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Our aim in this research is to investigate the motion of a beam on an internally bent nanowire by
using the fractional calculus theory. To this end, we first formulate the classical Lagrangian which is
followed by the classical Euler–Lagrange equation. Then, after introducing the generalized fractional
Lagrangian, the fractional Euler–Lagrange equation is provided for the motion of the considered beam on
the nanowire. An efficient numerical scheme is introduced for implementation and the simulation results
are reported for different fractional-order values and various initial settings. These results indicate that
the fractional responses approach the classical ones as the fractional order goes to unity. In addition,
the fractional Euler–Lagrange equation provides a flexible model possessing more information than the
classical description — the fact that leads to a considerably better evaluation of the hidden features of
the real system under investigation.
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1. Introduction

The idea of fractional calculus has already been
proven by the precursors of common calculus. The
authors of [1, 2] demonstrated that fractional calcu-
lus is required when researchers make scientific ef-
forts to depict the complex nature of many real-life
phenomena. It is incredible to realize that in pre-
vious years scientists, mainly engineers, have been
ignorant of fractional calculus due to its non-real
practical fields. Fortunately, the paradigm shift
proceeded from the natural mathematical setup to
applications in diverse fields. The fields of science,
engineering, and mathematics have applied frac-
tional calculus mostly in the last decades. The
effects concern, for example, physics [3–5], con-
trol theory [6], and other fields. To be more spe-
cific, researchers have become increasingly inter-
ested in fractional calculus. With its use, for ex-
ample, the fractional Lagrangian or Hamiltonian

equations were derived for problems considered
in [7–10]. To solve certain fractional differential
equations, many numerical methods are applied
such as the Grünwald–Letnikov approximation [1],
and the variational iteration method [11].

In recent years, fractional calculus has also shown
its importance for investigating physical and engi-
neering systems that can be successfully described
through differential equations. We refer the in-
terested readers to [12–17] and references therein,
where useful methods of great importance were
presented. In [18], the authors simulated the
Lagrangian mechanics of fractional order, in which
the Hamilton–Jacobi non-classical type partial dif-
ferential equation (PDE) and Taylor’s series of non-
differentiable functions were discussed. In [19],
the fractional-order Euler–Lagrange equations and
dynamics of the Hamiltonian equations were in-
troduced. A numerical technique based on non-
integer order Lagrange polynomials for simulating
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a class of non-classical type differential equations
was given in [20]. As an example, the multi-
step reduced differential transform method (DTM)
was used to solve one-dimensional fractional heat
equations with time fractional derivatives, and the
Klein–Gordon equation. The results show that the
method is a reliable technique that can be used to
handle linear and nonlinear fractional partial differ-
ential equations [12, 13].

Also, the multistep generalized differential trans-
form method was used to investigate both the
Rabinovich–Fabrikant model involving the Caputo
fractional derivative subjected to appropriate ini-
tial conditions and to construct a novel robust
algorithm in finding numerical approximate solu-
tions to the following model of the time-space frac-
tional Fokker–Planck equation [15, 16]. In [21],
the generalized Birkhoffian systems in the sense
of the classical and combined Caputo fractional-
derivatives were discussed while a fruitful theory
on fractional-order differential equations was given
in [2]. Further, in [22], the authors analyzed a nu-
merical study on the constitutive characterization of
thermoplastic materials submitted to finite strain.

The motion area often takes circular, conical, or
parabolic shapes. Consequently, when describing
the beam, bedbug, head, dust, etc. behaviors, one
can perform an analysis similar to the particle anal-
ysis. In general, scientists and engineers concen-
trate on problems and tools that help them carry
out their commands. Therefore, in this century, sci-
entists have got interested in the pre-existing the-
ory of random transformation. We naturally believe
that such a great interest is just a fractal aspect
of the world. Early in the 21st century, physicists
have learned, basing on their knowledge and scien-
tific research, how to apply inescapable equations
on a complex structure/area.

It is worth mentioning that in fact several phys-
ical problems are solved by defining fractional op-
erators. In this case, even if a mathematical object
is well defined, the Caputo definition of the frac-
tional derivative is required and applied to obtain
a better solution to these problems. Similarly, to
motivate a beam on the nanowire’s concept, an ex-
ample of 2N nonlinear algebraic equations is elab-
orated. Thus, the desire to explore, to create a new
model for the fractional integral becomes our par-
ticular interest. Nowadays, we are motivated by
the consideration of pure mathematicians to gener-
alize simple power potentials and extend them to
cover a whole host of more information. That is
why real-world systems (phenomena) lead to several
interesting definitions of fractional calculus. Ex-
panding the field of fractional calculus is one of the
motivations.

In this work, we are interested in a beam mov-
ing on an internally bent nanowire with a more re-
alistic shape. In order to analyze the motion of
particles on these surfaces, analytical and numeri-
cal solutions may prove very useful. Therefore, it

is quite correct to think that the new component
of non-locality in the proposed system is revealed
thanks to the numerical results of the fractional
Euler–Lagrange equation (FELE) for the motion of
a beam on a nanowire. As far as the mathemat-
ical and practical points of view are concerned, it
will be recognized that the FELEs as well as their
numerical simulations possess a lot of information,
giving a better evaluation as compared to the cor-
responding integer-order ones.

The current paper is organized as follows. First,
preliminaries concerning the basic explanations in
fractional calculus are briefly presented in Sect. 2.
Next, we describe the Euler–Lagrange equation of
motion in both classical and fractional frameworks
in Sect. 3. Further, we carry out in detail the nu-
merical method studied for a beam on a nanowire
in Sect. 4 and we provide some numerical simula-
tions in Sect. 5. Finally, Sect. 6 is devoted to the
conclusion.

2. Preliminaries

Below, a brief explanation of the main mean-
ings related to derivatives of fractional-order in the
Caputo sense as well as their corresponding inte-
grals can be found. Let x(ξ) be a function in the
region (d, b) and belong to R.

The left Caputo fractional derivative of order β
is defined as

C
dD

β
ξ x(ξ) =

1

Γ (m− β)

ξ∫
d

dϑ (ξ − ϑ)m−β−1
x(m) (ϑ) .

(1)
The right Caputo fractional derivative, with the
same order as (1), is defined as

C
ξ D

β
b x(ξ) =

(−1)m

Γ (m− β)

b∫
ξ

dϑ (ϑ− ξ)m−β−1
x(m) (ϑ) ,

(2)
in which Γ (·) is the gamma function, and n is the
integer element such that m − 1 < β < m. The
corresponding fractional left and right integrals
are, respectively, described as

dI
β
ξ x(ξ) =

1

Γ (β)

ξ∫
d

dϑ (ξ − ϑ)β−1
x (ϑ) (3)

and

ξI
β
b x(ξ) =

1

Γ (β)

b∫
ξ

dϑ (ϑ− ξ)β−1
x (ϑ) . (4)

Note that the Caputo derivative coincides with
the ordinary differentiation when β is the integer,
i.e.,

C
dD

β
ξ x(ξ) = x(m) (ξ) (5)

and
C
ξ D

β
b x(ξ) = (−1)m x(m) (ξ) . (6)

Further information can be found in [1].
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3. System description

As can be seen from the literature cited in the
previous sections, some functions have already been
proposed and much work has been performed on
them. Now, our goal is to define a new function
that will give this topic a new aspect.

In this section, the nonlinear system of a beam
bent into a more realistic potential of the shape z is
considered. Its form is z = A

2!x
2− B

4!x
4+ C

6!x
6, where

x is the displacement, A is the natural frequency,
B are the coefficients of the quartic, and C are the
coefficients of the sextic nonlinearities. Remarkably,
this type of potential can exhibit a variety of con-
figurations like monostable, bistable, and tristable
non-catastrophe ones depending on the values of
physical parameters A, B, and C. They are equiva-
lent to the cases of beams, soft or devised structures.
Here, we focus our attention on the beams in order
to find the interest and the potential dynamics pro-
vided by additive 4th- and 6th-order polynomials
considering their symmetry. Many works have been
carried out on this kind of potentials [23–25]. We
suppose that the axis is perpendicular to the gravi-
tational field of the earth g. A beam that has a mass
m moves along the nanowire of a given roughness.
The expressions of the kinetic and potential energy
of the beam are given, respectively, as

K =
m

2

(
ẋ2 + ż2

)
=
m

2
ẋ2
(
1 +A2x2 +

B2

36
x6

+
C2

14400
x10 − AB

3
x4 +

AC

60
x6 − BC

360
x8
)
, (7)

and

V = mgz = mg

(
A

2
x2 − B

24
x4 +

C

720
x6
)
. (8)

Furthermore, the conventional Lagrangian is writ-
ten as

L = K − V =
1

2
mẋ2

(
1 +A2x2 +

B2

36
x6

+
C2

14400
x10 − AB

3
x4 +

AC

60
x6 − BC

360
x8
)

−mg
2

(
Ax2 − B

12
x4 +

C

360
x6
)
. (9)

Based on (9), we can easily compute the classical
Euler–Lagrange equation (CELE), i.e.,

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (10)

Considering (9) and (10), the CELE is presented by

mẍ
(
1 +A2x2 − AB

3
x4 +

B2

36
x6 +

AC

60
x6

−BC
360

x8 +
C2

14400
x10
)

+mẋ2
(
A2x− 2AB

3
x3 +

B2

12
x5 +

AC

20
x5

−BC
90

x7 +
C2

2880
x9
)

+mg
(
Ax− B

6
x3 +

C

120
x5
)
= 0. (11)

Furthermore, we explore the fractional picture of
the standard Lagrangian (9), which shows the novel
elements of the physical setup under attention. The
main motivation to do this replacement is to check
how the given dynamics will behave under the Ca-
puto derivative versus the time-variable t. This re-
placement allows the inclusion of variations in the
given dynamics which can be made by the non-local
properties of fractional derivatives. To this aim, our
first step is generalizing (9) and rewriting it in the
fractional framework

LF =
m
(
C
aD

α
t x
)2

2

(
1+A2x2+

B2

36
x6+

C2

14400
x10

−AB
3
x4+

AC

60
x6 − BC

360
x8
)

−mg
2

(
Ax2 − B

12
x4+

C

360
x6
)
. (12)

Then, the FELE of motion is obtained from
∂LF

∂x
+ C
t D

α
b

∂LF

∂CaD
α
t x

+ C
aD

β
t

∂LF

∂Ct D
α
b x

= 0. (13)

Here, parameters a and b are the terminals to indi-
cate the left and right approaches of the given Ca-
puto derivative on the proposed time-span. As a re-
sult of using (11) and (12), one leads to the form
of (13) as follows

m
(
C
aD

α
t x
)2 [

A2x+

(
B2

12
+
AC

20

)
x5 +

C2

2880
x9 − 2AB

3
x3 − BC

90
x7
]
−mg

(
Ax− B

6
x3 +

C

120
x5
)

+m(Ct D
α
b )
(
C
aD

α
t x
)(

1 +A2x2 +
B2

36
x6 +

C2

14400
x10 − AB

3
x4 +

AC

60
x6 − BC

360
x8
)

= 0. (14)

It should be noted that as α → 1, the FELE (14)
becomes like the CELE (11). In the following part,
our goal is to numerically treat (14) for some frac-
tional values and initial settings.

4. Numerical technique

The development of an approximation scheme for
the fractional Euler–Lagrange system (14) primar-
ily requires its reformulation.
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Let us expatiate on the new variable $(t) as $ (t) := C
aD

α
t x (t). Consequently, (14) is converted to

C
aD

α
t x (t) = $ (t) (15)

C
t D

α
b$ (t)

[
1 +A2x2(t)− AB

3
x4(t) +

(
B2

36
+
AC

60

)
x6(t)− BC

360
x8(t) +

C2

14400
x10 (t)

]

+$2 (t)

[
A2x (t)− 2AB

3
x3 (t)x5(t) +

(
B2

12
+
AC

20

)
x5(t)− BC

90
x7(t) +

C2

2880
x9 (t)

]
=

gAx(t)− gB

6
x3 (t) +

gC

120
x5(t) = 0. (16)

The results given in (15) and (16) agree with the Volterra integral equations, respectively, as

x (t) = x(a) +

t∫
a

dτ (t− τ)α−1$(τ), (17)

and

$ (t)

[
1 +A2x2 (t)− AB

3
x4(t) +

(
B2

36
+
AC

60

)
x6(t)− BC

360
x8(t) +

C2

14400
x10(t)

]
=

$ (b)

[
1 +A2x2(b)− AB

3
x4(b) +

(
B2

36
+
AC

60

)
x6(b)6 − BC

360
x8(b) +

C2

14400
x10(b)

]

− 1

Γ (α)

b∫
t

dτ

{
$ (τ)

2

[
A2x(τ)− 2AB

3
x3(τ) +

(
B2

12
+
AC

20
x5(τ)− BC

90
x7(τ) +

C2

2880
x9(τ)

)]

−gAx (τ) + gB

6
x3(τ)− gC

120
x5(τ)

}
. (18)

Now, we take into account a uniform network on
[a, b]) and mark the nodes 0, 1, . . . ,M , where M is
the arbitrary natural number, and hM = (b−a)/M
is the time increment. We indicate (xi, $i) as the
numerical approximation of (x(ti), $(ti)), where
ti = a + ihM is the time at node i for 0 6 i 6 M .
Apart from this, we approximate $ (t) and x (t) in-
tercepted within two sequential temporary nodes

linearly. Basing on the above preliminaries and
in accordance with Hasan et al. [26], one can re-
duce (15) and (16) to

x (ti) = x0 +

i∑
j=0

aij$(tj), (19)

where, for i = 1, . . . , the coefficients aij are defined
as

aij = d1


(i− 1)β − iβ + βiα, if j = 0,

(k + 1)β − 2kβ + (k − 1)β , if 1 ≤ j ≤ i− 1,

1, if j = i.

(20)

Here, d1 = hα

Γ(α+2) , β = α+2, and k = i− j. From the same viewpoint, the value of the following function

$ (t)

[
1 +A2x2 (t)− AB

3
x4 (t) +

(
B2

36
+
AC

60

)
x6 (t)− BC

360
x8 (t) +

C2

14400
x10 (t)

]
(21)

at the node i will be

$ (ti)

[
1 +A2x2 (ti)−

AB

3
x4 (ti) +

(
B2

36
+
AC

60

)
x6 (ti)−

BC

360
x8(ti) +

C2

14400
x10(ti)

]
=

n∑
j=i

bij

{
$ (tj)

2

[
A2x(tj)−

2AB

3
x3(tj) +

(
B2

12
+
AC

20

)
x5(tj)−

BC

90
x7(tj) +

C2

2880
x9(tj))

]

−gAx(tj) +
gB

6
x3(tj)−

gC

120
x5(tj)

}
, (22)
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where

aij = d1


(M − 1)β −Mβ + βMα, if j = N,

(k + 1)β − 2kβ + (k − 1)β , if i+ 1 ≤ j ≤ N − 1,

1, if j = i.

(23)

Here, M = N − i and k = j − i. Note that (19)
and (22) include 2N unknowns as well as 2N nonlin-
ear algebraic equations, so a well-known root finding
technique, like the Newton method, can be used to
solve them.

5. Simulation results

In this part, we put particular emphasis on the
numerical results for the above-targeted problem.
For different values of h and α, the solution is
found. Below, we take m = 2 and g = 9.81. More-
over, we take the following condition for $ (t) as
$ (0) = 0. In Figs. 1–4, the simulations of x(t) and
z (t) = A

2 x(t)
2 − B

24x(t)
4
+ C

720x(t)
6 are given for

α = 0.8, 0.85, 0.9, 0.95, 1 and different values of
x (0). In these figures, we also give the answer
of (11) in addition to some responses of (14) for
0 < α 6 1. Figures 1–4 verify that the numeri-
cal result of the fractional Euler–Lagrange system
(11) approaches the classical one as α tends to 1.
Thus, by looking for the effect of FELEs, they pro-
vide more flexible models, which leads to a con-
siderably better evaluation of the hidden features
of real-world phenomena. Also, we observed that
the values of A, B, C and x(0) affect the dynam-
ics of the proposed model. In Figs. 5 and 6, the
simulations of $ (t) are shown for α = 0.8, 0.85,
0.9, 0.95, and 1. Here, we received some uniform
changes in the peak of the oscillations when we
changed the fractional-order values. Furthermore,
the behavior of x (t) as compared to $ (t) is dis-
played in Figs. 7 and 8. In these figures, when
we changed the fractional-order values, then we ob-
served some stretching in the given integer-order
ring shape which justifies that the fractional-order
dynamics is slightly different to the classical one.
Figure 9 shows (a) x(t) and (b) $ (t) for α = 0.8
and h = 0.1, 0.05, and 0.025. We realize that the
solution converges when h decreases. It is surely
true that h is less than 0.025. This likely makes
the scheme to be numerically constant, that is to
say, stable. The same arguments can be given
for the other values of α. From the given prac-
tical simulations, we observed that the fractional-
order system performed very well to study the given
phenomena. The main feature of the given frac-
tional model is that we can simulate the proposed
dynamics very clearly for the classical as well as
non-classical sense.

Results of the calculation of (a) x(t) and
(b) z (t) = A

2 x
2 (t)− B

24x
4 (t)+ C

720x
6 (t) for A = 1.0,

B = 0.0706, C = 0.0034, x (0) = 0.1, and different
orders of α are displayed in Fig. 1.

Fig. 1. Calculation results of α = 0.8 (+++),
α = 0.85 (· · · ), α = 0.9 (− · −), α = 0.95 (− − −),
α = 1 (—), classic (×××).

Fig. 2. Behavior of α = 0.8 (+++), α = 0.85
(· · · ), α = 0.9 (−·−), α = 0.95 (−−−), α = 1 (—),
classic (×××).
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Fig. 3. Calculation results of α = 0.8 (+++),
α = 0.85 (· · · ), α = 0.9 (− · −), α = 0.95 (− − −),
α = 1 (—), classic (×××).

Fig. 4. Behavior of α = 0.8 (+++), α = 0.85
(· · · ), α = 0.9 (−·−), α = 0.95 (−−−), α = 1 (—),
classic (×××).

Plots of (a) x(t) and (b) z (t) = A
2 x

2 (t) −
B
24x

4 (t) + C
720x

6 (t) for A = 1.0, B = 0.0706,
C = 0.0034, x (0) = 0.2, and different orders of
α are shown in Fig. 2.

Fig. 5. Calculation results of α = 0.8 (+++),
α = 0.85 (· · · ), α = 0.9 (− · −), α = 0.95 (− − −),
α = 1 (—), classic (×××).

Fig. 6. Behavior of α = 0.8 (+++), α = 0.85
(· · · ), α = 0.9 (−·−), α = 0.95 (−−−), α = 1 (—),
classic (×××).

Results of the calculation of (a) x(t) and
(b) z (t) = A

2 x
2 (t)− B

24x
4 (t)+ C

720x
6 (t) for A = 2.5,

B = 24, C = 120, x (0) = 0.1, and different orders
of α, are presented in Fig. 3.
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Fig. 7. Calculation results obtained for α = 0.8
(+++), α = 0.85 (∗ ∗ ∗), α = 0.9 ( ), α = 0.95
(NNN), α = 1 (· · · ), classic (×××).

Fig. 8. Behaviors of x (t) versus $ (t) for α = 0.8
(+++), α = 0.85 (∗ ∗ ∗), α = 0.9 ( ), α = 0.95
(NNN), α = 1 (· · · ), classic (×××).

Behaviors of (a) x(t) and (b) z (t) = A
2 x

2 (t) −
B
24x

4 (t) + C
720x

6 (t) for A = 1, B = 3.6, C = 6,
x (0) = 0.2, and different orders of α are displayed
in Fig. 4.

Fig. 9. Convergence of the variables x(t) and $ (t)
for α = 0.8: h = 0.1 (—), h = 0.05 (· · · ), h = 0.025
(×××).

Results of the calculation of $ (t) for A = 1.0,
B = 0.0706, C = 0.0034, (a) x (0) = 0.1,
(b) x (0) = 0.2 and different orders of α are charted
in Fig. 5.

Plots of $ (t) for (a) A = 2.5, B = 24, C = 120,
and x (0) = 0.1, (b) A = 1.0, B = 3.6, C = 6, and
x (0) = 0.2, and different orders of α are displayed
in Fig. 6.

Results of the calculation of x (t) versus $ (t) for
A = 1.0, B = 0.0706, C = 0.0034, (a) x (0) = 0.1,
(b) x (0) = 0.2 and different orders of α are dis-
played in Fig. 7.

Behaviors of x (t) versus $ (t) for (a) A = 2.5,
B = 24, C = 120, and x (0) = 0.1, (b) A = 1.0,
B = 3.6, C = 6, and x (0) = 0.2 and different
orders of α are displayed in Fig. 8.

6. Conclusion

This paper employed the concept of the frac-
tional Lagrangian approach to describe the motion
of a beam on a nanowire. First, the classical La-
grangian was formulated, and the CELE was de-
rived. Then, the generalized fractional Lagrangian
was introduced, which led to the FELE for the mo-
tion of the beam on the nanowire. The efficient ap-
proximation method implemented the new model,
and some simulation results described the associ-
ated dynamical behaviors. According to the ob-
tained results, the fractional simulations tend to
the classical responses as the fractional order goes
to unity. In addition, the FELE enables us to
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make a considerably better evaluation of the hid-
den aspects of the real-world system under study.
Consequently, it can be concluded that the FELE
studied in this paper is new, and its numerical simu-
lations presented possess more information as com-
pared to the corresponding CELE. The advantage
to use this fractional model is that we can study the
given dynamics very clearly for the integer as well
as non-integer sense.
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