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Abstract. Inequality studies involving new integrals and derivatives have been carried out re-
cently. This article designed as follows, the results were obtained by using the non-conformable
fractional integral operators to provide new inequalities of Polya-Szegö and Chebyshev type.
Some special cases have been considered for our main findings.

1. Introduction and preliminaries

In the studies of theory of inequalities, many unique inequalities have been achieved
with their aesthetic appearances and applications. These inequalities have been demon-
strated in different forms including integral and derivatives of various mappings defined
in normed spaces and different functional spaces. Moreover, new and useful inequali-
ties have been produced, taking into account the additional features of mappings such
as continuity, limitation and uniformity. We will start with Polya-Szegö inequality, one
of the respected inequalities of inequality theory. This famous inequality can be given
as follows (see [6]):

∫ ϑ
θ f 2 (ρ)dρ

∫ ϑ
θ g2 (ρ)dρ(∫ ϑ

θ f (ρ)g(ρ)dρ
)2 � 1

4

(√
κτ
ζδ

+

√
ζδ
κτ

)2

In [7], Dragomir and Diamond have achieved a new and interesting inequality by com-
bining Grüss inequality, another important inequality of the inequality theory, with the
Polya-Szegö inequality. This inequality has been proved on the basis of the Polya-Szegö
inequality as following:

THEOREM 1. Let f ,g : [θ ,ϑ ] → R+ be two integrable mappings so that

0 < ζ � f (ρ) � κ < ∞
0 < δ � g(ρ) � τ < ∞

Mathematics subject classification (2020): 26A33, 26D10, 26D15.
Keywords and phrases: Chebyshev inequality, Polya-Szegö type inequalities, non-conformable inte-
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for ρ ∈ [θ ,ϑ ] . Then we have

|T ( f ,g;θ ,ϑ)| � 1
4

(κ − ζ )(τ − δ )√
ζδκτ

(
1

ϑ −θ

∫ ϑ

θ
f (ρ)dρ

)(
1

ϑ −θ

∫ ϑ

θ
g(ρ)dρ

)
(1.1)

The constant 1
4 is best possible in (1.1) in the sense it can not be replaced by a smaller

constant.

The functional in the above inequality is actually a key statement that will lead us
to the Chebyshev inequality. First, let’s define this functional as follows (see [4]):

T ( f ,g) =
1

ϑ −θ

∫ ϑ

θ
f (ρ)g(ρ)dρ −

(
1

ϑ −θ

∫ ϑ

θ
f (ρ)dρ

)(
1

ϑ −θ

∫ ϑ

θ
g(ρ)dρ

)
(1.2)

where f ve g are two integrable mappings which are synchronous on [θ ,ϑ ] , i.e.

( f (ρ)− f (η))(g(ρ)−g(η)) � 0

for any ρ ,η ∈ [θ ,ϑ ] , then the Chebyshev inequality states that T ( f ,g) � 0.
This functional (1.2) and the Chebyshev inequality produced through it has demon-

strated its value through its use in applied sciences, numeric integration and probability.
Apart from all these areas, many researchers have obtained new generalizations, en-
largements and iterations for this inequality, which is widely used in inequality theory.
For some recent counterparts, generalizations of Chebyshev inequality, the reader may
refer to [4, 5, 10] and [20].

The crossing of inequalities with fractional analysis using fractional integral op-
erators is a milestone. After this turning point, the theory of inequality has gained a
new direction. In fractional analysis, the use of integral and derivative operators newly
defined by the researchers in engineering, modeling, chaos theory, various branches of
mathematics and mathematical biology, and the fact that mathematicians working in the
field of inequality theory use these operators reinforced the great collaboration of these
two areas. Now, we will continue by giving a integral definition called non-conformable
integral that brings these two fields closer together.

DEFINITION 1. ([1]) Let α ∈ R and 0 < θ < ϑ . For each function f ∈ L1[θ ,ϑ ] ,
we define

N3J
α
u f (ρ) =

∫ ρ

u
t−α f (t)dt

for every ρ ,u ∈ [θ ,ϑ ].

DEFINITION 2. ([1]) Let α ∈ R and θ < ϑ . For each function f ∈ Lα ,0[θ ,ϑ ] let
us define the integrals

N3J
α
θ+ f (ρ) =

∫ ρ

θ
(ρ − t)−α f (t)dt

N3J
α
ϑ− f (ρ) =

∫ ϑ

ρ
(t −ρ)−α f (t)dt
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for every ρ ∈ [θ ,ϑ ] . Here, for α = 0 N3J
α
θ+ f (ρ) = N3J

α
ϑ− f (ρ) =

∫ ϑ
θ f (t)dt.

For studies obtained using new operators in fractional analysis and inequalities
for fractional integral operators in inequality theory, readers can examine studies in
[2, 3, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27].

The main purpose of this study is to reveal some new integral inequalities by using
non-conformable integral operators. These new inequalities of the Chebyshev-Polya-
Szegö type have been obtained by using classical inequalities and basic analysis meth-
ods such as AM-GM inequality and Cauchy-Schwarz inequality for mappings that can
be integrated. We have given various simple inequalities by selecting some special
cases.

2. Main results

The following theorem contains some new inequalities of Pólya-Szegö type for
positive mappings via non-conformable integral operators.

THEOREM 2. f and g are two positive integrablemappings on [0,∞) and α ∈R .
Suppose that there exist four positive integrable mappings v1,v2,w1 and w2 such that:

0 < v1 (τ) � f (τ) � v2 (τ) , 0 < w1 (τ) � g(τ) � w2 (τ) (τ ∈ [0,ρ ] , ρ > 0) (2.1)

Then one has:
N3Jα

0+

{
w1w2 f 2

}
(ρ)N3Jα

0+

{
v1v2g2

}
(ρ)(

N3Jα
0+ {(v1w1 + v2w2) f g}(ρ)

)2 � 1
4
. (2.2)

Proof. By using the relations that are given in (2.1), for τ ∈ [0,ρ ] , ρ > 0, we can
easily have (

v2 (τ)
w1 (τ)

− f (τ)
g(τ)

)
� 0 (2.3)

and (
f (τ)
g(τ)

− v1 (τ)
w2 (τ)

)
� 0. (2.4)

If we product the inequalities (2.3) and (2.4) side by side, we can write(
v2 (τ)
w1 (τ)

− f (τ)
g(τ)

)(
f (τ)
g(τ)

− v1 (τ)
w2 (τ)

)
� 0.

Namely:

(v1 (τ)w1 (τ)+ v2 (τ)w2 (τ)) f (τ)g(τ) (2.5)

� w1 (τ)w2 (τ) f 2 (τ)+ v1 (τ)v2 (τ)g2 (τ) .

To provide the non-conformable integral form, we multiply both sides of (2.5) by (ρ −
τ)−α and then by integrating the resulting inequality with respect to τ over (0,ρ) , we
can see that:

N3J
α
0+ {(v1w1 + v2w2) f g}(ρ) � N3J

α
0+

{
w1w2 f 2}(ρ)+N3J

α
0+

{
v1v2g

2}(ρ) . (2.6)



1394 S. I. BUTT, A. O. AKDEMIR, P. AGARWAL AND D. BALEANU

Lat us recall the AM-GM inequality, i.e. (θ + ϑ � 2
√

θϑ , θ ,ϑ ∈ R
+ ). By applying

this classical inequality to (2.6), we obtain

N3J
α
0+ {(v1w1 + v2w2) f g}(ρ) � 2

√
N3Jα

0+ {w1w2 f 2}(ρ)×N3Jα
0+ {v1v2g2}(ρ)

By making use of some necessary operations, we deduce

N3J
α
0+

{
w1w2 f 2}(ρ)+N3J

α
0+

{
v1v2g

2}(ρ) � 1
4

(
N3J

α
0+ {(v1w1 + v2w2) f g}(ρ)

)2
.

This completes the proof of (2.1). �
Let us consider a special case for the result.

COROLLARY 1. If we set v1 = ζ , v2 = κ , w1 = δ and w2 = τ as special cases
of these mappings, then we have

(
N3Jα

0+ f 2
)
(ρ)
(
N3Jα

0+g2
)
(ρ)((

N3Jα
0+ f g

)
(ρ)
)2 � 1

4

(√
ζδ
κτ

+
√

κτ
ζδ

)2

.

THEOREM 3. f and g are two positive integrable mappings on [0,∞) with α,
θ ∈ R−{1} . Suppose that there exist four positive integrable mappings v1,v2,w1

and w2 satisfying condition (2.1). Then one has the following inequality for non-
conformable integral operators:

N3J
α
0+ {v1v2}(ρ)N3J

θ
0+ {w1w2}(ρ)×N3J

α
0+

{
f 2}(ρ)N3J

θ
0+

{
g2}(ρ) (2.7)

� 1
4

(
N3J

α
0+ {v1 f}(ρ)N3J

θ
0+ {w1g}(ρ)+N3J

α
0+ {v2 f}(ρ)N3J

θ
0+ {w2g}(ρ)

)2

Proof. Similar to the proof of the previous theorem, if we consider the inequalities
that are given in (2.1), we have (

v2 (τ)
w1 (ξ )

− f (τ)
g(ξ )

)
� 0

and (
f (τ)
g(ξ )

− v1 (τ)
w2 (ξ )

)
� 0.

This inequalities can be written as the following form:(
v1 (τ)
w2 (ξ )

+
v2 (τ)
w1 (ξ )

)
f (τ)
g(ξ )

� f 2 (τ)
g2 (ξ )

+
v1 (τ)v2 (τ)
w1 (ξ )w2 (ξ )

. (2.8)

If we product both sides of (2.8) by w1 (ξ )w2 (ξ )g2 (ξ ) , we get

v1 (τ) f (τ)w1 (ξ )g(ξ )+ v2 (τ) f (τ)w2 (ξ )g(ξ ) (2.9)

� w1 (ξ )w2 (ξ ) f 2 (τ)+ v1 (τ)v2 (τ)g2 (ξ ) .
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By a similar argument, if we multiply both sides of (2.9) by (ρ − t)−α(ρ − ξ )−θ and
then by integrating with respect to τ and ξ over (0,ρ)2 , we obtain

N3J
α
0+ {v1 f}(ρ)N3J

θ
0+ {w1g}(ρ)+N3J

α
0+ {v2 f}(ρ)N3J

θ
0+ {w2g}(ρ)

� N3J
α
0+

{
f 2}(ρ)N3J

θ
0+ {w1w2}(ρ)+N3J

α
0+ {v1v2}(ρ)N3J

θ
0+

{
g2}(ρ) .

To arrange the resulting inequality, we can use the AM-GM inequality, hence we deduce

N3J
α
0+ {v1 f} (ρ)N3J

θ
0+ {w1g}(ρ)+N3J

α
0+ {v2 f} (ρ)N3J

θ
0+ {w2g}(ρ)

� 2
√

N3Jα
0+ { f 2}(ρ)N3Jθ

0+ {w1w2}(ρ)×N3Jα
0+ {v1v2}(ρ)N3Jθ

0+ {g2}(ρ)

which is the inequality that is stated in (2.7). The proof is completed. �

COROLLARY 2. If we choose v1 = ζ , v2 = κ , w1 = δ and w2 = τ , then we have

(
ρ1−αρ1−θ

(1−α)(1−θ )

)
×
(
N3Jα

0+ f 2
)
(ρ)
(
N3Jθ

0+g2
)
(ρ)((

N3Jα
0+ f
)
(ρ)
(
N3Jθ

0+g
)
(ρ)
)2 � 1

4

(√
ζδ
κτ

+
√

κτ
ζδ

)2

THEOREM 4. f and g are two positive integrable mappings on [0,∞)with α ∈R

and θ ∈ R . Suppose that there exist four positive integrable mappings v1,v2,w1 and
w2 satisfying condition (2.1). Then the following inequality holds for non-conformable
fractional integral operators:

N3J
α
0+

{
f 2}(ρ)N3J

θ
0+

{
g2}(ρ) � N3J

α
0+

{
v2 f g
w1

}
(ρ)N3J

θ
0+

{
w2 f g
v1

}
(ρ) . (2.10)

Proof. By a different variant of the inequality (2.1), we get

f 2 (τ) � v2 (τ)
w1 (τ)

f (τ)g(τ) . (2.11)

By multiplying both sides of (2.11) by (ρ − τ)−α and by applying integration to the
resulting inequality with respect to τ over (0,ρ) , we obtain

∫ ρ

0
(ρ − τ)−α f 2(t)dτ �

∫ ρ

0
(ρ − τ)−α v2(t)

w1(t)
f (t)g(t)dτ.

This inequality is obviously equal to

N3J
α
0+

{
f 2}(ρ) � N3J

α
0+

{
v2 f g
w1

}
(ρ) . (2.12)

Similarly, we can use the following inequality

g2 (ξ ) � w2 (ξ )
v1 (ξ )

f (ξ )g(ξ ) .
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By making use of the similar processes, we obtain

∫ ρ

0
(ρ − ξ )−θ g2 (ξ )dξ �

∫ ρ

0
(ρ − ξ )−θ w2 (ξ )

v1 (ξ )
f (ξ )g(ξ )dξ .

This result can be converted to non-conformable form as:

N3J
θ
0+

{
g2}(ρ) � N3J

θ
0+

{
w2 f g
v1

}
(ρ) . (2.13)

By multiplying (2.12) and (2.13), we get the (2.10). The proof is completed. �

COROLLARY 3. If v1 = ζ , v2 = κ , w1 = δ and w2 = τ , then we have(
N3Jα

0+ f 2
)
(ρ)
(
N3Jθ

0+g2
)
(ρ)((

N3Jα
0+ f g

)
(ρ)
(
N3Jθ

0+ f g
)
(ρ)
)2 � κτ

ζδ

THEOREM 5. f and g are two positive integrable mappings on [0,∞) with α,
θ ∈ R−{1} . Suppose that there exist four positive integrable mappings v1,v2,w1 and
w2 satisfying condition (2.1). Then the following inequality holds for non-conformable
integral operators:∣∣∣∣∣

(
ρ1−α

1−α

)(
N3J

θ
0+ f g

)
(ρ)+

(
ρ1−θ

1−θ

)(
N3J

α
0+ f g

)
(ρ) (2.14)

−(N3J
α
0+ f
)
(ρ)
(
N3J

θ
0+g
)

(ρ)−
(
N3J

θ
0+ f
)

(ρ)
(
N3J

α
0+g
)
(ρ)

∣∣∣∣∣
� |A1 ( f ,v1,v2) (ρ)+A2 ( f ,v1,v2)(ρ)|1/2 |A1 (g,w1,w2) (ρ)+A2 (g,w1,w2)(ρ)|1/2

where

A1 (u,v,w)(ρ) =
(

ρ1−θ

1−θ

)
×
(
N3Jα

0+ {(v+w)u}(ρ)
)2

4N3Jα
0+ {vw}(ρ)

− (N3J
α
0+u
)
(ρ)
(
N3J

θ
0+u
)

(ρ)

and

A2 (u,v,w)(ρ) =
(

ρ1−α

1−α

)
×
(
N3Jθ

0+ {(v+w)u}(ρ)
)2

4N3Jθ
0+ {vw}(ρ)

−(N3J
α
0+u
)
(ρ)
(
N3J

θ
0+u
)

(ρ) .

Proof. Let us define the functional H (τ,ξ ) for τ,ξ ∈ (0,ρ) with ρ > 0 by using
f and g that are two positive integrable mappings on [0,∞) as following:

H (τ,ξ ) = ( f (τ)− f (ξ ))(g(τ)−g(ξ )) .

This functional can be represented as:

H (τ,ξ ) = f (τ)g(τ)+ f (ξ )g(ξ )− f (τ)g(ξ )− f (ξ )g(τ) . (2.15)
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Multiplying both sides by (ρ − t)−α(ρ − t)−θ and double integrating the resulting in-
equality with respect to τ and ξ over (0,ρ)2 , we have∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−θ H (τ,ξ )dτdξ

=
(

ρ1−θ

1−θ

)(
N3J

α
0+ f g

)
(ρ)+

(
ρ1−α

1−α

)(
N3J

θ
0+ f g

)
(ρ)

−(N3J
α
0+ f
)
(ρ)
(
N3J

θ
0+g
)

(ρ)−
(
N3J

θ
0+ f
)

(ρ)
(
N3J

α
0+g
)
(ρ) .

Therefore, the Cauchy-Schwarz inequality will play a key role to simplify the above
inequality as follows:∣∣∣∣

∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−θ H (τ,ξ )dτdξ

∣∣∣∣
�
[∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−θ f 2(τ)dτdξ

]

+
∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−θ f 2 (ξ )dτdξ

−2
∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−θ f (τ) f (ξ )dτdξ

]1/2

×
[∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−θ g2 (τ)dτdξ

+
∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−theta g2 (ξ )dτdξ

−2
∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−θ g(τ)g(ξ )dτdξ

]1/2

.

By making use of the necessary modifications with the definition of non-conformable
integrals, we get ∣∣∣∣

∫ ρ

0

∫ ρ

0
(ρ − τ)−α (ρ − ξ )−θ H (τ,ξ )dτdξ

∣∣∣∣
�
[(

ρ1−θ

1−θ

)(
N3J

α
0+ f 2)(ρ)+

(
ρ1−α

1−α

)(
N3J

θ
0+ f 2

)
(ρ)

−2
(
N3J

α
0+ f
)
(ρ)
(
N3J

θ
0+ f
)

(ρ)

]1/2

×
[(

ρ1−θ

1−θ

)(
N3J

α
0+g2)(ρ)+

(
ρ1−α

1−α

)(
N3J

θ
0+g2

)
(ρ)

−2
(
N3J

α
0+g
)
(ρ)
(
N3J

θ
0+g
)

(ρ)

]1/2
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Applying Theorem 2 with w1 (τ) = w2 (τ) = g(τ) = 1, we deduce(
ρ1−θ

1−θ

)
N3J

α
0+

{
f 2}(ρ) �

(
ρ1−θ

1−θ

) (
N3Jα

0+ {(v1 + v2) f}(ρ)
)2

4N3Jα
0+ {v1v2}(ρ)

.

It is obvious to see that:(
ρ1−θ

1−θ

)
N3J

α
0+

{
f 2}(ρ)− (N3J

α
0+ f
)
(ρ)
(
N3J

θ
0+ f
)

(ρ) (2.16)

�
(

ρ1−θ

1−θ

) (
N3Jα

0+ {(v1 + v2) f}(ρ)
)2

4N3Jα
0+ {v1v2}(ρ)

− (N3J
α
0+ f
)
(ρ)
(
N3J

θ
0+ f
)

(ρ)

= A1 ( f ,v1,v2)

and (
ρ1−α

1−α

)
N3J

θ
0+

{
f 2}(ρ)− (N3J

α
0+ f
)
(ρ)
(
N3J

θ
0+ f
)

(ρ) (2.17)

�
(

ρ1−α

1−α

) (
N3Jθ

0+ {(v1 + v2) f}(ρ)
)2

4N3Jθ
0+ {v1v2}(ρ)

− (N3J
α
0+ f
)
(ρ)
(
N3J

θ
0+ f
)

(ρ)

= A2 ( f ,v1,v2) .

Similarly, applying Theorem 2 with v1 (τ) = v2 (τ) = f (τ) = 1, we have(
ρ1−θ

1−θ

)
N3J

α
0+

{
g2}(ρ)− (N3J

α
0+g
)
(ρ)
(
N3J

θ
0+g
)

(ρ)

� A1 (g,w1,w2) (2.18)

and (
ρ1−α

1−α

)
N3J

θ
0+

{
g2}(ρ)− (N3J

α
0+g
)
(ρ)
(
N3J

θ
0+g
)

(ρ)

� A2 (g,w1,w2) . (2.19)

Using (2.16)–(2.19), we conclude the result. �

THEOREM 6. f and g are two positive integrable mappings on [0,∞) with α,
θ ∈ R−{1} . Suppose that there exist four positive integrable mappings v1,v2,w1 and
w2 satisfying condition (2.1). Then the following inequality holds for non-conformable
integral operators:∣∣∣∣

(
ρ1−α

1−α

)
N3J

α
0+ { f g}(ρ)− (N3J

α
0+ f
)
(ρ)
(
N3J

α
0+g
)
(ρ)
∣∣∣∣

� |A( f ,v1,v2)(ρ)A(g,w1,w2) (ρ)|1/2 (2.20)

where

A(u,v,w) (ρ) =
(

ρ1−α

1−α

)
×
(
N3Jα

0+ {(v+w)u}(ρ)
)2

4N3Jα
0+ {vw}(ρ)

− ((N3J
α
0+u
)
(ρ)
)2

.
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Proof. If we choose α = θ in (2.14), we get (2.20). �

COROLLARY 4. If we set v1 = ζ , v2 = κ , w1 = δ and w2 = τ , then we have∣∣∣∣
(

ρ1−α

1−α

)
N3J

α
0+ { f g}(ρ)− (N3J

α
0+ f
)
(ρ)
(
N3J

α
0+g
)
(ρ)
∣∣∣∣

� (κ − ζ )(τ − δ )
4
√

ζδκτ
× (N3J

α
0+ f
)
(ρ)
(
N3J

α
0+g
)
(ρ) .
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