The Drazin inverse of A ∈ Cn×n
k , denoted by AD [1], is the unique matrix X ∈ Cn×n satisfying: XAk+1 =

Ak, XAX = X and AX = XA. Especially, when A ∈ CCM
n , then X is called the group inverse of A and

denoted by A#. In 2018, Wang [2] introduced the weak group inverse on complex square matrices by
core-EP decomposition [3] and gave some characterizations of it.

Recently, there has been a growing interest in the weak group inverse and related results. Here, we
mention part of the works. Wang et al. [4] introduced the definition of the weak group inverse matrices
and proved that the set of the weak group inverse matrices was more inclusive than that of the group
inverse matrices. The weak group inverse was also generalized to proper *-rings and characterized by
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three equations in [5]. For more details of the weak group inverse in proper *-rings, it can be seen
from [6,7]. The authors of the paper [8] extended the notion of the weak group inverse to rectangular
matrices.

In [6], Zhou and Chen proposed the m-weak group in ring and gave some characterizations of it.
Let R be a unitary ring with involution, a ∈ R and m ∈ Z+. If there exist x ∈ R and k ∈ Z+ such that

xak+1 = ak, ax2 = x, (ak)∗am+1x = (am)∗ak,

then x is called the m-weak group inverse of a. When a is m-weak group invertible, the m-weak group
inverse of a may not be unique. If the m-weak group inverse of a is unique, then it is denoted by awOm .
Then the authors [9] investigated the relationship between the weak core inverse and the m-weak group
inverse. Also they provided a necessary and sufficient condition that the Drazin inverse coincides with
the m-weak group inverse of a complex matrix by core-EP decomposition.

Let A ∈ Cn×n
k . From [2], it is known that X is the weak group inverse of A if X ∈ Cn×n is the unique

solution of the system of equations below

AX2 = X, AX = A †OA,

in which case X is denoted by AwO. Now, we consider the system of equations

AX2 = X, AX = (A †O)mAm. (1.1)

Interestingly, the X satisfying (1.1) coincides with the m-weak group inverse on complex matrices, in
which case X exists for every A ∈ Cn×n and is unique.

The Drazin inverse has been widely applied in different fields and has huge literatures. Here we only
mention the part. The perturbation theory, additive results for the Drazin inverse were investigated
in [10–12]. In [13], the proposed algorithms based on the discrete Fourier transform were shown
to be more efficient by computing the Drazin inverse of a polynomial matrix in the case where
the degree and the size of the polynomial matrix got bigger. Karampetakis and Stanimirović [14]
presented two algorithms for symbolic computation of the Drazin inverse of a given square one-
variable polynomial matrix, which were effective with respect to CPU time and the elimination
of redundant computations. Some computable representations of the W-weighted Drazin inverse
were investigated and the computational complexities of the representations were also estimated
in [15]. Kyrchei [16] generalized the weighted Drazin inverse, the weighted DMP-inverse and the
weighted dual DMP-inverse [17–19] to matrices over the quaternion skew field and provided their
determinantal representations by using noncommutative column and row determinants. In [20], the
authors considered the quaternion two-sided restricted matrix equations and gave their unique solutions
by the DMP-inverse and dual DMP-inverse.

Motivated by the above discussion, we redefine the m-weak group inverse on complex matrices
by (1.1) and prove the existence and uniqueness of it for every A ∈ Cn×n. Some new characterizations
of the m-weak group inverse are derived in terms of the range space, null space, rank equalities and
projectors. We present some representations of the m-weak group inverse involving some known
generalized inverses and limit expressions. Also we investigate the relationships between the m-weak
group inverse and other generalized inverses. Finally, we consider the relationship between the m-
weak group inverse and the nonsingular bordered matrix, which is applied to the Cramer’s rule for the
solution of the restricted matrix equation.
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This paper is organized as follows. In Section 2, we present some necessary definitions and lemmas.
In Section 3, we provide a new definition, a representation and some basic properties of the m-weak
group inverse on the complex matrices. In Section 4, we give the characterizations of the m-weak
group inverse. In Section 5, we provide several expressions of the m-weak group inverse which are
good in computational accuracy. In Section 6, we investigate some properties of m-weak group inverse
as well as the relationships between the m-weak group inverse and other generalized inverses by core-
EP decomposition. In Section 7, we show the applications of the m-weak group inverse concerned with
the bordered matrices and the Cramer’s rule for the solution of the restricted matrix equation.

2. Preliminaries

The symbols R(A), N(A) and A∗ denote the range space, null space and rank of A ∈ Cm×n,
respectively. The symbol In denotes the identity matrix of order n. Let PL,M be the projector on
the space L along the M, where L,M ≤ Cn and L ⊕ M = Cn. For A ∈ Cm×n, PA represents the
orthogonal projection onto R(A), i.e., PA = PR(A) = AA†. The symbols CP

n and CH
n represent the sets of

Cn×n consisting of idempotent matrices and Hermitian matrices, respectively, i.e.,

CP
n = {A|A ∈ Cn×n, A2 = A},

CH
n = {A|A ∈ Cn×n, A = A∗}.

Next, we first recall the definitions of some generalized inverses. Let A ∈ Cm×n, the MP-inverse A† of
A is the unique matrix X ∈ Cn×m satisfying the following four Penrose equations [21–23]:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

A matrix X ∈ Cn×m that satisfies condition (1) above is called an inner inverse of A and the set of
all inner inverses of A is denoted by A{1}. A matrix X ∈ Cn×m that satisfies condition (2) above is
called an outer inverse of A. A matrix X ∈ Cn×m that satisfies both conditions (1) and (2) above is
called a reflexive g-inverse of A. For A ∈ Cm×n, if a matrix X ∈ Cn×m satisfies X = XAX, R(X) = T

and N(X) = S, where T and S are the subspaces of Cn and Cm respectively, then it is denoted by
A(2)
T ,S

. If A(2)
T ,S

exists, then it is unique. The notion of the core inverse on the CCM
n was proposed and

was denoted by A #O [24–26]. In addition, it was proved that A #O = A#AA†. The core-EP inverse of
A ∈ Cn×n

k , written as A †O [27–29], was presented. Moreover, it was seen that A †O = (Ak+1(Ak)†)†.
The DMP-inverse of A ∈ Cn×n

k , denoted by AD,† [17,18], was introduced. Moreover, it was known
that AD,† = ADAA†. Also, the dual DMP-inverse of A was proposed in [17], namely A†,D = A†AAD.
The (B,C)-inverse of A ∈ Cm×n, denoted by A(B,C) [30,31], is the unique matrix X ∈ Cn×m satisfying:
XAB = B,CAX = C,R(X) = R(B) and N(X) = N(C), where B and C ∈ Cn×m.

In order to discuss the m-weak group inverse, some lemmas are given. First, the lemma below gives
the core-EP decomposition as an important tool in this paper.

Lemma 2.1. [3] Let A ∈ Cn×n
k . Then there exists a unitary matrix U ∈ Cn×n such that

A = A1 + A2 = U
[

T S
0 N

]
U∗, (2.1)
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A1 = U
[

T S
0 0

]
U∗, A2 = U

[
0 0
0 N

]
U∗, (2.2)

where T ∈ Ct×t is nonsingular with t = r(T ) = r(Ak) and N is nilpotent of index k. The
representation (2.1) is called the core-EP decomposition of A, A1 and A2 are termed the core part
and nilpotent part of A, respectively.

From [2, 3, 32], it is known that

A †O = U
[

T−1 0
0 0

]
U∗, (2.3)

AwO = U
[

T−1 T−2S
0 0

]
U∗, (2.4)

AD = U
[

T−1 (T k+1)−1Tk

0 0

]
U∗, (2.5)

where Tk =
k−1∑
j=0

T jS Nk−1− j.

By direct computations, we get that A ∈ CCM
n is equivalent to N = 0, in which case

A# = U
[

T−1 T−2S
0 0

]
U∗, (2.6)

A #O = U
[

T−1 0
0 0

]
U∗. (2.7)

Let A ∈ Cn×n
k be of the form (2.1), m ∈ Z+. The notations below will be frequently used in this paper:

M = S (In−t − N†N),
4 = (TT ∗ + MS ∗)−1,

Tm =

m−1∑
j=0

T jS Nm−1− j.

Lemma 2.2. [33, Lemma 6] Let A ∈ Cn×n
k be of the form (2.1). Then

A† = U
[

T ∗4 T ∗4S N†

M∗4 N† − M∗4S N†

]
U∗. (2.8)

From (2.8) and [10, Theorem 2.2], we get that

AA† = U
[

It 0
0 NN†

]
U∗, (2.9)

A†A = U
[

T ∗4T −T ∗4M
M∗4T N†N + M∗4M

]
U∗, (2.10)
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Ak = U
[

T k Tk

0 0

]
U∗, (2.11)

Am = U
[

T m Tm

0 Nm

]
U∗, (2.12)

PAk = Ak(Ak)† = U
[

It 0
0 0

]
U∗, (2.13)

where t = r(Ak).

Lemma 2.3. [28, 34, 35] Let A ∈ Cn×n
k and m ∈ Z+. Then

(a) AA †O = PAk ;
(b) A †OA = PR(Ak),N((Ak+1)∗A);
(c) A †O = A(2)

R(Ak),N((Ak)∗);

(d) (A †O)mPAk = (A †O)m.

Lemma 2.4. Let A ∈ Cn×n
k and m ∈ Z+. Then Am(A †O)m = PAk .

Proof. Let A ∈ Cn×n
k be of the form (2.1). By (2.3), (2.12) and (2.13), it follows that

Am(A †O)m = U
[

T m Tm

0 Nm

] [
T−m 0

0 0

]
U∗ = U

[
It 0
0 0

]
U∗ = PAk .

�

3. m-weak group inverse on complex matrices

In this paper, we stipulate that A0 = In for any A ∈ Cn×n
k . Then we apply the core-EP decomposition

to give another definition of the m-weak group inverse on complex matrices. Moreover, some properties
of it are derived.

Let A ∈ Cn×n
k , X ∈ Cn×n and m ∈ Z+. Consider the system of equations below

(1) AX2 = X, (2) AX = (A †O)mAm. (3.1)

Theorem 3.1. Let A ∈ Cn×n
k be given by (2.1), X ∈ Cn×n and m ∈ Z+. Then the system of Eq (3.1) is

consistent and has a unique solution X:

X = (A †O)m+1Am = U
[

T−1 (T m+1)−1Tm

0 0

]
U∗. (3.2)

Proof. If m = 1, then X coincides with AwO. Clearly, X is the unique solution of (3.1) according to the
definition of the weak group inverse. If m , 1, by (3.1), Lemmas 2.3 (d) and 2.4, then it follows that

X = (AX)X = (A †O)mAmX = (A †O)mAm−1(A †O)mAm = (A †O)mPAk A †OAm = (A †O)mA †OAm = (A †O)m+1Am.
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Thus, by (2.3) and (2.12), we have that

X = (A †O)m+1Am = U
[

T−(m+1) 0
0 0

] [
T m Tm

0 Nm

]
U∗ = U

[
T−1 T−(m+1)Tm

0 0

]
U∗.

�

Definition 3.2. Let A ∈ Cn×n
k and m ∈ Z+. The m-weak group inverse of A, denoted as AwOm , is defined

as the unique solution of the system (3.1).

Remark 3.3. The m-weak group inverse is a generation of the weak group inverse and Drazin inverse.
More precisely, we have the following statements:
Let A ∈ Cn×n

k , m ∈ Z+.
(a) If m = 1, then 1-weak group inverse of A coincides with the weak group inverse of A;
(b) If m ≥ k, then m-weak group inverse of A coincides with the Drazin inverse of A.

In the following example, we show that the m-weak group inverse is different from some known
generalized inverses.

Example 3.4. Let A =

[
I3 I3

0 N

]
, where N =


0 1 0
0 0 1
0 0 0

 . It can be verified that Ind(A) = 3. By direct

computations, some generalized inverses are derived below:

A† =

[
H1 −N†

I3 − H1 N†

]
, AD =

[
I3 H2

0 0

]
, A †O =

[
I3 0
0 0

]
,

AD,† =

[
I3 H3

0 0

]
, A†,D =

[
H1 H4

I3 − H1 H2 − H4

]
, AwO =

[
I3 I3

0 0

]
,

where H1 =


1
2 0 0
0 1 0
0 0 1

 , H2 =


1 1 1
0 1 1
0 0 1

 , H3 =


1 1 0
0 1 0
0 0 0

 , H4 =


1
2

1
2

1
2

0 1 1
0 0 0

 and N† =


0 0 0
1 0 0
0 1 0

 .
It is clear that AwO2 = (A †O)3A2 =

[
I3 I3 + N
0 0

]
.

According to Example 3.4, the m-weak group inverse is indeed a new generalized inverse. Next,
we consider some basic properties of the m-weak group inverse including the range space, null space,
rank and projectors in the following results.

Theorem 3.5. Let A ∈ Cn×n
k be decomposed by A = A1 + A2 in (2.1) and m ∈ Z+. Then

(a) AwOm is an outer inverse of A;
(b) AwOm is a reflexive g-inverse of A1.
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Proof. (a). By Lemmas 2.3 (d), 2.4 and the definition of AwOm , it follows that

AwOm AAwOm = (A †O)m+1AmA(A †O)m+1Am = (A †O)m+1PAk Am = AwOm .

(b).

A1AwOm A1 = U
[

T S
0 0

] [
T−1 T−(m+1)Tm

0 0

] [
T S
0 0

]
U∗ = U

[
T S
0 0

]
U∗ = A1.

From [3, Theorem 3.4], we get A1 = AA †OA. By the fact that A †OAA †O = A †O and the statement (a)
above, it follows that

AwOm A1AwOm = AwOm AA †OA(A †O)m+1Am = AwOm A(A †O)m+1Am = AwOm AAwOm = AwOm .

Hence AwOm is a reflexive g-inverse of A1. �

Theorem 3.6. Let A ∈ Cn×n
k and m ∈ Z+. Then

(a) r(AwOm) = r(Ak);
(b) R(AwOm) = R(Ak), N(AwOm) = N((Ak)∗Am);
(c) AwOm = A(2)

R(Ak),N((Ak)∗Am).

Proof. (a). Assume that A be of the form (2.1). From (2.11) and (3.2), it is clear that r(AwOm) = t =

r(Ak).
(b). Since AwOm = (A †O)m+1Am implies that R(AwOm) = R((A †O)m+1Am) ⊆ R(A †O) = R(Ak) and

since r(AwOm) = r(Ak), we get R(AwOm) = R(Ak). From N(AwOm) = N((A †O)m+1Am) ⊇ N(A †OAm)
and r(AwOm) = t = r(A †OAm), we get N(AwOm) = N(A †OAm). If x ∈ N(A †OAm), we get that Amx ∈
N(A †O) = N((Ak)∗). Then N(AwOm) = N(A †OAm) ⊆ N((Ak)∗Am), and by r(AwOm) = r((Ak)∗Am), it
follows that N(AwOm) = N(A †OAm) = N((Ak)∗Am).

(c). It is a direct consequence from Theorems 3.5 (a) and 3.6 (b). �

Theorem 3.7. Let A ∈ Cn×n
k and m ∈ Z+. Then

(a) AAwOm = PR(Ak),N((Ak)∗Am);
(b) AwOm A = PR(Ak),N((Ak)∗Am+1).

Proof. (a). From Theorem 3.5 (a), we gain that AAwOm ∈ CP
n . By the definition of AwOm and (3.2), it

can be proved that R(AAwOm) = R((A †O)mAm) ⊆ R(A †O) = R(Ak) and r(AAwOm) = r(AwOm) = r(Ak) = t.
Hence R(AAwOm) = R(Ak). Similarly, we get that N(AAwOm) = N(AwOm) = N((Ak)∗Am). Therefore,
AAwOm = PR(Ak),N((Ak)∗Am).

(b). The proof follows in a similar manner above. �

4. Some characterizations of the m-weak group inverse

In this part, we present some characterizations of the m-weak group inverse in terms of the range
space, null space, rank equalities and projectors. The next theorem gives several characterizations of
AwOm mainly by the fact that R(AwOm) = R(Ak) in Theorem 3.6.

AIMS Mathematics Volume 7, Issue 9, 17349–17371.



17356

Theorem 4.1. Let A ∈ Cn×n
k , X ∈ Cn×n and m ∈ Z+. Then the following conditions are equivalent:

(a) X = AwOm;
(b) R(X) = R(Ak), AX = (A †O)mAm;
(c) R(X) = R(Ak), Am+1X = PAk Am;
(d) R(X) = R(Ak), (Ak)∗Am+1X = (Ak)∗Am.

Proof. (a)⇒ (b). This follows directly by Theorem 3.6 (b) and the definition of AwOm .

(b)⇒ (c). Premultiplying AX = (A †O)mAm by Am, and by Lemma 2.4, it follows that

Am+1X = (A)m(A †O)mAm = PAk Am.

(c)⇒ (d). Premultiplying Am+1X = PAk Am by (Ak)∗, it follows that

(Ak)∗Am+1X = (Ak)∗PAk Am = (Ak)∗Am.

(d)⇒ (a). Let A be of the form (2.1). By (2.11) and R(X) = R(Ak), we obtain that

X = U
[

X1 X2

0 0

]
U∗,

where X1 ∈ C
t×t and X2 ∈ C

t×(n−t) . Thus

(Ak)∗Am+1X = (Ak)∗Am =⇒ U
[

(T k)∗T m+1X1 (T k)∗T m+1X2

(T̃ )∗T m+1X1 (T̃ )∗T m+1X2

]
U∗ = U

[
(T k)∗T m (T k)∗Tm

(T̃ )∗T m (T̃ )∗Tm

]
U∗

=⇒ X1 = T−1 and X2 = (T m+1)−1Tm,

which imply X = U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = AwOm . �

By Theorem 3.5, it is known that AwOm is an outer inverse of A ∈ Cn×n
k , i.e., AwOm AAwOm = AwOm .

Using this result, we obtain some characterizations of AwOm .

Theorem 4.2. Let A ∈ Cn×n
k , X ∈ Cn×n and m ∈ N+. Then the following conditions are equivalent:

(a) X = AwOm;
(b) XAX = X, R(X) = R(Ak), N(X) = N((Ak)∗Am);
(c) XAX = X, XAk+1 = Ak, AX = (A †O)mAm;
(d) XAX = X, R(X) = R(Ak), (Am)∗Am+1X ∈ CH

n .

Proof. (a)⇒ (b). It is a direct consequence from Theorem 3.6 (c).
(b)⇒ (c). By XAX = X and R(X) = R(Ak), it follows that

R(AX) = AR(X) = R(Ak+1) = R(Ak) = R((A †O)mAm)

and
N(AX) = N(X) = N((Ak)∗Am) = N((A †O)mAm).

For AX, (A †O)mAm ∈ CP
n , we have AX = (A †O)mAm. By R(X) = R(Ak) and XAX = X, we obtain that

XAk+1 = Ak.
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(c)⇒ (d). By the conditions, we obtain that

r(X) = r(AX) = r((A †O)mAm) = r(Ak),

and by R(Ak) = R(XAk+1) ⊆ R(X), we get R(XA) = R(Ak). Since Am(A †O)m = PAk ∈ CH
n , it follows that

(Am)∗Am+1X = (Am)∗(Am(A †O)m)Am ∈ CH
n .

(d) ⇒ (a). Let A be of the form (2.1). From XAX = X and R(X) = R(Ak), we get that XAk+1 = Ak,
it is easy to derive that

X = U
[

T−1 X2

0 0

]
U∗,

where X2 ∈ C
t×(n−t).

For

(Am)∗Am+1X = U
[

(T m)∗ 0
(Tm)∗ (Nm)∗

] [
T m+1 TTm + S Nm

0 Nm+1

] [
T−1 X2

0 0

]
U∗

= U
[

(T m)∗T m (T m)∗T m+1X2

(Tm)∗T m (Tm)∗T m+1X2

]
U∗ ∈ CH

n ,

we obtain that X2 = T−(m+1)Tm. Hence X = U
[

T−1 T−(m+1)Tm

0 0

]
U∗ = AwOm . �

From [1], it is known that the definition of the Drazin of a given matrix A ∈ Cn×n
k is defined by three

matrix equations XAk+1 = Ak, XAX = X and AX = XA. Motivated by the first two matrix equations, we
provide some similar characterizations of AwOm .

Theorem 4.3. Let A ∈ Cn×n
k , X ∈ Cn×n and m ∈ Z+. Then the following conditions are equivalent:

(a) X = AwOm;
(b) XAk+1 = Ak, AX2 = X, (Am)∗Am+1X ∈ CH

n ;
(c) XAk+1 = Ak, AX2 = X, Am+1X = PAk Am;
(d) XAk+1 = Ak, AX = (A †O)mAm, r(X) = r(Ak).

Proof. (a)⇔ (b). It is the result of Proposition 4.2 in [6].
(a)⇒ (c). It is a direct consequence from the definition of AwOm , Theorems 4.1 (c) and 4.2 (c).
(c)⇒ (d). Let A be of the form (2.1). By XAk+1 = Ak, we get that

X = U
[

T−1 X2

0 X4

]
U∗,

where X2 ∈ C
t×(n−t) and X4 ∈ C

(n−t)×(n−t).
By AX2 = X, we have that X4 = NX4

2, which implies that

X4 = NX4
2 = N2X4

3 = · · · = NkX4
k+1 = 0.

Using (2.12) and (2.13) to Am+1X = PAk Am, we get

X = U
[

T−1 T−(m+1)Tm

0 0

]
U∗.
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Then the rest proof is trivial.
(d)⇒ (a). Since XAk+1 = Ak, it follows that R(Ak) = R(XAk+1) ⊆ R(X) and by r(X) = r(Ak), we get

R(Ak) = R(X). Hence, according to Theorem 4.1 (b), we get X = AwOm . �

According to Theorem 3.7, it holds that AX = PR(Ak),N((Ak)∗Am) and XA = PR(Ak),N((Ak)∗Am+1) when
X = AwOm . Conversely, the conclusion might not hold. Here’s an example below.

Example 4.4. Let A =

[
I3 L
0 N

]
, X =

[
I3 L
0 L

]
, where N =


0 1 0
0 0 1
0 0 0

 , L =


0 0 1
0 0 0
0 0 0

 .
Then it is clear that k =Ind(A) = 3 and AwO2 =

[
I3 L
0 0

]
. It can be directly verified that AX =

PR(A3),N((A3)∗A2), XA = PR(A3),N((A3)∗A3). However, X , AwO2 .

Based on the example above, the next theorem, we consider other characterizations of AwOm by using
AX = PR(Ak),N((Ak)∗Am) and XA = PR(Ak),N((Ak)∗Am+1).

Theorem 4.5. Let A ∈ Cn×n
k be of the form (2.1), X ∈ Cn×n and m ∈ Z+. Then the following statements

are equivalent:
(a) X = AwOm;
(b) AX = PR(Ak),N((Ak)∗Am), XA = PR(Ak),N((Ak)∗Am+1) and r(X) = r(Ak);
(c) AX = PR(Ak),N((Ak)∗Am), XA = PR(Ak),N((Ak)∗Am+1) and XAX = X;
(d) AX = PR(Ak),N((Ak)∗Am), XA = PR(Ak),N((Ak)∗Am+1) and AX2 = X.

Proof. (a)⇒ (b). It is a direct consequence from Theorems 3.6 (a) and 3.7.
(b) ⇒ (c). Since XA = PR(Ak),N((Ak)∗Am+1) and r(X) = r(Ak), we get that R(X) = R(Ak) and by

XA = PR(Ak),N((Ak)∗Am+1), we obtain XAX = X.
(c) ⇒ (d). From XA = PR(Ak),N((Ak)∗Am+1) and r(X) = r(Ak), we have that R(X) = R(Ak) and by

AX = PR(Ak),N((Ak)∗Am), it follows that AX2 = X.
(d)⇒ (a). By XA = PR(Ak),N((Ak)∗Am+1) and AX2 = X, it follows that

R(Ak) = R(XA) ⊆ R(X) = R(AX2) = · · · = R(AkXk+1) ⊆ R(Ak),

which implies R(X) = R(Ak). By AX = PR(Ak),N((Ak)∗Am), we get that

(Ak)∗Am+1X = (Ak)∗Am.

According to Theorem 4.1 (d), we derive X = AwOm . �

Analogously, we characterize the AwOm by using AX = PR(Ak),N((Ak)∗Am) or XA = PR(Ak),N((Ak)∗Am+1) as
follows:

Theorem 4.6. Let A ∈ Cn×n
k , X ∈ Cn×n and m ∈ Z+. Then

(a) X = AwOm is the unique solution of the system of equations below:

AX = PR(Ak),N((Ak)∗Am), R(X) = R(Ak); (4.1)

(b) X = AwOm is the unique solution of the system of equations below:

XA = PR(Ak),N((Ak)∗Am+1), N(X) = N((Ak)∗Am). (4.2)
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Proof. (a). If X = AwOm , by Theorems 3.6 (b) and 3.7 (a), it is evident that the system of Eq (4.1) holds.
Conversely, if the system of Eq (4.1) holds, it follows that (Ak)∗AmAX = (Ak)∗Am. Hence X = AwOm

from Theorem 4.1 (d).
(b). For X = AwOm , by Theorems 3.6 (b) and 3.7 (b), it is evident that the system of Eq (4.2) holds.

Next, we prove the uniqueness of X.
Assume that X1, X2 satisfy the system of Eq (4.2). Then we obtain that X1A = X2A and N(X1) =

N(X2) = N((Ak)∗Am). Thus, we get that R(X∗1−X∗2) ⊆ N(A∗) ⊆ N((Ak)∗) and R(X∗1−X∗2) ⊆ R((Am)∗Ak).
For any η ∈ N((Ak)∗) ∩ R((Am)∗Ak), we obtain that (Ak)∗η = 0, η = (Am)∗Akξ for some ξ ∈ Cn. Since
Ind(A) = k, we derive that R(Ak) = R(Ak+m), and it follows that Akξ = Ak+mξ0 for some ξ0 ∈ C

n×n. Then
we have that

0 = (Ak)∗η = (Ak+m)∗Ak+mξ0.

Premultiplying the equation above by ξ∗0 , we derive that (Ak+mξ0)∗Ak+mξ0 = 0, which implies Ak+mξ0 =

0. Hence η = 0, i.e., R(X∗1 − X∗2) = {0}, which implies X1 = X2. �

Remark 4.7. Notice that the condition R(X) = R(Ak) in Theorem 4.6 (a) can be replaced by
R(X) ⊆ R(Ak). Also the condition N(X) = N((Ak)∗Am) in Theorem 4.6 (b) can be replaced by
N(X) ⊇ N((Ak)∗Am).

5. Representations of the m-weak group inverse

From Theorems 3.1 and 3.2, we have derived an expression of AwOm by A †O. In the next results, we
present several expressions of AwOm involving other known generalized inverses and limitations.

Theorem 5.1. Let A ∈ Cn×n
k and m ∈ Z+. Then the following statements hold:

(a) AwOm = (AD)m+1PAk Am;
(b) AwOm = Ak−m(Ak+1) #OAm (k ≥ m);
(c) AwOm = (Ak)#Ak−m−1PAk Am (k ≥ m + 1);
(d) AwOm = (Am+1PAk)†Am;
(e) AwOm = Am−1PAk(Am)wO.

Proof. Let A be of the form (2.1). By (2.3)–(2.7) and (2.11)–(2.13), we get that

Am+1PAk = U
[

T m+1 0
0 0

]
U∗, (5.1)

(Am+1PAk)† = U
[

T−m−1 0
0 0

]
U∗, (5.2)

(AD)m+1 = U
[

T−m−1 T−2−m−kTk

0 0

]
U∗, (5.3)

(Ak)# = U
[

T−k T−2kTk

0 0

]
U∗, (5.4)

(Ak+1) #O = U
[

T−k−1 0
0 0

]
U∗, (5.5)
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(Am)wO = U
[

T−m T−2mTm

0 0

]
U∗. (5.6)

(a). By (2.12), (2.13) and (4.5), it follows that

(AD)m+1PAk Am = U
[

T−1 T−k−1Tk

0 0

]m+1 [
It 0
0 0

] [
T m Tm

0 Nm

]
U∗

= U
[

T−1 T−(m+1)Tm

0 0

]
U∗.

Hence AwOm = (AD)m+1PAk Am.
The proofs of (b)–(e) are analogous to that of (a). �

Next, we consider the the accuracy of the expression in Theorem 5.1 (a) for computing the m-weak
group inverse.

Example 5.2. Let

A =


0.8485 + 0.1676i 0.2540 + 0.5983i 0.6425 + 0.9363i 0.8275 + 0.4257i 0.6969 + 0.8590i 0.5510 + 0.6352i 0.2347 + 0.9504i
0.1680 + 0.6196i 0.3756 + 0.1390i 0.2441 + 0.4382i 0.7763 + 0.2670i 0.2739 + 0.3483i 0.4470 + 0.4406i 0.7125 + 0.1951i
0.4884 + 0.8135i 0.1611 + 0.8553i 0.3944 + 0.4832i 0.7271 + 0.4400i 0.1657 + 0.8773i 0.6828 + 0.6348i 0.1984 + 0.7051i
0.1033 + 0.3637i 0.5945 + 0.2874i 0.1809 + 0.4247i 0.5422 + 0.2813i 0.2855 + 0.1739i 0.5710 + 0.6704i 0.6415 + 0.3145i
0.4750 + 0.7706i 0.5137 + 0.4274i 0.4025 + 0.1004i 0.4356 + 0.3288i 0.1589 + 0.1206i 1.0058 + 0.7174i 0.6422 + 0.1015i
0.3229 + 0.7518i 0.5552 + 0.4735i 0.4742 + 0.2084i 0.2175 + 0.6228i 0.2705 + 0.1671i 0.7580 + 0.5195i 0.1824 + 0.6410i
0.2069 + 0.0437i 0.6633 + 0.5112i 0.3382 + 0.8101i 0.6209 + 0.2514i 0.5148 + 0.5723i 0.9051 + 0.5467i 0.3012 + 0.3692i

 .
Assume that A is of the form (2.1), we obtain that

U =


0.4825 − 0.0849i 0.0469 − 0.1756i 0.5890 + 0.3816i −0.2856 + 0.1754i −0.2172 − 0.1097i −0.1298 − 0.0671i 0.0533 + 0.1967i
0.2893 − 0.0752i −0.1794 − 0.3491i −0.5178 + 0.1008i −0.0098 + 0.1153i −0.1657 + 0.2133i −0.5416 + 0.2449i 0.1310 − 0.1466i
0.4536 + 0.0132i 0.2822 + 0.1450i −0.0509 − 0.0460i 0.0355 − 0.1626i 0.0535 + 0.7433i 0.2983 − 0.1107i 0.0663 + 0.0081i
0.2796 − 0.0694i −0.2498 − 0.2853i −0.2797 − 0.1038i 0.0927 + 0.0482i 0.0299 − 0.2892i 0.5633 + 0.0729i 0.3269 + 0.3991i
0.3355 − 0.1257i −0.1231 + 0.3086i −0.0681 + 0.0045i 0.6071 + 0.0994i 0.0793 − 0.1390i −0.2447 − 0.2386i −0.3902 + 0.2889i
0.3535 − 0.0406i 0.3291 + 0.4917i −0.1044 − 0.1231i −0.0927 + 0.2237i 0.1346 − 0.3811i −0.0086 + 0.2839i 0.2660 − 0.3518i
0.3446 − 0.0896i −0.3255 − 0.0457i 0.0798 − 0.3137i −0.2170 − 0.5928i −0.0771 − 0.1818i 0.0470 + 0.0421i −0.3504 − 0.3101i

 ,
T =

[ 3.1562 + 3.3883i −0.4572 + 0.0272i −0.3260 − 0.7290i 0.1393 + 0.2261i
0.0000 + 0.0000i 0.4103 − 0.7005i 0.3751 + 0.2669i −0.0078 + 0.2713i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.6433 − 0.3382i 0.4614 + 0.3799i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i −0.8309 − 0.2692i

]
,

S =

[ 0.2397 − 0.7281i −0.1778 + 0.2997i 0.6513 + 0.2162i
0.1628 − 0.2162i 0.0120 + 0.0676i −0.0751 − 0.0869i
−0.1639 + 0.2880i −0.0551 − 0.4207i 0.2045 + 0.1170i
0.3038 − 0.3764i −0.1479 + 0.0719i 0.0834 + 0.0878i

]
,N =

[
0.0000 + 0.0000i −0.4926 − 0.4478i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.1329 − 0.0269i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

]
.

Then it is clear that k =Ind(A) = 3. According to (2.12), (2.13), (3.2) and (5.3), a straightforward
computation shows that

AwO2 =


0.5500 + 0.0731i −0.3216 − 0.5308i 0.3542 + 0.2685i 0.0240 − 0.0992i 0.1347 + 0.1272i −0.2551 − 0.5635i −0.5893 + 0.1896i
−0.5670 + 0.5317i 0.8843 + 0.3216i −0.4879 − 0.7221i −0.2015 + 0.4591i −0.1916 − 0.3123i 0.4252 − 0.0781i 0.5168 − 0.0711i
0.0613 − 0.3227i −0.3442 + 0.1506i 0.3922 + 0.1385i −0.0511 − 0.3461i 0.1347 + 0.1018i 0.1026 + 0.0907i −0.2209 − 0.0521i
−0.3141 + 0.2405i 0.6100 + 0.3344i −0.4033 − 0.5827i −0.1523 + 0.3461i −0.0966 − 0.1740i 0.1994 − 0.0641i 0.3864 + 0.0751i
0.4276 + 0.1334i −0.2170 − 0.1890i −0.3404 + 0.1071i 0.3855 − 0.1231i −0.3630 + 0.1546i 0.0708 + 0.1494i 0.1807 − 0.5088i
−0.0347 − 0.3614i −0.7335 − 0.1810i 0.6827 + 0.3219i 0.1600 − 0.4144i 0.1112 − 0.1606i −0.1645 + 0.4531i 0.0694 − 0.0409i
0.1126 − 0.5274i 0.3706 + 0.0871i −0.1810 + 0.2321i −0.1211 + 0.0487i 0.4600 + 0.2349i −0.2612 − 0.3429i −0.2482 + 0.4110i

 ,

AD =


0.5519 + 0.0637i −0.3151 − 0.5243i 0.3573 + 0.2679i 0.0382 − 0.1188i 0.1155 + 0.1148i −0.2416 − 0.5478i −0.6048 + 0.2051i
−0.5868 + 0.5393i 0.8886 + 0.3016i −0.4926 − 0.7271i −0.2550 + 0.4561i −0.1919 − 0.2619i 0.4384 − 0.1220i 0.5643 − 0.0607i
0.0712 − 0.3336i −0.3406 + 0.1643i 0.3968 + 0.1401i −0.0170 − 0.3611i 0.1191 + 0.0704i 0.1082 + 0.1221i −0.2536 − 0.0436i
−0.3314 + 0.2454i 0.6152 + 0.3178i −0.4069 − 0.5873i −0.1973 + 0.3394i −0.1009 − 0.1314i 0.2140 − 0.1002i 0.4257 + 0.0876i
0.4426 + 0.1457i −0.2348 − 0.1834i −0.3423 + 0.1131i 0.4074 − 0.0792i −0.3228 + 0.1320i 0.0300 + 0.1588i 0.1674 − 0.5512i
−0.0182 − 0.3618i −0.7419 − 0.1674i 0.6848 + 0.3269i 0.1986 − 0.3982i 0.1247 − 0.1976i −0.1858 + 0.4820i 0.0371 − 0.0610i
0.1003 − 0.5340i 0.3824 + 0.0806i −0.1805 + 0.2276i −0.1428 + 0.0207i 0.4347 + 0.2565i −0.2336 − 0.3553i −0.2329 + 0.4392i

 ,

PA3 =


0.8779 + 0.0000i −0.0446 − 0.1662i 0.1193 − 0.1338i −0.0432 + 0.0514i −0.0818 + 0.1456i 0.0604 − 0.0110i 0.0519 + 0.0811i
−0.0446 + 0.1662i 0.5351 + 0.0000i 0.0316 − 0.1369i 0.3696 − 0.0357i 0.0621 + 0.1759i −0.0570 − 0.1243i 0.0416 − 0.0797i
0.1193 + 0.1338i 0.0316 + 0.1369i 0.3389 + 0.0000i 0.0285 + 0.0703i 0.1692 − 0.1423i 0.2953 − 0.0623i 0.1557 + 0.0476i
−0.0432 − 0.0514i 0.3696 + 0.0357i 0.0285 − 0.0703i 0.3267 + 0.0000i 0.1249 + 0.1524i −0.0766 − 0.0331i 0.1585 + 0.0310i
−0.0818 − 0.1456i 0.0621 − 0.1759i 0.1692 + 0.1423i 0.1249 − 0.1524i 0.6219 + 0.0000i 0.2074 − 0.0227i −0.0447 + 0.1980i
0.0604 + 0.0110i −0.0570 + 0.1243i 0.2953 + 0.0623i −0.0766 + 0.0331i 0.2074 + 0.0227i 0.5614 + 0.0000i −0.0864 − 0.2733i
0.0519 − 0.0811i 0.0416 + 0.0797i 0.1557 − 0.0476i 0.1585 − 0.0310i −0.0447 − 0.1980i −0.0864 + 0.2733i 0.7381 + 0.0000i

 ,
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A2 =


−0.7769 + 3.6386i −0.5344 + 4.1046i −0.4095 + 3.6111i 0.7045 + 4.1930i −0.6174 + 3.1904i 0.1077 + 5.9761i −0.2581 + 3.9581i
−0.4248 + 2.4587i 0.2472 + 2.2693i −0.2516 + 2.5356i 0.6811 + 2.4977i −0.2256 + 2.0334i 0.6321 + 3.4819i −0.0733 + 2.0920i
−1.3540 + 3.2996i −0.9052 + 3.4946i −1.2506 + 3.2411i −0.2180 + 4.0436i −1.1420 + 2.8767i −0.9506 + 5.1147i −1.1106 + 3.6001i
−0.5540 + 2.3649i 0.2360 + 2.2815i −0.2197 + 2.3588i 0.5680 + 2.4478i −0.1974 + 1.8996i 0.5955 + 3.4055i −0.0409 + 2.0276i
0.0321 + 2.9089i 0.5594 + 2.7931i 0.0854 + 2.9168i 0.9166 + 2.9714i 0.1421 + 2.6006i 1.0418 + 3.6923i −0.1839 + 2.8256i
−0.3304 + 2.9125i −0.3410 + 2.8783i −0.8216 + 2.5238i 0.3039 + 3.2251i −0.7160 + 2.5512i −0.0904 + 3.8501i −0.6645 + 2.7485i
−0.8272 + 3.1061i 0.1375 + 2.8116i 0.0451 + 2.5280i 0.6730 + 3.1529i −0.3009 + 2.0044i 0.6401 + 4.3322i 0.2366 + 2.7781i

 .
Let K = (AD)3PA3 A2 . Then it follows that

K =


0.5500 + 0.0731i −0.3216 − 0.5308i 0.3542 + 0.2685i 0.0240 − 0.0992i 0.1347 + 0.1272i −0.2551 − 0.5635i −0.5893 + 0.1896i
−0.5670 + 0.5317i 0.8843 + 0.3216i −0.4879 − 0.7221i −0.2015 + 0.4591i −0.1916 − 0.3123i 0.4252 − 0.0781i 0.5168 − 0.0711i
0.0613 − 0.3227i −0.3442 + 0.1506i 0.3922 + 0.1385i −0.0511 − 0.3461i 0.1347 + 0.1018i 0.1026 + 0.0907i −0.2209 − 0.0521i
−0.3141 + 0.2405i 0.6100 + 0.3344i −0.4033 − 0.5827i −0.1523 + 0.3461i −0.0966 − 0.1740i 0.1994 − 0.0641i 0.3864 + 0.0751i
0.4276 + 0.1334i −0.2170 − 0.1890i −0.3404 + 0.1071i 0.3855 − 0.1231i −0.3630 + 0.1546i 0.0708 + 0.1494i 0.1807 − 0.5088i
−0.0347 − 0.3614i −0.7335 − 0.1810i 0.6827 + 0.3219i 0.1600 − 0.4144i 0.1112 − 0.1606i −0.1645 + 0.4531i 0.0694 − 0.0409i
0.1126 − 0.5274i 0.3706 + 0.0871i −0.1810 + 0.2321i −0.1211 + 0.0487i 0.4600 + 0.2349i −0.2612 − 0.3429i −0.2482 + 0.4110i


and

r1 =‖ AwO2 − K ‖= 6.6885 × 10−14,

where ‖ · ‖ is the Frobenius norm.
Hence, the representation in Theorem 5.1 (a) get a good result in terms of computational accuracy.

In the following theorem, we present a connection between the (B,C)-inverse and the m-weak group
inverse showing that the m-weak group inverse of A ∈ Cn×n

k is its (Ak, (Ak)∗Am)-inverse.

Theorem 5.3. Let A ∈ Cn×n
k and m ∈ Z+. Then AwOm = A(Ak ,(Ak)∗Am).

Proof. By Theorem 3.7, it follows that AwOm AAk = Ak and ((Ak)∗Am)AAwOm = (Ak)∗Am. From
Theorem 3.6 (b), we derive that R(AwOm) = R(Ak) and N(AwOm) = N((Ak)∗Am). According to the
definition of the (B,C)-inverse, it is clear that AwOm = A(Ak ,(Ak)∗Am). �

Next, we give some limit expressions of AwOm . Before the theorem, we need the lemma below:

Lemma 5.4. [36] Let A ∈ Cm×n, X ∈ Cn×p and Y ∈ Cp×m. Then the following conditions are equivalent:
(a) limλ→0 X(λIp + YAX)−1Y exists;
(b) r(XYAXY) = r(XY);
(c) A(2)

R(XY),N(XY) exists,
in which case,

lim
λ→0

X(λIp + YAX)−1Y = A(2)
R(XY),N(XY).

Theorem 5.5. Let A ∈ Cn×n
k be of the form (2.1) and m ∈ N+. Then the following statements hold:

(a) AwOm = limλ→0 Ak(λIn + (Ak)∗Ak+m+1)−1(Ak)∗Am;
(b) AwOm = limλ→0 Ak(Ak)∗(λIn + Ak+m+1(Ak)∗)−1Am;
(c) AwOm = limλ→0 Ak(Ak)∗Am(λIn + Ak+1(Ak)∗Am)−1;
(d) AwOm = limλ→0 (λIn + Ak(Ak)∗Am+1)−1Ak(Ak)∗Am.

Proof. (a) It is easy to check that r(Ak(Ak)∗Am) = r((Ak)∗Am) = r(Ak) = t. By Theorem 3.6, we
get that R(Ak) = R(Ak(Ak)∗Am), N((Ak)∗Am) = N(Ak(Ak)∗Am). From Theorem 3.6, then AwOm =

A(2)
R(Ak),N((Ak)∗Am) = A(2)

R(Ak(Ak)∗Am),N(Ak(Ak)∗Am). Let X = Ak,Y = (Ak)∗Am, according to Lemma 5.4, we get
that

AwOm = lim
λ→0

Ak(λIn + (Ak)∗Ak+m+1)−1(Ak)∗Am.

The statements (b)–(d) can be similarly proved. �
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The following example will test the accuracy of expression in Theorem 5.5 (a) for computing the
m-weak group inverse.

Example 5.6. Let

A =


4.8990 + 7.3786i 6.8197 + 3.0145i 7.2244 + 1.2801i 4.5380 + 1.9043i 8.3138 + 3.7627i 6.2797 + 3.8462i 3.7241 + 9.8266i
1.6793 + 2.6912i 0.4243 + 7.0110i 1.4987 + 9.9908i 4.3239 + 3.6892i 8.0336 + 1.9092i 2.9198 + 5.8299i 1.9812 + 7.3025i
9.7868 + 4.2284i 0.7145 + 6.6634i 6.5961 + 1.7112i 8.2531 + 4.6073i 0.6047 + 4.2825i 4.3165 + 2.5181i 4.8969 + 3.4388i
7.1269 + 5.4787i 5.2165 + 5.3913i 5.1859 + 0.3260i 0.8347 + 9.8164i 3.9926 + 4.8202i 0.1549 + 2.9044i 3.3949 + 5.8407i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 9.8406 + 6.1709i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 9.2033 + 9.0631i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i


with k =Ind(A) = 3. By A †O = (Ak+1(Ak)†)†, we get

A †O = (A4(A3)†)†

=


−0.0032 − 0.1411i 0.0709 + 0.0429i 0.0106 − 0.0097i 0.0187 + 0.0560i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0878 + 0.0001i 0.0438 + 0.0326i −0.1096 − 0.0524i 0.0490 − 0.0158i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
−0.0896 + 0.0173i −0.0314 − 0.1473i 0.0445 + 0.0629i 0.0118 + 0.0056i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0431 + 0.0788i −0.0348 + 0.0182i 0.0536 + 0.0096i −0.0658 − 0.0844i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

 .
Together with (3.2), it follows that

AwO2 = (A †O)3A2

=


−0.0032 − 0.1411i 0.0709 + 0.0429i 0.0106 − 0.0097i 0.0187 + 0.0560i −0.0151 − 0.0310i −0.2502 + 0.2087i −0.1223 + 0.0627i
0.0878 + 0.0001i 0.0438 + 0.0326i −0.1096 − 0.0524i 0.0490 − 0.0158i 0.1788 + 0.2332i −0.3818 + 0.4296i −0.1105 + 0.0067i
−0.0896 + 0.0173i −0.0314 − 0.1473i 0.0445 + 0.0629i 0.0118 + 0.0056i −0.0415 − 0.2864i 0.7974 − 0.1768i 0.2687 + 0.0926i
0.0431 + 0.0788i −0.0348 + 0.0182i 0.0536 + 0.0096i −0.0658 − 0.0844i 0.0125 − 0.0262i 0.0972 − 0.3512i 0.0454 − 0.1317i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

 .
Let L = limλ→0 A3(λIn + (A3)∗A6)−1(A3)∗A2. Then it follows that

L =


−0.003189 − 0.1411i 0.07088 + 0.04294i 0.01062 − 0.009663i 0.01868 + 0.05603i −0.01512 − 0.03101i −0.2502 + 0.2087i −0.1223 + 0.06266i
0.08776 + 5.907e − 5i 0.04379 + 0.03259i −0.1096 − 0.05243i 0.04899 − 0.01576i 0.1788 + 0.2332i −0.3818 + 0.4296i −0.1105 + 0.006749i
−0.08964 + 0.01729i −0.03136 − 0.1473i 0.04449 + 0.06285i 0.01184 + 0.005646i −0.04154 − 0.2864i 0.7974 − 0.1768i 0.2687 + 0.09263i
0.04314 + 0.07879i −0.03482 + 0.01822i 0.05364 + 0.009637i −0.06583 − 0.08442i 0.01248 − 0.02618i 0.09717 − 0.3512i 0.04544 − 0.1317i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i


and

r2 =‖ AwO2 − L ‖= 6.136 × 10−11,

where ‖ · ‖ is the Frobenius norm. Hence, the representation in Theorem 5.5 (a) is efficient for
computing the m-weak group inverse.

6. Relationships between the m-weak group inverse and other generalized inverses

Next, we consider some relationships between the m-weak group inverse and other generalized
inverses as well as some matrix classes. First we present some classes of matrix as follows.

These symbols COP
n , CEP

n , Ci−EP
n and Ck, †O

n represent the sets of Cn×n consisting of orthogonal
projectors (Hermitian idempotent matrices), EP (Range-Hermitian) matrices, i-EP matrices and k-core-
EP matrices, respectively, i.e.,

COP
n = {A|A ∈ Cn×n, A2 = A = A∗} = {A|A ∈ Cn×n, A2 = A = A†},
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CEP
n = {A|A ∈ Cn×n, AA† = A†A} = {A|A ∈ Cn×n,R(A) = R(A∗)},
Ci−EP

n = {A|A ∈ Cn×n
k , Ak(Ak)† = (Ak)†Ak},

C
k, †O
n = {A|A ∈ Cn×n

k , AkA †O = A †OAk}.

According to [4, Theorem 2.3], it is known that Tk = 0 is equivalent to S = 0. Also we have the
following lemma:

Lemma 6.1. Let A ∈ Cn×n
k be of the form (2.1). Then

Tm = 0⇐⇒ S = 0.

Proof. Notice that Tm = 0 can be equivalently expressed as the equation below:

T m−1S + T m−2S N + · · · + TS Nm−2 + S Nm−1 = 0. (6.1)

Multiplying by Nk−1 on the right of the equation above, we get S Nk−1 = 0. Multiplying by Nk−2 on the
right of the equation above, for S Nk−1 = 0, then we have S Nk−2 = 0. In the same manner, we derive
S Nk−3 = 0, · · · , S N = 0. From Eq (6.1), it follows that T m−1S = 0, i.e, S = 0. �

The next theorem provides some necessary and sufficient conditions for AwOm to be equal to various
transformations of A ∈ Cn×n

k .

Theorem 6.2. Let A ∈ Cn×n
k , m ∈ Z+. Then the following statements hold:

(a) AwOm ∈ A{1} ⇐⇒ A ∈ CCM
n ;

(b) AwOm ∈ CCM
n ;

(c) AwOm = A⇐⇒ A = A3;
(d) AwOm = A∗ ⇐⇒ AA∗ ∈ COP

n and A ∈ CEP
n ;

(e) AwOm = PA ⇐⇒ A ∈ COP
n .

Proof. Let A be of the form (2.1).
(a). From (3.2), it follows that

AwOm ∈ A{1} ⇐⇒ AAwOm A = A

⇐⇒ U
[

T S + T−mTmN
0 0

]
U∗ = U

[
T S
0 N

]
U∗

⇐⇒ N = 0
⇐⇒ A ∈ CCM

n .

(b). By (3.2), it is clear that r(AwOm) = r((AwOm)2) = t, which implies AwOm ∈ CCM
n .

(c). From (3.2), we get that

AwOm = A ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T S
0 N

]
U∗

⇐⇒ T 2 = It and N = 0
⇐⇒ A = A3.
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(d). According to (3.2), we obtain that

AwOm = A∗ ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T ∗ 0
S ∗ N∗

]
U∗

⇐⇒ T−1 = T ∗, S = 0 and N = 0
⇐⇒ AA∗ ∈ COP

n and A ∈ CEP
n .

(e). Since (2.9) and (3.2), it follows that

AwOm = PA ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
It 0
0 NN†

]
U∗

⇐⇒ T = It,NN† = 0 and Tm = 0
⇐⇒ T = It, S = 0 and N = 0.

Hence AwOm = PA is equivalent to A ∈ COP
n . �

Interestingly, we find that A ∈ Ci−EP
n is equivalent to AwOm ∈ CEP

n by using core-EP decomposition.
Therefore, we consider more equivalent conditions for AwOm ∈ CEP

n by using core-EP decomposition in
the next results.

Lemma 6.3. [4] Let A ∈ Cn×n
k be of the form (2.1). Then A ∈ Ci−EP

n if and only if S = 0.

Moreover, S = 0 if and only if A ∈ Ck, †O
n .

Theorem 6.4. Let A ∈ Cn×n
k and m ∈ Z+. Then the following statements are equivalent:

(a) AwOm ∈ CEP
n ;

(b) A ∈ Ci−EP
n ;

(c) AwO ∈ CEP
n ;

(d) AwOm = A †O;
(e) AAwOm = AA †O.

Proof. Let A ∈ Cn×n
k be of the form (2.1). According to Lemma 6.3, we will prove that each of the

statements (a)–(e) is equivalent to S = 0.
(a). According to (3.2) and Lemma 6.1, it follows that

AwOm ∈ CEP
n ⇐⇒ R(AwOm) = R((AwOm)∗)
⇐⇒ (T m+1)−1Tm = 0
⇐⇒ S = 0.

(c). By (2.4), we get that

AwO ∈ CEP
n ⇐⇒ R(AwO) = R((AwO)∗)
⇐⇒ T−2S = 0
⇐⇒ S = 0.
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(d). Since (2.3), (3.2) and Lemma 6.1, it follows that

AwOm = A †O ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T−1 0
0 0

]
U∗

⇐⇒ (T m+1)−1Tm = 0
⇐⇒ S = 0.

(e). From (2.3), (3.2) and Lemma 6.1, we get that

AAwOm = AA †O ⇐⇒ U
[

T S
0 N

] [
T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T S
0 N

] [
T−1 0
0 0

]
U∗

⇐⇒ T−mTm = 0
⇐⇒ S = 0.

�

In [9], the authors have proved that AwOm = AD if and only if S Nm = 0. In the next results, we
investigate the relationships between the m-weak group inverse and other generalized inverses such as
the MP-inverse, group inverse, core inverse, DMP-inverse, dual DMP-inverse, weak group inverse by
core-EP decomposition.

Theorem 6.5. Let A ∈ Cn×n
k be given by (2.1) and m ∈ Z+. Then the following statements hold:

(a) AwOm = A† ⇐⇒ A ∈ CEP
n ;

(b) AwOm = A# ⇐⇒ A ∈ CCM
n ;

(c) AwOm = A #O ⇐⇒ A ∈ CCM
n ;

(d) AwOm = AD,† ⇐⇒ T k−mTm = TkNN†;
(e) AwOm = A†,D ⇐⇒ S Nm = 0 and S = S N†N;
( f ) AwOm = AwO ⇐⇒ S N = 0 (m > 1).

Proof. (a). By (2.8) and (3.2), it follows that

AwOm = A† ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T ∗4 −T ∗4S N†

M∗4 N† − M∗4S N†

]
U∗

⇐⇒ M∗ = 0,N† = 0,T−1 = T ∗4 and (T m+1)−1Tm = −T ∗4S N†

⇐⇒ S = 0 and N = 0
⇐⇒ A ∈ CEP

n .

(b). It has been mentioned that A# exits if and only if A ∈ CCM
n , which is equivalent to N = 0. Then,

by (2.6) and (3.2), it follows that

AwOm = A# ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T−1 T−2S
0 0

]
U∗ and N = 0

⇐⇒ (T m+1)−1Tm = T−2S and N = 0
⇐⇒ N = 0
⇐⇒ A ∈ CCM

n .
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(c). The proof follows in a similar manner above.
(d). Using (2.5) and (2.9) to AD,† = ADAA†, we derive

AD,† =

[
T−1 (T k+1)−1TkNN†

0 0

]
,

and by (3.2), it follows that

AwOm = AD,† ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T−1 (T k+1)−1TkNN†

0 0

]
U∗

⇐⇒ T k−mTm = TkNN†.

(e). Using (2.5) and (2.10) to A†,D = A†AAD, we obtain that

A†,D =

[
T ∗4 −T ∗4T−kTk

M∗4 M∗4T−kTk

]
,

together with (3.2), we derive that

AwOm = A†,D ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T ∗4 T ∗4T−kTk

M∗4 M∗4T−kTk

]
U∗

⇐⇒ M∗ = 0,T−1 = T ∗4 and (T m+1)−1Tm = T ∗4T−kTk

⇐⇒ S = S N†N and T k−mTm = Tk

⇐⇒ S = S N†N and S Nm = 0.

( f ). If m > 1, from (2.4) and (3.2), it leads to

AwOm = AwO ⇐⇒ U
[

T−1 (T m+1)−1Tm

0 0

]
U∗ = U

[
T−1 T−2S
0 0

]
U∗

⇐⇒ (T m+1)−1Tm = T−2S .

Clearly, (T m+1)−1Tm = T−2S is equivalent to T−3S N + · · · + (T m+1)−1S Nm−1 = 0, which is further
equivalent to S N = 0. Hence AwOm = AwO ⇐⇒ S N = 0. �

7. Applications of the m-weak group inverse

In this section, we consider the relationship between the m-weak group inverse and the nonsingular
bordered matrix, which is applied to the Cramer’s rule for the solution of the restricted matrix equation.

Theorem 7.1. Let A ∈ Cn×n
k with r(Ak) = t and m ∈ Z+. Let B ∈ Cn×(n−t) and C∗ ∈ Cn×(n−t) be of full

column rank such that N((Ak)∗Am) = R(B) and R(Ak) = N(C). Then the bordered matrix

K =

[
A B
C 0

]
is invertible and

K−1 =

[
AwOm (In − AwOm A)C†

B†(In − AAwOm) B†(AAwOm A − A)C†

]
.
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Proof. Let X =

[
AwOm (In − AwOm A)C†

B†(In − AAwOm) B†(AAwOm A − A)C†

]
. By R(AwOm) = R(Ak) = N(C), we get

CAwOm = 0. Since C is a full row rank matrix, we get CC† = In−t. Using

R(In − AAwOm) = N(AAwOm) = N((Ak)∗Am) = R(B) = R(BB†),

we get BB†(In − AAwOm) = In − AAwOm . Then, we have

KX =

[
AAwOm + BB†(In − AAwOm) A(In − AwOm A)C† + BB†(AAwOm A − A)C†

CAwOm C(In − AwOm A)C†

]
=

[
AAwOm + In − AAwOm A(In − AwOm A)C† − (In − AAwOm)AC†

0 CC†

]
=

[
In 0
0 In−t

]
.

Thus, X = K−1. The proof is completed. �

The next result, we discuss the solution of the restricted matrix equation below by the m-weak group
inverse.

Theorem 7.2. Let A ∈ Cn×n
k , X ∈ Cn×p and D ∈ Cn×p. If R(D) ⊆ R(Ak), then the restricted matrix

equation
AX = D, R(X) ⊆ R(Ak) (7.1)

has a unique solution X = AwOm D.

Proof. Since R(Ak) = R(AAk) and R(D) ⊆ R(Ak), we get that R(D) ⊆ AR(Ak), which implies the
restricted matrix equation (7.1) has a solution. Obviously, X = AwOm D is a solution of (7.1). Then we
prove the uniqueness of X. If X1 also satisfies (7.1), then

X = AwOm D = AwOm AX1 = PR(Ak),N((Ak)∗Am)X1 = X1.

�

Based on the nonsingular bordered matrix in Theorem 7.1, we show the Cramer’s rule for solving
the restricted matrix Eq (7.1).

Theorem 7.3. Let A ∈ Cn×n
k with r(Ak) = t, X ∈ Cn×p and D ∈ Cn×p. Let B ∈ Cn×(n−t) and C∗ ∈ Cn×(n−t)

be of full column rank such that N((Ak)∗Am) = R(B) and R(Ak) = N(C). Then the elements of the
unique solution X = [xi j] of the restricted matrix Eq (7.1) are given by

xi j =

det
[

A(i→ d j) B
C(i→ 0) 0

]
det

[
A B
C 0

] , i = 1, 2, ..., n, j = 1, 2, ...,m, (7.2)

where d j denotes the j-th column of D.
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Proof. Since X is the solution of the restricted matrix Eq (7.1), we get that R(X) ⊆ R(Ak) = N(C),
which implies CX = 0. Then the restricted matrix Eq (7.1) can be rewritten as[

A B
C 0

] [
X
0

]
=

[
AX
CX

]
=

[
D
0

]
.

By Theorem 7.1, we have that
[

A B
C 0

]
is invertible. Consequently, (7.2) follows from the Cramer’s

rule for the above equation. �

Example 7.4. Let

A =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


,D =



10 14 24 28
6 19 20 22
4 10 14 15
0 0 0 0
0 0 0 0
0 0 0 0


,

B =



1 2 3
0 1 2
1 3 6
−2 −4 −7
1 2 4
−1 −3 −6


,C =


0 0 0 1 0 6
0 0 0 1 2 0
0 0 0 0 0 3

 .

It can be verified that Ind(A) = 3. Then we get that

A3 =



1 0 0 1 1 1
0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, A †O =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, AwO2 = (A †O)3A2 =



1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

It is easy to check that

X = AwO2 D =



10 14 24 28
6 19 20 22
4 10 14 15
0 0 0 0
0 0 0 0
0 0 0 0


satisfies the restricted matrix equation AX = D and R(X) ⊆ R(A3). By simple calculations, we can
also get that the components of X can be expressed in (7.2).
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8. Conclusions

This paper gives a new definition of the m-weak group inverse on complex matrices, which extends
the notions of the Drazin inverse and the weak group inverse. Some characterizations of the m-weak
group inverse in terms of the range space, null space, rank and projectors are presented. Several
representations of the m-weak group inverse involving some known generalized inverses as well as
limitations are also derived. The representation in Theorem 5.1 gives better result in term of the
computational accuracy (see Examples 5.2 and 5.6). The m-weak group inverse are concerned with
the solution of a restricted matrix Eq (7.1). The solution of (7.1) can also be expressed by the Cramer’s
rule (see Theorem 7.3). In [37–39], there are some iterative methods and algorithms to compute the
outer inverses. Motivated by these, further investigations deserve more attention as follows:

(1) The applications of the m-weak group inverse in linear equations and matrix equations;
(2) Perturbation formulae as well as perturbation bounds for the m-weak group inverse;
(3) Iterative algorithm, splitting method for computing the m-weak group inverse;
(4) Other representations of the m-weak group inverse.
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