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We solve distinct forms of (3+1)-Dimensional Wazwaz-Benjamin-Bona-Mahony

[(3+1)-Dimensional WBBM] equations by employing the method of Sardar-subequation.

When parameters involving this approach are taken to be special values, we can obtain

the solitary wave solutions (sws) which is concluded from other approaches such as the

functional variable method, the trail equation method, the first integral method and so

on. We obtain new and general solitary wave solutions in terms of generalized hyperbolic

and trigonometric functions. The results demonstrate the power of the proposed method

for the determination of sws of non-linear evolution equations (NLEs).

Keywords: Sardar-subequation method, (3+1)-dimensional WBBM equations, solitary wave solutions,

NLEs, simulations

INTRODUCTION

Exact solutions and solitary wave solutions of NLEs have a high importance in non-linearity theory.
It is a well-known fact that numerous complex events in various fields of engineering application
and non-linear science such as chemistry, mathematical physics, mechanics, hydrodynamics,
biology, cosmology, and mechanics are explained by NLEs. Exact solutions produce corporal
information to describe the physical behavior of system connected with these NLEs. In recent
years, several efficient methods including method of extended tanh [1, 2], tanh-coth [3, 4], Hirota’s
direct [5, 6], sine-cosine [7, 8], extended direct algebraic [9, 10], extended trial approach [11, 12],
Exp [-ϕ(ξ)]-Expansion [13, 14], a new auxiliary equation [15, 16], Jacobi elliptic ansatz [17, 18],
generalized Bernoulli sub-ODE [19, 20], functional variable [21, 22], sub equation [23, 24], and so
on [25–39], have been established for efficient solutions of NLEs.

In this paper, we utilize of an effective and efficient technique for manufacturing a range of
solitary wave solutions for the variants of the (3+1)-dimensional WBBM equations.

The Benjamin-Bona-Mahony (BBM) equation

ut + ux + uux − uxxt = 0, (1)

proposed in [40] as a model to study the approximately the unidirectional propagation of small-
amplitude long waves on certain non-linear dispersive systems as a good alternative to the KdV
[41]. It is used in modeling surface waves of long wavelength in liquids; it covers hydro-magnetic
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waves in cold plasma, acoustic waves in anharmonic crystals, and
acoustic gravity waves in compressible fluids. Many efforts have
been offered to modified forms of this equation such as

ut + ux + u2ux − uxxt = 0, (2)

known as the modified Benjamin-Bona-Mahoney (mBBM)
equation [42]. Furthermore, as higher dimensional samples
convert to be more realistic; various modifications to Equation
(2) have been proposed in the literature among which the
(3+1)-dimensional mBBM equation given in Equations (3–5) by
Wazwaz [43]. Using the tanh/sech method, Wazwaz obtained
soliton, kink, and periodic solutions for the following three
different types of Equation (2)

ut + ux + u2uy − uxzt = 0, (3)

ut + uz + u2ux − uxyt = 0, (4)

and

ut + uy + u2uz − uxxt = 0. (5)

Based on these ideas, this paper is organized as follows.
Section The Sardar-Subequation Method introduces a brief
description of the Sardar-sub-equation method. Section The
(3+1)-Dimensional WBBM Equation discusses the application
of the Sardar-subequation method to variants of (3+1)-
dimensional WBBM equations represent by (3)–(5). The
graphical presentation for the acquired solution is given in
section Exact Solutions of the (3+1)-Dimensional WBBM
Equation. We complete the paper with conclusions part.

THE SARDAR-SUBEQUATION METHOD

We consider the following NLEs

G(u, ut , ux, utt , uxx, . . .) = 0, (6)

where u = u(x, t) is an unknown function and G is a polynomial
in u and its partial derivatives.

To solve (Equation 6), we take the traveling wave
transformation (twt)

u(x, t) = U(η), η = x− ct, (7)

where c 6= 0 is constants to be determined later.
By using (7), Equation (6) is turned into following ODE

w.r.t. η

P(U,U ′,U ′′,U ′′′, . . .) = 0, (8)

in which U = U(η), U ′ = dU
dη

, U ′′ = d2U
dη2

, . . . .

Suppose that the Equation (8) has a solution of the form

U(η) =
s
∑

i=0

̟iϕ
i(η), (9)

where ̟i, (i = 0, 1, . . . , s) are coefficients to be determined with
(̟s 6= 0) and ϕ(η) satisfies the ODE in the form

(

ϕ′(η)
)2 = ρ + aϕ2(η)+ ϕ4(η), (10)

where a and ρ are real constants. The solutions of ODE (10) are
Case I: If a > 0 and ρ = 0 then

ϕ±
1 (η) = ±

√

−pqa sechpq
(√

aη
)

,

ϕ±
2 (η) = ±

√
pqa cschpq

(√
aη
)

,

where

sechpq(η) =
2

peη + qe−η
, cschpq(η) =

2

peη − qe−η
.

Case II: If a < 0 and ρ = 0 then

ϕ±
3 (η) = ±

√

−pqa secpq
(√

−aη
)

,

ϕ±
4 (η) = ±

√

−pqa cscpq
(√

−aη
)

,

where

secpq(η) =
2

peiη + qe−iη
, cscpq(η) =

2i

peiη − qe−iη
.

Case III: If a < 0 and ρ = a2

4b
then

ϕ±
5 (η) = ±

√

−
a

2
tanhpq

(
√

−
a

2
η

)

,

ϕ±
6 (η) = ±

√

−
a

2
cothpq

(
√

−
a

2
η

)

,

ϕ±
7 (η) = ±

√

−
a

2

(

tanhpq

(√
−2aη

)

± i
√
pq sechpq

(√
−2aη

))

,

ϕ±
8 (η) = ±

√

−
a

2

(

cothpq

(√
−2aη

)

±
√
pq cschpq

(√
−2aη

))

,

ϕ±
9 (η) = ±

√

−
a

8

(

tanhpq

(
√

−
a

8
η

)

+ cothpq

(
√

−
a

8
η

))

,

where

tanhpq(η) =
peη − qe−η

peη + qe−η
, cothpq(η) =

peη + qe−η

peη − qe−η
.

Case IV: If a > 0 and ρ = a2

4 then

ϕ±
10(η) = ±

√

a

2
tanpq

(
√

a

2
η

)

,

ϕ±
11(η) = ±

√

a

2
cotpq

(
√

a

2
η

)

,

ϕ±
12(η) = ±

√

a

2

(

tanpq

(√
2aη

)

±
√
pq secpq

(√
2aη

))

,

ϕ±
13(η) = ±

√

a

2

(

cotpq

(√
2aη

)

±
√
pq cscpq

(√
2aη

))

,
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ϕ±
14(η) = ±

√

a

8

(

tanpq

(
√

a

8
η

)

+ cotpq

(
√

a

8
η

))

,

where

tanpq(η) = −i
peiη − qe−iη

peiη + qe−iη
, cotpq(η) = i

peiη + qe−iη

peiη − qe−iη
,

The procedure starts by determining s by the assistance of
the classical balance rule. When s is determined the predicted
solution (8) is substituted into (Equation 7). Since we seek
a non-zero solution that is ϕ(η) 6= 0, all the coefficient
of power of ϕ(η) are equated to zero. Thus, the resultant
algebraic system is solved for ̟is and c. One should note that
̟s 6= 0 and c 6= 0 both have to be satisfied in the solution
sets. Whenever ̟is and c are determined the solutions are
constructed by using these parameters explicitly. The procedure
ends by substitution of η = x − ct into the solutions
satisfying (Equation 7).

Remark 1. The Sardar-subequation method is considered
among those general ones from which, under certain cases,
various methods can be deduced such as the functional variable
method [44], the first integral method [45], and so on.

THE (3+1)-DIMENSIONAL WBBM
EQUATION

To solve the (3+1)-Dimensional (3+1)-Dimensional WBBM
equations (3), (4), and (5) by using the Sardar-sub-equation
method, we make the following subsection.

The First (3+1)-Dimensional WBBM
Equation
We next study the first (3+1)-dimensional WBBM equation (3).
The twt u(x, t) = U(η),η = kx+λy+µz− ct, reduces (Equation
3) to the following ordinary differential equation

(k− c)U ′ + λU2U ′ + k µcU ′′′ = 0. (11)

Integrating (Equation 11), we get

(k− c)U +
λ

3
U3 + k µcU ′′ = 0. (12)

Then, Equation (12) can be written as.

�1U + �2U
3 + U ′′ = 0, (13)

where

�1 =
k− c

k µc
, �2 =

λ

3k µc
. (14)

The Second (3+1)-Dimensional WBBM
Equation
We next study the second (3+1)-dimensional WBBM equation
(4). The twt u(x, t) = U(η),η = kx + λy + µz − ct, reduces
(Equation 4) to the following ordinary differential equation

(µ − c)U ′ + kU2U ′ + k λcU ′′′ = 0. (15)

Integrating (Equation 15), we get

(µ − c)U +
k

3
U3 + k λcU ′′ = 0. (16)

Then, Equation (16) can be written as.

�1U + �2U
3 + U ′′ = 0, (17)

where.

�1 =
µ − c

k λc
, �2 =

1

3λc
. (18)

The Third (3+1)-Dimensional WBBM
Equation
We next study the third (3+1)-dimensionalWBBM equation (5).
By making the traveling wave transformation

u(x, y, z, t) = U(η), η = kx+ λy+ µz − ct, (19)

(Equation 5) becomes

(λ − c)U ′ + µU2U ′ + k2cU ′′′ = 0. (20)

Integrating (Equation 20) twice and setting the integration
constants to zero yield

(λ − c)U +
µ

3
U3 + k2cU ′′ = 0. (21)

Then, Equation (21) can be written as.

�1U + �2U
3 + U ′′ = 0, (22)

where

�1 =
λ − c

k2c
, �2 =

µ

3k2c
. (23)

EXACT SOLUTIONS OF THE
(3+1)-DIMENSIONAL WBBM EQUATION

Balancing U with U ′′ in Equations (13, 17, 22), we get s = 1.
Therefore, the solutions form of Equations (13, 17, 22) has the
following expression

U(η) = ̟0 + ̟1 ϕ(η), (24)

Substituting Equation (24) into (13) [or (17) or (22)] with along
(Equation 10) and equating all the coefficients of ϕ(η) to zero, we
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obtain a highly complicated system of algebraic equations. A set
of algebraic equations is obtained in ̟0,̟1, and a as follows:

̟ 0
: λ2�

3
0 + λ1�0 = 0,

̟ 1
: 3λ2�

2
0�1 + λ1�1 + �1a = 0,

̟ 1
: 3λ2�0�

2
1 = 0,

̟ 1
: 2�1b+ λ2�

3
1 = 0,

Solving these algebraic equations with Maple, we acquire:

̟0 = 0, ̟1 = ±
√

−
2

�
, a = −�1. (25)

The First (3+1)-Dimensional WBBM
Equation
Substituting (Equation 14) into (Equation 25), we have

̟0 = 0, ̟1 = ±
√

−
6k µc

�
, a =

c− k

k µc
. (26)

The solutions of (3) corresponding to (26), along with solution
(10) are
Case I: If c−k

k µc
> 0 and ρ = 0 then

u±1,1 = ±
√

6pq(c− k)

λ
sechpq

(

√

c− k

k µc
(kx+ λy+ µz − ct)

)

,

u±1,2 = ±
√

−
6pq(c− k)

λ
cschpq

(

√

c− k

k µc
(kx+ λy+ µz − ct)

)

.

FIGURE 1 | The sws
∣

∣u+1,3
∣

∣ with parameters µ = 1, k = 1, c = 0.5, λ = 1,p = 0.98,q = 0.95, y = 0.5, z = 1 and (A) 3D plot, (B) contour plot (cp), and (C) 2D plot.
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FIGURE 2 | The sws
∣

∣u−1,7
∣

∣ with parameters µ = 3, k = 2.5, c = 1.5, λ = 0.2,p = 1.2,q = 1.1, y = 1.5, z = 0.5 and (A) 3D plot, (B) cp, and (C) 2D plot.

Case II: If c−k
k µc

< 0 and ρ = 0 then

u±1,3 = ±
√

6pq(c− k)

λ
secpq

(

√

c− k

k µc
(kx+ λy+ µz − ct)

)

,

u±1,4 = ±
√

6pq(c− k)

λ
cscpq

(

√

c− k

k µc
(kx+ λy+ µz − ct)

)

.

Case III: If c−k
k µc

< 0 and ρ =
(

c−k
2k µc

)2
then

u±1,5 = ±
√

3(c− k)

λ
tanhpq

(

√

−
c− k

2kµc
(kx+ λy+ µz − ct)

)

,

u±1,6 = ±
√

3(c− k)

λ
cothpq

(

√

−
c− k

2kµc
(kx+ λy+ µz − ct)

)

,

u±1,7 = ±
√

3(c− k)

λ

(

tanhpq

(

√

−
2(c− k)

kµc
(kx+ λy+ µz − ct)

)

±i
√
pq sechpq

(

√

−
2(c− k)

kµc
(kx+ λy+ µz − ct)

)

,

u±1,8 = ±
√

3(c− k)

λ

(

cothpq

(

√

−
2(c− k)

kµc
(kx+ λy+ µz − ct)

)

±
√
pq cschpq

(

√

−
2(c− k)

kµc
(kx+ λy+ µz − ct)

))

,

u±1,9 = ±
√

3(c− k)

4λ

(

tanhpq

(

√

−
c− k

8kµc
(kx+ λy+ µz − ct)

)

+ cothpq

(

√

−
c− k

8kµc
(kx+ λy+ µz − ct)

))

,

Case IV: If c−k
kµc

> 0 and ρ =
(

c−k
2kµc

)2
then

u±1,10 = ±
√

−
3(c− k)

λ
tanpq

(

√

c− k

2kµc
(kx+ λy+ µz − ct)

)

,

u±1,11 = ±
√

−
3(c− k)

λ
cotpq

(

√

c− k

2kµc
(kx+ λy+ µz − ct)

)

,
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FIGURE 3 | The sws
∣

∣u+2,2
∣

∣ with µ = 0.3, k = 0.5, c = 3, λ = 5,p = 1.1,q = 1.2, y = 1, z = 1 (A) 3D plot, (B) cp, and (C) 2D plot.

u±1,12 = ±
√

−
3(c− k)

λ

(

tanpq

(

√

2(c− k)

kµc
(kx+ λy+ µz − ct)

)

±
√
pq secpq

(

√

2(c− k)

kµc
(kx+ λy+ µz − ct)

)

,

u±1,14 = ±
√

−
3(c− k)

4λ

(

tanpq

(

√

c− k

8kµc
(kx+ λy+ µz − ct)

)

+ cotpq

(

√

c− k

8kµc
(kx+ λy+ µz − ct)

))

,

The Second (3+1)-Dimensional WBBM
Equation
Substituting (Equation 18) into (Equation 25), we have

̟0 = 0, ̟1 = ±
√
−6λc, a =

c− µ

k λc
. (27)

The solutions of (4) corresponding to (27), along with solution
(10) are
Case I: If c−µ

k λc
> 0 and ρ = 0 then

u±2,1 = ±
√

6pq(c− µ)

k
sechpq

(

√

c− µ

k λc
(kx+ λy+ µz − ct)

)

,

u±2,2 = ±
√

−
6pq(c− µ)

k
cschpq

(

√

c− µ

k λc
(kx+ λy+ µz − ct)

)

.

Case II: If c−µ

k λc
< 0 and ρ = 0 then

u±2,3 = ±
√

6pq(c− µ)

k
secpq

(

√

−
c− µ

k λc
(kx+ λy+ µz − ct)

)

,
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FIGURE 4 | The sws
∣

∣u−2,6
∣

∣ withµ = 1, k = 0.5, c = 0.2, λ = 3,p = 0.97,q = 0.95, y = 1.5, z = 0.5 and (A) 3D plot, (B) cp, and (C) 2D plot.

u±2,4 = ±
√

6pq(c− µ)

k
cscpq

(

√

−
c− µ

k λc
(kx+ λy+ µz − ct)

)

,

Case III: If c−µ

k λc
< 0 and ρ =

( c−µ

2k λc

)2
then

u±2,5 = ±
√

3(c− µ)

k
tanhpq

(

√

−
c− µ

2k λc
(kx+ λy+ µz − ct)

)

,

u±2,6 = ±
√

3(c− µ)

k
cothpq

(

√

−
c− µ

2k λc
(kx+ λy+ µz − ct)

)

,

u±2,7 = ±
√

3(c− µ)

k

(

tanhpq

(
√

−
2(c− µ)

k λc
(kx+ λy+ µz − ct)

)

±i
√
pq sechpq

(
√

−
2(c− µ)

k λc
(kx+ λy+ µz − ct)

)

,

u±2,8 = ±
√

3(c− µ)

k

(

cothpq

(
√

−
2(c− µ)

k λc
(kx+ λy+ µz − ct)

)

±
√
pq cschpq

(
√

−
2(c− µ)

k λc
(kx+ λy+ µz − ct)

))

,

u±2,9 = ±
√

3(c− µ)

4k

(

tanhpq

(

√

−
c− µ

8k λc
(kx+ λy+ µz − ct)

)

+ cothpq

(

√

−
c− µ

8k λc
(kx+ λy+ µz − ct)

))

,

Case IV: If c−µ

k λc
> 0 and ρ =

( c−µ

2k λc

)2
then

u±2,10 = ±
√

−
3(c− µ)

k
tanpq

(

√

c− µ

2k λc
(kx+ λy+ µz − ct)

)

,

u±2,11 = ±
√

−
3(c− µ)

k
cotpq

(

√

c− µ

2k λc
(kx+ λy+ µz − ct)

)

,

u±2,12 = ±
√

−
3(c− µ)

k

(

tanpq

(
√

2(c− µ)

k λc
(kx+ λy+ µz − ct)

)

±
√
pq secpq

(
√

2(c− µ)

k λc
(kx+ λy+ µz − ct)

)

,
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FIGURE 5 | The sws
∣

∣u+3,1
∣

∣ with parameters µ = 2, k = 1, c = 1.5, λ = −1,p = 1,q = 1, y = 1.5, z = 2 and (A) 3D plot, (B) cp, and (C) 2D plot.

u±2,14 = ±
√

−
3(c− µ)

4k

(

tanpq

(

√

c− µ

8k λc
(kx+ λy+ µz − ct)

)

+ cotpq

(

√

c− µ

8k λc
(kx+ λy+ µz − ct)

))

,

The Third (3+1)-Dimensional WBBM
Equation
Substituting (Equation 23) into (Equation 25), we have

̟0 = 0, ̟1 = ±

√

−
6k2c

µ
, a =

c− λ

k2c
. (28)

The solutions of (5) corresponding to (28), along with solution
(10) are

Case I: If c−λ
k2c

> 0 and ρ = 0 then

u±3,1 = ±

√

6pq(c− λ)

µ
sechpq

(

√

c− λ

k2c
(kx+ λy+ µz − ct)

)

,

u±3,2 = ±

√

−
6pq(c− λ)

µ
cschpq

(

√

c− λ

k2c
(kx+ λy+ µz − ct)

)

.

Case II: If c−λ
k2c

< 0 and ρ = 0 then

u±3,3 = ±

√

6pq(c− λ)

µ
secpq

(

√

−
c− λ

k2c
(kx+ λy+ µz − ct)

)

,

u±3,4 = ±

√

6pq(c− λ)

µ
cscpq

(

√

−
c− λ

k2c
(kx+ λy+ µz − ct)

)

,
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FIGURE 6 | The sws
∣

∣u−3,14
∣

∣ with parameters µ = 0.5, k = 0.2, c = 1, λ = 0.5,p = 0.97,q = 0.95, y = 1, z = 1 and (A) 3D plot, (B) cp, and (C) 2D plot.

Case III: If c−λ
k2c

< 0 and ρ =
(

c−λ
2k2c

)2
then

u±3,5 = ±

√

3(c− λ)

µ
tanhpq

(

√

−
c− λ

k2c
(kx+ λy+ µz − ct)

)

,

u±3,6 = ±

√

3(c− λ)

µ
cothpq

(

√

−
c− λ

k2c
(kx+ λy+ µz − ct)

)

,

u±3,7 = ±

√

3(c− λ)

µ

(

tanhpq

(
√

−
2(c− λ)

k2c
(kx+ λy+ µz − ct)

)

±i
√
pq sechpq

(
√

−
2(c− λ)

k2c
(kx+ λy+ µz − ct)

)

,

u±3,8 = ±

√

3(c− λ)

µ

(

cothpq

(

√

−
2(c− k)

kµc
(kx+ λy+ µz − ct)

)

±
√
pq cschpq

(
√

−
2(c− λ)

k2c
(kx+ λy+ µz − ct)

))

,

u±3,9 = ±

√

3(c− λ)

4µ

(

tanhpq

(

√

−
c− λ

8k2c
(kx+ λy+ µz − ct)

)

+ cothpq

(

√

−
c− λ

8k2c
(kx+ λy+ µz − ct)

))

,

Case IV: If c−λ
k2c

> 0 and ρ =
(

c−λ
2k2c

)2
then

u±3,10 = ±

√

−
3(c− λ)

µ
tanpq

(

√

c− λ

k2c
(kx+ λy+ µz − ct)

)

,

u±3,11 = ±

√

−
3(c− λ)

µ
cotpq

(

√

c− λ

k2c
(kx+ λy+ µz − ct)

)

,

u±3,12 = ±

√

−
3(c− λ)

µ

(

tanpq

(
√

2(c− λ)

k2c
(kx+ λy+ µz − ct)

)

±
√
pq secpq

(
√

2(c− λ)

k2c
(kx+ λy+ µz − ct)

)

,

u±3,14 = ±

√

−
3(c− λ)

4µ

(

tanpq

(

√

c− λ

8k2c
(kx+ λy+ µz − ct)

)

+ cotpq

(

√

c− λ

8k2c
(kx+ λy+ µz − ct)

))

,

GRAPHICAL PRESENTATION

Graph is a strong tool for relationship describing clarity the
solutions of the challenges. Therefore, some graphs of the
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solutions are given in each subsection above with different
parameters. The graphs easily have shown the solitary wave
form of the modulus solution u+1,3,u

−
1,7,u

+
2,2,u

−
2,6,u

+
3,1, and u−3,14 in

Figures 1–6 [(a) 3D plot, (b) cp, and (c) 2D plot], respectively.
We see in Figures 1, 6 that the absolute value of u+1,3 and u−3,14
are singular periodic wave solutions and, in Figures 2, 5 that the
absolute value of u−1,7 and u+3,1 are bright solitary wave solutions

and in Figures 3, 4 that the absolute value of u+2,2 and u−2,5 are
singular solitary wave solutions.

CONCLUSIONS

We have proposed a method, namely Sardar-subequation
method to solve NLEs with the help of Maple Software. Distinct
forms of (3+1)-dimensional WBBM equations are handled
to display the effectiveness of the suggested method. From
our results, some sws are obtained including the generalized
hyperbolic and trigonometric function solutions. As far as we
know, for the first time, we describe and introduce Sardar-
subequation method which is a new method for solving NLEs.

Thus, all the solutions distinct forms of (3+1)-dimensional
WBBM equations are new, which cannot be found in literature
to our best knowledge. We can also see that the approach used
in this letter is very effective, powerful and convenient and can
be steadily applied to NLEs. We will extend the proposed method
for some fractional models [46–48] in a future work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

HR, MI, and DB contributed conception and design of the study.
HR organized the database. MI performed the statistical analysis.
DB wrote the first draft of the manuscript. HR, MI, and DB wrote
sections of themanuscript. All authors contributed tomanuscript
revision, read, and approved the submitted version.

REFERENCES

1. Wazwaz AM. The tan h method: solitons and periodic solutions for the

Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations.

Chaos Solitons Fractals. (2005) 25:55–63. doi: 10.1016/j.chaos.2004.

09.122

2. Wazwaz AM. The tanh method for traveling wave solutions

of nonlinear equations. Appl Math Comput. (2004) 154:713–

23. doi: 10.1016/S0096-3003(03)00745-8

3. Wazwaz AM. The tanh-coth method for solitons and kink solutions

for nonlinear parabolic equations. Appl Math Comput. (2007) 188:1467–

75. doi: 10.1016/j.amc.2006.11.013

4. Wazwaz AM. The tanh-coth method for new compactons and solitons

solutions for the K (n,n) and the K (n+1, n+1) equations. Appl Math Comput.

(2007) 188:1930–40. doi: 10.1016/j.amc.2006.11.076

5. Wazwaz AM. The Hirota’s direct method and the tanh-coth method

for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order

equation. Appl Math Comput. (2008) 199:133–8. doi: 10.1016/j.amc.2007.

09.034

6. Wazwaz AM. The Hirota’s direct method for multiple-soliton solutions for

three model equations of shallow water waves. Appl Math Comput. (2008)

201:489–503. doi: 10.1016/j.amc.2007.12.037

7. Wazwaz AM. The sine-cosine method for obtaining solutions with

compact and noncompact structures. Appl Math Comput. (2004) 159:559–

76. doi: 10.1016/j.amc.2003.08.136

8. Wazwaz AM. A sine-cosine method for handlingnonlinear wave equations.

Math Comput Model. (2004) 40:499–508. doi: 10.1016/j.mcm.2003.12.010

9. Gao W., Rezazadeh H, Pinar Z, Baskonus HM, Sarwar S, Yel G. Novel

explicit solutions for the nonlinear Zoomeron equation by using newly

extended direct algebraic technique. Optic Quant Electron. (2020) 52:1–

13. doi: 10.1007/s11082-019-2162-8

10. Rezazadeh H. New solitons solutions of the complex Ginzburg-

Landau equation with Kerr law nonlinearity. Optik. (2018)

167:218–27. doi: 10.1016/j.ijleo.2018.04.026

11. Raza N, AslamMR, RezazadehH. Analytical study of resonant optical solitons

with variable coefficients in Kerr and non-Kerr law media. Optic Quant

Electron. (2019) 51:59. doi: 10.1007/s11082-019-1773-4

12. Raza N, Javid A. Optical dark and dark-singular soliton solutions of (1+2)-

dimensional chiral nonlinear Schrodinger’s equation. Waves Random Comp

Media. (2019) 29:496–508. doi: 10.1080/17455030.2018.1451009

13. Raza N, Abdullah M, Butt AR. Analytical soliton solutions of Biswas-

Milovic equation in Kerr and non-Kerr law media. Optik. (2018) 157:993–

1002. doi: 10.1016/j.ijleo.2017.11.043

14. Raza N, Afzal U, Butt AR, Rezazadeh H. Optical solitons in nematic liquid

crystals with Kerr and parabolic law nonlinearities. Optic Quant Electron.

(2019) 51:107. doi: 10.1007/s11082-019-1813-0

15. Khater, MM, Seadawy, AR, Lu D. Dispersive optical soliton solutions for

higher order nonlinear Sasa-Satsuma equation in mono mode fibers via

new auxiliary equation method. Superlattices Microstruct. (2018) 113:346–

58. doi: 10.1016/j.spmi.2017.11.011

16. Rezazadeh H, Korkmaz A, Eslami M, Mirhosseini-Alizamini, SM.

A large family of optical solutions to Kundu-Eckhaus model by

a new auxiliary equation method. Optic Quant Electron. (2019)

51:84. doi: 10.1007/s11082-019-1801-4

17. Aslan EC., Inc M. Optical soliton solutions of the NLSE with quadratic-cubic-

Hamiltonian perturbations and modulation instability analysis. Optik. (2019)

196:162661. doi: 10.1016/j.ijleo.2019.04.008

18. Korpinar Z, Inc M, BayramM, Hashemi MS. New optical solitons for Biswas–

Arshed equation with higher order dispersions and full nonlinearity. Optik.

(2019) 206:163332. doi: 10.1016/j.ijleo.2019.163332

19. Yusuf A, Inc M, Aliyu, AI, Baleanu D. Optical solitons possessing beta

derivative of the Chen-Lee-Liu equation in optical fiber. Front Phys. (2019)

7:34. doi: 10.3389/fphy.2019.00034

20. Yusuf A, Inc M, Baleanu D. Optical solitons with M-truncated

and beta derivatives in nonlinear optics. Front Phys. (2019)

7:126. doi: 10.3389/fphy.2019.00126

21. Çenesiz Y, Tasbozan O, Kurt A. Functional Variable Method for conformable

fractional modified KdV-ZK equation and Maccari system. Tbilisi Math J.

(2017) 10:117–25. doi: 10.1515/tmj-2017-0010

22. Eslami M, Rezazadeh H, Rezazadeh M, Mosavi SS. Exact solutions to

the space-time fractional Schrödinger-Hirota equation and the space-time

modified KDV-Zakharov-Kuznetsov equation. Optic Quant Electron. (2017)

49:279. doi: 10.1007/s11082-017-1112-6

23. Kurt A. New analytical and numerical results for fractional Bogoyavlensky-

Konopelchenko equation arising in fluid dynamics. Appl Math A J Chin Univ.

(2020) 35:101–12. doi: 10.1007/s11766-020-3808-9

24. Atilgan E, Senol M, Kurt, A, Tasbozan O. New wave solutions

of time-fractional coupled Boussinesq-Whitham-Broer-Kaup

equation as a model of water waves. China Ocean Eng. (2019)

33:477–83. doi: 10.1007/s13344-019-0045-1

Frontiers in Physics | www.frontiersin.org 10 September 2020 | Volume 8 | Article 332

https://doi.org/10.1016/j.chaos.2004.09.122
https://doi.org/10.1016/S0096-3003(03)00745-8
https://doi.org/10.1016/j.amc.2006.11.013
https://doi.org/10.1016/j.amc.2006.11.076
https://doi.org/10.1016/j.amc.2007.09.034
https://doi.org/10.1016/j.amc.2007.12.037
https://doi.org/10.1016/j.amc.2003.08.136
https://doi.org/10.1016/j.mcm.2003.12.010
https://doi.org/10.1007/s11082-019-2162-8
https://doi.org/10.1016/j.ijleo.2018.04.026
https://doi.org/10.1007/s11082-019-1773-4
https://doi.org/10.1080/17455030.2018.1451009
https://doi.org/10.1016/j.ijleo.2017.11.043
https://doi.org/10.1007/s11082-019-1813-0
https://doi.org/10.1016/j.spmi.2017.11.011
https://doi.org/10.1007/s11082-019-1801-4
https://doi.org/10.1016/j.ijleo.2019.04.008
https://doi.org/10.1016/j.ijleo.2019.163332
https://doi.org/10.3389/fphy.2019.00034
https://doi.org/10.3389/fphy.2019.00126
https://doi.org/10.1515/tmj-2017-0010
https://doi.org/10.1007/s11082-017-1112-6
https://doi.org/10.1007/s11766-020-3808-9
https://doi.org/10.1007/s13344-019-0045-1
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rezazadeh et al. (3+1)-Dimensional Wazwaz-Benjamin-Bona-Mahony Equations

25. Nestor S, Houwe A, Rezazadeh H., Bekir A, Betchewe G, Doka SY. New

solitary waves for the Klein-Gordon-Zakharov equations. Modern Phys Lett

B. (2020) 60:324–343. doi: 10.1142/S0217984920502462

26. Nestor S, Abbagari S, Houwe A, Betchewe G, Doka, SY. Diverse chirped

optical solitons and new complex traveling waves in nonlinear optical fibers.

Commun Theor Phys. (2020) 72:065501. doi: 10.1088/1572-9494/ab7ecd

27. Houwe A, Abbagari S, Salathiel,Y, Inc M, Doka SY, Crépin KT, et al. Complex

traveling-wave and solitons solutions to the Klein-Gordon-Zakharov

equations. Results Phys. (2020) 17:103127. doi: 10.1016/j.rinp.2020.103127

28. Houwe A, Abbagari S, Inc M, Betchewe G, Doka SY, Crépin, et al.

Chirped solitons in discrete electrical transmission line. Results Phys. (2020)

18:103188. doi: 10.1016/j.rinp.2020.103188

29. Park C, Khater MM, Abdel-Aty AH, Attia RA, Rezazadeh H, Zidan

AM, et al. Dynamical analysis of the nonlinear complex fractional

emerging telecommunication model with higher-order dispersive cubic-

quintic. Alexandria Eng J. (2020) 59:1425–33. doi: 10.1016/j.aej.2020.03.046

30. Alquran M, Jarrah A. Jacobi elliptic function solutions for

a two-mode KdV equation. J King Saud Univ Sci. (2019)

31:485–9. doi: 10.1016/j.jksus.2017.06.010

31. Jaradat HM, Syam M, Alquran M. A two-mode coupled Korteweg-de Vries:

multiple-soliton solutions and other exact solutions. Nonlinear Dyn. (2017)

90:371–7. doi: 10.1007/s11071-017-3668-x

32. Alquran M, Jaradat HM, Syam MI. A modified approach for a reliable study

of new nonlinear equation: two-mode Korteweg-de Vries-Burgers equation.

Nonlinear Dyn. (2018) 91:1619–26. doi: 10.1007/s11071-017-3968-1

33. Jaradat HM, Awawdeh F, Al-Shara S, Alquran M, Momani S. Controllable

dynamical behaviors and the analysis of fractal burgers hierarchy with the full

effects of inhomogeneities of media. Rom. J. Phys. (2015) 60:324–43.

34. Syam M, Jaradat HM, Alquran M. A study on the two-mode

coupled modified Korteweg-de Vries using the simplified bilinear

and the trigonometric-function methods. Nonlinear Dyn. (2017)

90:1363–71. doi: 10.1007/s11071-017-3732-6

35. Alquran M, Jaradat HM, Al-Shara S, Awawdeh F. A new simplified bilinear

method for the N-soliton solutions for a generalized FmKdV equation with

time-dependent variable coefficients. Int J Nonlinear Sci Numer Simul. (2015)

16:259–69. doi: 10.1515/ijnsns-2014-0023

36. Rezazadeh H, Vahidi J, Zafar A, Bekir A. The functional variable method

to find new exact solutions of the nonlinear evolution equations with

dual-power-law nonlinearity. Int J Nonlinear Sci Numer Simul. (2020) 21:249–

57. doi: 10.1515/ijnsns-2019-0064

37. Yépez-Martínez H, Gómez-Aguilar JF. Fractional sub-equation method for

Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using

the Atangana’s conformable derivative.Waves Ran CompMed. (2019) 29:678–

93. doi: 10.1080/17455030.2018.1464233

38. Yépez-Martínez H, Gómez-Aguilar JF, Baleanu D. Beta-derivative and sub-

equation method applied to the optical solitons in medium with parabolic

law nonlinearity and higher order dispersion. Optik. (2018) 155:357–

65. doi: 10.1016/j.ijleo.2017.10.104

39. Yépez-Martínez H, Gómez-Aguilar JF. M-derivative applied to the

soliton solutions for the Lakshmanan-Porsezian-Daniel equation

with dual-dispersion for optical fibers. Optical Quant Electron. (2019)

51:31. doi: 10.1007/s11082-018-1740-5

40. Benjamin TB, Bona JL, Mahony JJ. Model equations for long waves in

nonlinear dispersive systems. Philos Trans R Soc Lond Ser A Math Phys Sci.

(1972) 272:47–78. doi: 10.1098/rsta.1972.0032

41. Bona JL, Pritchard WG, Scott LR. An evaluation of a model equation for

water waves. Philos Trans R Soc Lond Ser A Math Phys Sci. (1981) 302:457–

510. doi: 10.1098/rsta.1981.0178

42. Yusufoglu E. New solitonary solutions for the MBBM equations

using Exp-function method. Phys Lett A. (2008) 372:442–

6. doi: 10.1016/j.physleta.2007.07.062

43. Wazwaz AM. Exact soliton and kink solutions for new (3+1)-dimensional

nonlinear modified equations of wave propagation. Open Eng. (2017) 7:169–

74. doi: 10.1515/eng-2017-0023

44. Eslami M, Mirzazadeh M. Functional variable method to

study nonlinear evolution equations. Open Eng. (2013) 3:451–

8. doi: 10.2478/s13531-013-0104-y

45. Mirzazadeh M, Eslami M. Exact solutions of the Kudryashov-Sinelshchikov

equation and nonlinear telegraph equation via the first integral method.

Nonlinear Analy Model Control. (2012) 17:481–8. doi: 10.15388/

NA.17.4.14052

46. Memon Z, Qureshi S, Memon BR. Mathematical analysis for a new nonlinear

measles epidemiological system using real incidence data from Pakistan. Eur

Phys J Plus. (2020) 135:378. doi: 10.1140/epjp/s13360-020-00392-x

47. Atangana A, Qureshi S. Mathematical analysis of dengue fever

outbreak by novel fractional operators with field data. Phys A. (2019)

526:121127. doi: 10.1016/j.physa.2019.121127

48. Atangana A, Qureshi S. Modeling attractors of chaotic dynamical system

with fractal-fractional operators. Chaos Solit Fractals. (2019) 123:320–

7. doi: 10.1016/j.chaos.2019.04.020

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Rezazadeh, Inc and Baleanu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 11 September 2020 | Volume 8 | Article 332

https://doi.org/10.1142/S0217984920502462
https://doi.org/10.1088/1572-9494/ab7ecd
https://doi.org/10.1016/j.rinp.2020.103127
https://doi.org/10.1016/j.rinp.2020.103188
https://doi.org/10.1016/j.aej.2020.03.046
https://doi.org/10.1016/j.jksus.2017.06.010
https://doi.org/10.1007/s11071-017-3668-x
https://doi.org/10.1007/s11071-017-3968-1
https://doi.org/10.1007/s11071-017-3732-6
https://doi.org/10.1515/ijnsns-2014-0023
https://doi.org/10.1515/ijnsns-2019-0064
https://doi.org/10.1080/17455030.2018.1464233
https://doi.org/10.1016/j.ijleo.2017.10.104
https://doi.org/10.1007/s11082-018-1740-5
https://doi.org/10.1098/rsta.1972.0032
https://doi.org/10.1098/rsta.1981.0178
https://doi.org/10.1016/j.physleta.2007.07.062
https://doi.org/10.1515/eng-2017-0023
https://doi.org/10.2478/s13531-013-0104-y
https://doi.org/10.15388/NA.17.4.14052
https://doi.org/10.1140/epjp/s13360-020-00392-x
https://doi.org/10.1016/j.physa.2019.121127
https://doi.org/10.1016/j.chaos.2019.04.020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	New Solitary Wave Solutions for Variants of (3+1)-Dimensional Wazwaz-Benjamin-Bona-Mahony Equations
	Introduction
	The Sardar-Subequation Method
	The (3+1)-Dimensional WBBM Equation
	The First (3+1)-Dimensional WBBM Equation
	The Second (3+1)-Dimensional WBBM Equation
	The Third (3+1)-Dimensional WBBM Equation

	Exact Solutions of the (3+1)-Dimensional WBBM Equation
	The First (3+1)-Dimensional WBBM Equation
	The Second (3+1)-Dimensional WBBM Equation
	The Third (3+1)-Dimensional WBBM Equation

	Graphical Presentation
	Conclusions
	Data Availability Statement
	Author Contributions
	References


