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The effect of inherited memory-time and delay-time in the formulation of a mathematical
population growth model is considered. Two different numerical schemes are introduced to study
analytically the propagation of population growth. We provide a graphical analysis that shows
the impact of both memory-time and delay-time acting on the behavior of population density.
We concluded that both delay-time and time-fractional-derivative play the same role as delaying
the propagation of the nonlinear population growth.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

A variety of nonlinear evolution equations that represent real-
life applications are exposure for unexpected physical changes
such as, delaying in its propagations, bifurcating its solution or
stability issues. Linking such change with the theoretical con-
siderations may lead to unknown. A wise thought on reasons
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behind such unexpected bifurcations is directed to the role of
the rate of change of the field function with respect to time.
Many studies emerged to review the rate of change as a frac-
tional hospital with a topological relationship with the integer
case. All scientific researches become interested in this area
taking into consideration the use of the fractional derivative
instead of the integer-derivative [1-9]. Extensive works have
been accomplished to draw suitable mathematical methods
for dealing with these fractal issues. Among the most impor-
tant and widely used numerical methods are: decomposition
schemes [10,11], variational iteration schema [12,13], fractional
power series methods [14-17], finite difference scheme [18],
Sumudu decomposition method [19] and other methods
[20-22].
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One of the interesting mathematical models arise in science
is the biology population growth model which is governed by
the following form [23,24]

D,P(x,1) = Dy (P*(x, 1)) — f(P(x,

The function P(x, ¢) stands for the population density and the
functional f{P) is the reaction source that describes the dynam-
ics of the population growth. There are different types of the
reaction source; f(P) = cP, is identified by Malthusian law.
f(P) = aP — bP*, is regarded as the Verhulst law. The most
general form of such reaction source is defined as
f(P)=aP"(1-2P").

The main goal of this work is to study the above model
under new considerations; the time-integer-derivative is to be
replaced by fractional order and the reaction source is of

1) =0, t>0. (L.1)

Verhulst-type acting with delay type of form 7 7: 0 <7 < 1.
Therefore, the new biological model has the form:
D*P(x,1) — Dy (P*(x,1)) — aP(x,tt) + bP*(x, 1)

=0, >0, (1.2)

where 0 < o < 1 is the Caputo-fractional derivative [25-27].

The model given in (1.2) is to be presented for the first
time. Whereas, previous studies concerned with only time-
fractional derivatives. For example, in [28], the conformable
fractional-derivative is used and exact solutions are found by
means of Kudryashov method. Two-dimensional form of the
time-fractional population growth of Malthusian law [29] is
studied by means of fractional variational iteration method
(FVIM). Finally, The finite difference method (FDM) and
variational iteration method (VIM) have been successfully
implemented [30] for solving (1.2) but with the absence of
delay action.

The format of the current paper is as follows. In Sec-
tion 2, we provide in details the t-spectrum scheme to solve
the proposed model and give some graphical analysis. In
Section 3, we present the homotopy perturbation method
as an alternative scheme to handle (1.2). Finally, some con-
cluding remarks and observations are given in the last
section.

2. Time-coordinate spectrum function method

A power series of the form [31,32]
D bt =bo+ bt bt (2.1)
J=0

is called fractional Maclaurin series (FMS). Suppose that the
function v(¢) has FMS of the form

m:§Wa

if D™v(t) are continuous on I = (0, R), then b; = DO and Ris
T(jot1)

0<t<R, (2.2)

called the radius of convergence.

Consider that the solution of (1.2) can be represented as a
product of two single variable functions, P(x,?) = u(x)v(t),
where u(x) is analytic function and v(7) has FMS representa-
tion. Then,

X, 1) = (ia,&d) (ib,t”) ZU/ Vi (2.3)

where Uy (x) = L:(/‘H‘lo

function or the t-coordinate spectrum function. Also, the
inverse of the spectrum Uj(x) is given by (2.3). Apply the
t-fractional derivative on (2.3) gives

2=% 0

We refer to Ui(x) as the transformed

((k+Da+1)

koH— ) Uk+1(X)> lk“. (24)

Also,
P(x,1t) Z e U ( (2:5)
k=0

Apply the cauchy product of two infinite series and by (2.5) we
get the following expansion

P(x,11) = i <‘Ek°‘zC Ui (x)U, (x)) . (2.6)

Table 1, provides the necessary transformed spectrum func-
tions that will be used to solve the problem under investiga-
tion. Applying the rules given in Table 1, the following
spectrum transformed form of Eq. (1.2) is obtained

o k
5%%%F%mm—;wﬁmxm”
—atk® Ur(x) + brk“ZU Y Uk—n(x) = 0. (2.7)

From (2.7), we deduce the recurrence relation regarding Uy (x)
as

o k
Upsi(x) = % <;(Un(x) Ui-n(x))" + at” Uy (x)
—b‘[l‘“ZUn(x) Ukn(x)>. (2.8)

For clarity, we list the first few terms of the spectrum sequence
of the growth model

U= ks (G +ali - b03),

U2 _ C(at+1) (2 U()Ul

T(2a+1

+ at*U; — 2b7* UOUI) (2 9)

Uy = Lesn (2 UoUs)" + (U3) + at™ U, — b*(2Uy Uy + U%)),

T(3at1)

Us= [E2 (200" + 201 Uy)" + at™ Us

(do+1)

— 26 (UyUs + U\ Un)).

Now, we are ready to discuss some graphical analysis regard-
ing the accuracy of t-spectrum function method, and the
impact of both time-fractional and time-delay acting on the

Table 1 Transformed t-coordinate spectrum functions.

P(x,1) Uy (x)

P(x,tt) Uy (x)

P(x,1) Conco Uy () Un ()
P2(x, 1) Yo U (X) Un(x)
DiP(x,1) %Ukﬂ( x)
Dy P2(x,1) S0 (Ut (%) Un(x))"
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population density. The analysis will be performed on a
numerical example of (1.2); the case of a = b = 1; subject to
the initial population density P(x,0)=f(x) =1+ e*. We
should point here that the presence of the delay factor t in
the calculations of the spectrum functions U;(x) will increase
the size of the resulting terms. Moreover, it is hard to find or
even guess a closed form solution. Therefore, we decide to con-
sider ¢ = ¢(x,1) = 3.0, U,(x)1"™, to represent the approxima-
tion solution for the population problem. Fig. 1, presents,
respectively, the exact solution P(x,f) =1+ ¢~ (See [28]),
the approximate function ¢, and the obtained absolute error
|P(x,t) — ¢(x, )| under the case of « =t = 1. These obtained
3D plots show that the assigned approximation expansion is
in good agreement with the exact one. Fig. 2, shows the impact
and the interaction of both fractional order o and the delay
factor t on the population density. Four drawn relations can
be observed:

e The order of o : 0 < & < 1 is proportional with the popula-
tion density.

e An increase of the delay factor leads to an increase in the
population density. Moreover, for any value of
7: 0 < 1 < 1, it delays the expected value of the population
growth.

e In the presence of the fractional-derivative “o < 17, the
delay factor affects the delay of population growth much
faster if compared with the integer-case “o = 1.

e Both delay-time and time-fractional-derivative play the
same role as delaying the propagation of nonlinear evolu-
tionary models.

P(x,t), a=7=1

Fig. 1

In conclusion, we speculate that the fractional derivative
order or/and the time-delay have the potential to affect
real-life observation of the dynamics of interacting
populations.

2.1. Convergence of spectrum function method

In this part, we validate numerically the convergence of the
transformed t-spectrum function method applied to the previ-
ous example. Therefore, to study the convergence of the
obtained approximate solution ¢(x,7) to its exact solution,
we use the approach proposed by Hosseini and Nasabzadeh

[33.  We determine the values of 7y,  where
yi:max{bl’/*&;)} :x € (—oo,00) and therefore, the solution

converges when |y;| < 1. For the proposed example, we
obtained the following bounds:

o —1 <y, <0.

*h ==

1
&
'“/2:_%-
.«')3:7%,
'“/4:_%-
oyszfé.
oyk:—m: k>1.

The above findings are regarded as a numerical evidence that
the solution ¢(x,¢) obtained by using transformed spectrum
method converges to P(x,1).

P(x,t), a=7=1, n=6

3D plots of, respectively, P(x,?), ¢(x,t) and |P(x, ) — ¢(x,1)|. The case for o« == 1 and n = 6.
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(a) Profile solutions of ¢(0.1,t), =1

2.2
2.0r
1.8¢
1.6
1.4¢
1.2¢

(c) Profile solutions of ¢(0.1,t), =0.75

-10"

Fig. 2
= (1 =0.75), Blue = (r = 0.5), Green = (tr = 0.25).

3. Homotopy perturbation schema

The Homotopy perturbation method (HPM) will be used as an
alternative technique to solve (1.2). This numerical scheme
suggest to write the problem in two homotopy forms [34,35];
either

D,P(x,1) = q(D,P(x,t) + D!P(x, 1)

—D..(P*(x,1)) — aP(x,tt) + bP*(x, 11)), (3.1)
or
D*P(x,1) = q(Dy (P*(x,1)) + aP(x,1t) — bP*(x,1t)),  (3.2)
with a perturbation form of the function P(x, 1) as
P(x,1) = ¢'Pi(x,1). (3.3)

=0

To solve (1.2) subject to P(x,0) = f(x), we substitute (3.3) in
either (3.1) or (3.2) and in the initial condition. Then, in a
sequence order, we solve sub-equations resulting from collect-

ing same coefficients of ¢'. By considering (3.1) we use the rule

_ T

e =y
_ T+ . . .

JitP = w7 In this context, we prefer the form given in

(3.2). Now, we proceed as the following steps:
Step I: ¢°: We solve

D?Py(x,t) =0, Py(x,0) = f(x).
Which leads to the first component
Po(x, 1) = f(x).
Step II: ¢': We solve
DYP(x,1) = Dy (Py(x,1)) + aPo(x, 1) — bP}(x,1t),
P(x,0) = 0.

t#=* whereas in the case of (3.2) we use the rule

! ! ! ! -t
0.1 0.2 0.3 0.4 0.5

(b) Profile solutions of ¢(0.1,t), @=0.9

(d) Profile solutions of ¢(0.1,t), =0.5

The interaction of both fractional order o and the delay factor t on the population density. Where, Red = (t = 1), Black

Which leads to the second component

t{X
Pi(x, 1) = h(«\')m> (35)
where h(x) = f"(x) + af(x) — bf*(x).
Step III: ¢°: We solve
D(;(Pz(.x7 l) = DV,C’\—(ZP()(X7 [)Pl (x, [)) + aPl ()C, ‘L'l)
— 2bPy(x,tt)Py(x,tt), P>(x,0)=0.
Which leads to the third component
Pa(x, 1) = {2(f(x)h(x))" + (a — 2bf(x))h(x)7"}
ZZa

Step IV: ¢*: We solve
D!Ps(x,t) = Dy (2Po(x, 1) Py(x, 1) + P{(x,1))
+aP;(x, 1) — b(2Py(x,7t) Py(x, 1) + Pi(x, 1)),
P3(X, 0) = 0.

Which leads to the fourth component

P3(x, 1) = { (2/1x) (2(f(x)h(x))" + (a — 2bf(x))h(x)7"))
rQa+1) , £
2ot ) T
+{a(x)h(x))" + (a ~ 2bf(X))h(X)r°‘)r2“}m
— b{2/(x) (2(f(x)h(x))" + (a — 2bf(x))h(x)7")
FQu+1), ,
Por1) "’ TGat)

"

"

+ 1 (x)

(3.7)

We observe the difficulty in determining the components
P;(x,t) as we proceed further for i > 3. To this end, we con-
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P(x,t), a=71=1

Fig. 3

sider Y(x,1) = Zf:OP,-(x, 1) to represent the homotopy approx-
imate solution to (1.2). Fig. 3, shows that HPM is a good alter-
native scheme even considering a few components of its series’
representation.

4. Conclusions

In this manuscript, we suggested a new version of the mathe-
matical biology growth model. The new model consider the
presence of two actions on the time-coordinate. These actions
are categorized as fractional-time derivative to represent the
rate of change in the population density, and a delay-time of
pantograph type acting on the reaction source term which is
responsible for the dynamics of the population growth.

We offered two numerical schemes to find an approxima-
tion solution of the population growth model. The first
method is derived from the fractional powers series whose
coefficients are addressed as the time-coordinate spectrum
functions. This approach leads to a recursive relation among
its spectrum functions which give the advantages of determin-
ing “as many as needed” the spectrum functions with delicate
computational process and in turns leads to a high accuracy
approximation. In contrast, the alternative homotopy pertur-
bation technique which decomposes the solution as infinite
analytical series, its components to be determined by solving
successive initial value fractional problems. These homotopy
steps become difficult task as the calculation processes go far-
ther. In most cases, only a few terms are considered for the
approximate solution with limited accuracy size.

The obtained findings for the t-spectrum function method
are used to study the impact of both time-fractional derivative

Yy(x,t), a=1t=1, n=3

3D plots of, respectively, P(x,?),y(x,¢) and |P(x, ) — y(x,1)|. The case for o« =t =1 and n = 3.

and the delay-time. We concluded that the presence of frac-
tional derivative helps to understand the fact that the delay
occurs in the population density “due to a delay-factor embed-
ded in the problem” could be less than the expected values. We
may say that integer-derivative can be regarded as theoretical-
perspective, whereas the fractional-derivative is a realistic-
perspective.

As future work, we will considered the n-dimensional exten-
sion of the fractional power series [36-40] to study
multivariate-fractional models arise in sciences and
engineering.
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