
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tusc20

Journal of Taibah University for Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tusc20

Nonlinear generalized fractional differential
equations with generalized fractional integral
conditions

Samiha Belmor, Chokkalingam Ravichandran & Fahd Jarad

To cite this article: Samiha Belmor, Chokkalingam Ravichandran & Fahd Jarad (2020) Nonlinear
generalized fractional differential equations with generalized fractional integral conditions, Journal
of Taibah University for Science, 14:1, 114-123, DOI: 10.1080/16583655.2019.1709265

To link to this article:  https://doi.org/10.1080/16583655.2019.1709265

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 06 Jan 2020.

Submit your article to this journal Article views: 1923

View related articles View Crossmark data

Citing articles: 20 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tusc20
https://www.tandfonline.com/loi/tusc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/16583655.2019.1709265
https://doi.org/10.1080/16583655.2019.1709265
https://www.tandfonline.com/action/authorSubmission?journalCode=tusc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tusc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/16583655.2019.1709265
https://www.tandfonline.com/doi/mlt/10.1080/16583655.2019.1709265
http://crossmark.crossref.org/dialog/?doi=10.1080/16583655.2019.1709265&domain=pdf&date_stamp=2020-01-06
http://crossmark.crossref.org/dialog/?doi=10.1080/16583655.2019.1709265&domain=pdf&date_stamp=2020-01-06
https://www.tandfonline.com/doi/citedby/10.1080/16583655.2019.1709265#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/16583655.2019.1709265#tabModule


JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE
2020, VOL. 14, NO. 1, 114–123
https://doi.org/10.1080/16583655.2019.1709265

Nonlinear generalized fractional differential equations with generalized
fractional integral conditions

Samiha Belmor a, Chokkalingam Ravichandran b and Fahd Jarad c

aDepartment of Mathematics, University Mustapha Ben Boulaid, Batna, Algeria; bPG & Research Department of Mathematics, Kongunadu
Arts and Science College (Autonomous), Coimbatore, India; cDepartment of Mathematics, Cankaya University, Ankara, Turkey

ABSTRACT
This research work is dedicated to an investigation of the existence and uniqueness of a class
of nonlinear ψ-Caputo fractional differential equation on a finite interval [0, T], equipped with
nonlinear ψ-Riemann–Liouville fractional integral boundary conditions of different orders 0 <
α,β < 1, we deal with a recently introduced ψ-Caputo fractional derivative of order 1 < q ≤ 2.
The formulated problem will be transformed into an integral equation with the help of Green
function. A full analysis of existence and uniqueness of solutions is proved using fixed point
theorems: Leray–Schauder nonlinear alternative, Krasnoselskii and Schauder’s fixed point the-
orems, Banach’s and Boyd–Wong’s contraction principles. We show that this class generalizes
several other existing classes of fractional-order differential equations, and therefore the free-
dom of choice of the standard fractional operator. As an application, we provide an example to
demonstrate the validity of our results.
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1. Introduction

The study of differentiation and integration to a frac-
tional order has caught importance and popularity
among researchers compared to classical differentia-
tion and integration. Fractional operators used to illus-
trate better the reality of real-world phenomena with
the hereditary property. For instance, various appli-
cations and comprehensive strategy of the fractional
calculus are addressed in the works of Baleanu et al.
[1,2], Abd-Elhameed et al. [3,4], Jarad et al. [5], Hafez
et al. [6], and Youssri et al. [7]. A good review of dif-
ferent fractional operators can be found in [8]. It has
been proved that differential equation with fractional-
order process more accurately than integer-order dif-
ferential equations do, and fractional arrangers provide
excellent performance of the description of hereditary
attributes than integer-order arrangers. Applications
can be found in complex viscoelastic media, electri-
cal spectroscopy, porous media, cosmology, environ-
mental science, medicine (the modelling of infectious
diseases), signal and image processing, materials, and
many others. For detail, see analogous discussions to
the topics in a comprehensive review by Sun et al. [9].

Fractional-order boundary value problems of nonlin-
ear fractional differential equations have been exten-
sively investigated by many authors. By applying vari-
ous techniques of nonlinear analysis; many researchers
have studied the existence of solutions of fractional-
order differential equations supplemented by integral

boundary conditions involve either classical,
Riemann–Liouville, Hadamard, Erdélyi–Kober, or
Katugampola type. For instance, in [10,11] Ahmad et al.
applied the classical fixed point theory to nonlinear
fractional differential equations with nonlocal general-
ized fractional integral boundary conditions. The author
showed that the considered problems have a unique
solution and unify some available results. In [12] Sun
et al. investigated the existence of nonlinear fractional-
order boundary value problems with nonlocal Erdé-
lyi–Kober and generalized Riemann–Liouville type inte-
gral boundary conditions using Mawhin continuation
theorem. We refer the reader to the survey by Agarwal
et al. [13] which particularly had a chronological listing
onmajorworks in the investigation of the existence and
uniqueness of differential equations and inclusions of
fractional-orders with various boundary conditions.

In [14], Samko et al. presented fractional integrals
and derivatives with unlike kernels. These fractional
operators are nowknownasψ-fractional operators, and
it has been shown that these operators unify a wide
class of fractional differentiations and integrations such
as the aforementioned ones. As an application manag-
ing with the theory of ψ-fractional differentiation, we
refer to [15], the reader will find other classifications of
ψ-fractional differentiation with various applications in
the work [16–18]

In [19], Almeida investigate theexistenceandunique-
ness of solution for the following boundary value
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problem of fractional differential equations

cDα
0+;ψ = f (t, y(t)), t ∈ [a, b], 2 < α < 3, (1)

y(a) = ya, y′(a) = ya1 , y(b) = KIαa+;ψy(ϑ), (2)

where cDα
0+;ψ is the ψ-Caputo fractional derivative

introduced in [20], Iα0+;ψ is the ψ-Riemann–Liouville
fractional integral presented in [14]. The existence
results are obtained via the aid of some classical fixed
point theorems.

We deal in this paper with a recently established
ψ-Caputo fractional derivative within the framework
of absolutely continuous functions proposed by Jarad
and Abdeljawad [21]. We focus on the existence and
uniqueness of solutions for a nonlinear fractional dif-
ferential equation involving the ψ-Caputo fractional
derivative, supplemented with ψ-Riemann–Liouville
fractional integral boundary conditions of different
orders

cDq
0+ ;ψy(t) = f (t, y(t)), t ∈ I = [0, T], 1 < q ≤ 2,

(3)

y(0)− δψy(0) = 1
�(α)

∫ σ

0
(ψ(σ)− ψ(s))α−1

ψ ′(s)g(s, y(s))ds = Iα0+;ψg(σ , y(σ )),

(4)

y(T)+ δψy(T) = 1
�(β)

∫ η

0
(ψ(η)− ψ(s))β−1

ψ ′(s)h(s, y(s))ds = Iβ0+;ψh(η, y(η)),

(5)

where 0 < α,β ≤ 1, ψ ′ > 0 on [0, T], 0 < σ , η < T , f,
g and h three real continuous functions defined on
[0, T] × R, and δψ = (1/ψ ′(t))d/dt

Our results here are new andgeneralize some known
results in the literature for specific choices of the param-
eters involved. For instance, selecting ψ(t) = t, α =
β = 1, η → T−, and σ → T− in the problem (3)–(5), the
boundary conditions take the form

y(0)− y′(0) =
∫ T

0
g(s, y(s))ds, y(T)+ y′(T)

=
∫ T

0
h(s, y(s))ds, (6)

and the resulting problem meets the one studied
in [22], reduces the one considered in [23] under a
weakly sequentially continuity assumption imposed on
f, g and h. Studies in [24] use the technique of mea-
sures of noncompactness and the Mönch’s fixed point
theorem. In case we choose δψy(0) = δψy(T) = 0 the
problem (3)–(5) generalize the one considered in [13].
An integer-order version of (3)–(5) was considered in
[25] with q = 2,ψ(t) = t,α = β = 1, η → 1−, and σ →
1−, where the existence of solutions and extremal solu-
tions are established. In summary, the present paper
covers some interesting situations.

The paper is organized as follows. In Section 2, we
present themain concepts of the generalized fractional
calculus and give some valuable preliminary results. In
Section 3, we prove the existence and uniqueness of
solution to the problem (3)–(5) by using the standard
fixed-point theorem. In Section 4, we present an illus-
trative example. At last, we conclude our results.

2. Preliminaries andmathematical
background

We review a few definitions, notations and results ofψ-
fractional integrals and derivatives which will be used
throughout this paper.

ByC([0, T],R)wedenote the Banach space of all con-
tinuous functions from [0, T] endowed with the norm
defined by

‖u‖∞ = sup
[0,T]

|u(x)|.

Let AC([0, T],R) denotes the space of all absolutely con-
tinuous real valued function on [0, T]. Moreover, we
define the space ACnψ([0, T],R) by

ACnψ([0, T],R)

=
{
f : [0, T] → R; (δn−1

ψ f )(t) ∈ AC([0, T],R),

δψ = 1
ψ ′(t)

d
dt

}
,

which is endowed with the norm defined by

‖f‖Cnψ =
n−1∑
k=0

‖δkψ f (t)‖∞,

where ψ ∈ Cn[0, T], ψ ′(t) > 0 on [0, T], and

δkψ = δψδψ . . . δψ︸ ︷︷ ︸
k times

.

Definition 2.1 ([14]): Let f : [0, T] → R be an inte-
grable function. The ψ-Riemann–Liouville integral of
order α > 0 of f for 0 < t < T < +∞, is defined by

Iα0+;ψ f (t) = 1
�(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ ′(s)f (s)ds.

(7)

Definition 2.2 ([21]): For 0 < t < T < +∞, the ψ-
Riemann–Liouville fractional derivative of order α > 0
of a function f ∈ ACnψ([0, T]) is defined by

Dα
0+;ψ f (t) = In−α0+;ψ(δ

n
ψ f )(t)

+
n−1∑
k=0

(δkψ f )(0)

�(k − α + 1)
(ψ(t)− ψ(0))k−α
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= 1
�(n − α)

∫ t

0
(ψ(t)− ψ(s))n−α−1

ψ ′(s)δnψ f (s)ds +
n−1∑
k=0

(δkψ f )(0)

�(k − α + 1)

× (ψ(t)− ψ(0))k−α , (8)

if the integral exists, where n = [α] + 1, �(.) is the
Euler’s gamma function defined by �(x)
= ∫ ∞

0 tx−1e−t dt.

Definition 2.3 ([20,21]): For f ∈ ACnψ([0, T]), the ψ-
Caputo fractional derivativeoforderα > 0, is definedby

cDα
0+;ψ f (t) = In−α0+,ψ(δ

n
ψ f )(t)

= 1
�(n − 1)

∫ t

0
(ψ(t)− ψ(s))n−α−1

× ψ ′(s)(δnψ f )(s)ds, n = [α] + 1.

Thus, if α = n ∈ N we have

cDα
0+;ψ f (t) = (δnψ f )(t).

Lemma 2.4 ([21]): Given a function f ∈ ACnψ [0, T], and
α ∈ R

+, then

Iα0+;ψ
cDα

0+;ψ f (t)

= f (t)−
n−1∑
k=0

(δkψ f )(0)

k!
(ψ(t)− ψ(0))k , (9)

in particular, for 0 < α < 1, we have

Iα0+;ψ
cDα

0+;ψ f (t) = f (t)− f (0).

In the following auxiliary lemma, we solve the linear
version of the problem (3)–(5).

Lemma 2.5: Let 1 < q ≤ 2 and ϕ,φ1,φ2 : [0, T] → R be
continuous. A function y ∈ AC2ψ([0, T],R) is a solution of
the fractional integral equation

y(t) = L(t)+
∫ T

0
Gψ(t, s)ϕ(s)ds, (10)

where

L(t) = ψ(T)− ψ(t)+ 1
ψ(T)− ψ(0)+ 2

Iα0+;ψφ1(σ )

+ ψ(t)− ψ(0)+ 1
ψ(T)− ψ(0)+ 2

Iβ0+;ψφ2(η),

here, ψ is an increasing function on [0, T] such that ψ ∈
C2[0, T], and Gψ(t, s) is a Green’s function given by

Gψ(t, s) = ψ ′(s)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ψ(t)− ψ(s))q−1

�(q)
− ψ(t)− ψ(0)+ 1
(ψ(T)− ψ(0)+ 2)�(q)

(ψ(T)− ψ(s))q−1 − ψ(t)−ψ(0)+1
(ψ(T)−ψ(0)+2)�(q−1)

(ψ(T)− ψ(s))q−2, 0 ≤ s ≤ t,

− ψ(t)− ψ(0)+ 1
(ψ(T)− ψ(0)+ 2)�(q)

(ψ(T)− ψ(s))q−1

− ψ(t)−ψ(0)+1
(ψ(T)−ψ(0)+2)�(q−1) (ψ(T)− ψ(s))q−2,

t ≤ s ≤ T ,

(11)

if and only if y is a solution of the following ψ-fractional
BVP

cDq
0+;ψy(t) = ϕ(t), t ∈ I := [0, T], (12)

y(0)− δψy(0) = Iα0+;ψφ1(σ ), (13)

y(T)+ δψy(T) = Iβ0+;ψφ2(η). (14)

Proof: Applying theψ-Riemann–Liouville operator Iα0+;ψ
on both sides of Equation (12) and using Lemma 2.4, we
obtain

y(t) = c1 + c2(ψ(t)− ψ(0))+ Iq0+;ψϕ(t), (15)

where c1, c2 are arbitrary constants. Taking the δψ

−derivative (15) we get

(δψy)(t) = c2 + Iq−1
0+;ψϕ(t). (16)

From (13) and (14), we get

c1 − c2 = Iα0+;ψφ1(σ ), (17)

and

c1 + c2(ψ(T)− ψ(0)+ 1)+ Iq0+;ψϕ(T)

+ Iq−1
0+;ψϕ(T) = Iβ0+;ψφ2(η). (18)

Equation (15) and (18) give

c2 = 1
ψ(T)− ψ(0)+ 2

Iβ0+;ψφ2(η)

− 1
ψ(T)− ψ(0)+ 2

Iα0+;ψφ1(σ )

− 1
ψ(T)− ψ(0)+ 2

Iq0+;ψϕ(T)

− 1
ψ(T)− ψ(0)+ 2

Iq−1
0+;ψϕ(T), (19)
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and

c1 = ψ(T)− ψ(0)+ 1
ψ(T)− ψ(0)+ 2

Iα0+;ψφ1(σ )

+ 1
ψ(T)− ψ(0)+ 2

Iβ0+;ψφ2(η)

− 1
ψ(T)− ψ(0)+ 2

[
Iq0+;ψϕ(T)+ Iq−1

0+;ψϕ(T)
]
.

(20)

From (15), (19), (20), and using the fact that
∫ T
0 =∫ t

0 + ∫ T
t we get

y(t) = L(t)+
∫ T

0
Gψ(t, s)ϕ(s)ds, (21)

where

L(t) = ψ(T)− ψ(t)+ 1
ψ(T)− ψ(0)+ 2

Iα0+;ψφ1(σ )

+ ψ(t)− ψ(0)+ 1
ψ(T)− ψ(0)+ 2

Iβ0+;ψφ2(η), (22)

and Gψ(t, s) is the Green function such that defined
by (11).

Therefore, we have (10). Inversely, it is obvious that if
y satisfies Equation (10), then (12)–(14) hold. �

3. Existence and uniqueness of solutions

In this section, we deal with the existence and unique-
ness of solutions for the fractional-orderboundary value
problem (3)–(5) using certain fixed point theorems.

Remark 3.1: From the expression of Gψ(t, s), it is
clear that Gψ(t, s) is continuous on I × I, and hence is
bounded. Thus, we let

G∗
ψ = sup

{∫ T

0
|Gψ(t, s)|, t ∈ I

}
.

In the following, for computational convenience, we set
the following notations

�1 = (ψ(T)+ 1)(ψ(σ))α

(ψ(T)− ψ(0)+ 2)�(α + 1)
, (23)

�2 = ((ψ(T)+ 1)(ψ(η))β

(ψ(T)− ψ(0)+ 2)�(β + 1)
. (24)

Based on Banach’s fixed point theorem [26], we state
the uniqueness of solutions of the problem (3)–(5).

Theorem 3.2: Assume that the following hypotheses
hold:

(H1) There exists a non-negative constant k> 0 such that

|f (t, u)− f (t, v)| ≤ k|u − v|,
for all t ∈ I a.e u, v ∈ R.

(H2) There exists a non-negative constant k∗ > 0 such
that

|g(t, u)− g(t, v)| ≤ k∗|u − v|,
for all t ∈ I a.e u, v ∈ R.

(H3) There exists a non-negative constant k∗∗ > 0 such
that

|h(t, u)− h(t, v)| ≤ k∗∗|u − v|,
for all t ∈ I a.e u, v ∈ R.

Then the problem (3)–(5) has a unique solution on I,
provided that

(
�1k

∗ +�2k
∗∗ + TG∗

ψk
)
< 1, (25)

where�1 and�2 are given by (23) and (24) respectively.

Proof: We reformulate the problem (3)–(5) as a fixed
point problem by considering the operator

N : C([0, T],R) → C([0, T],R),

defined by the formula

(Ny)(t) = L(t)+
∫ T

0
Gψ(t, s)f (s, y(s))ds, (26)

where

L(t) = (ψ(T)− ψ(t)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

∫ σ

0
(ψ(σ)− ψ(s))α−1

× ψ ′(s)g(s, y(s))ds

+ (ψ(t)− ψ(0)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

∫ η

0
(ψ(η)− ψ(s))α−1

× ψ ′(s)h(s, y(s))ds, (27)

and the Green function Gψ(t, s) is given by (11). It is
well known that the fixed points of the operator N are
solutions of the problem (3)–(5). By using the Banach
contractionmappingprinciple,we shall show thatNhas
a fixed point.

Let x, y ∈ C([0, T],R). Then, for each t ∈ [0, T], one
can obtain

|(Nx)(t)− (Ny)(t)|

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

∫ σ

0
|(ψ(σ)− ψ(s))α−1

ψ ′(s)||g(s, x(s))− g(s, y(s))|ds

+ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

∫ η

0
|(ψ(η)− ψ(s))β−1

ψ ′(s)||h(s, x(s))− h(s, y(s))|ds

+
∫ T

0
|Gψ(t, s)||f (s, x(s))− f (s, y(s))|ds



118 S. BELMOR ET AL.

≤ (ψ(T)+ 1)(ψ(σ))α

(ψ(T)− ψ(0)+ 2)�(α + 1)
k∗‖x − y‖∞

+ (ψ(T)+ 1)(ψ(η))β

(ψ(T)− ψ(0)+ 2)�(β + 1)
k∗∗‖x − y‖∞

+ TG∗
ψk‖x − y‖∞

≤ (�1k
∗ +�2k

∗∗ + TG∗
ψk)‖x − y‖∞.

Taking the supremum, we obtain

‖N(x)− N(y)‖∞ ≤ (�1k
∗ +�2k

∗∗ + TG∗
ψk)‖x − y‖∞.

Hence, by (25), N is a contraction. By the Banach fixed
point theorem N has a fixed point which is a solution of
the problem (3)–(5). The proof is now complete. �

Now, our next uniqueness result for the prob-
lem (3)–(5) relies on Boyd–Wong Contraction Principle
[27].

Theorem 3.3: Let X be a completemetric space and sup-
pose T : X → X satisfies

d(Tx, Ty) ≤ (d(x, y)), for each x, y ∈ X ,

where : [0,+∞) → [0,+∞) is upper semi-continuous
function from the right (i.e rj ↓ r ≥ 0 ⇒ lim supn→+∞
(rj) ≤ (r)) and satisfies0 ≤  < t for t> 0. ThenThas
a unique fixed point x̄ and Tn(x) converges to x̄ for each
x ∈ X.

Theorem 3.4: Assume that the following hypothesis
hold

(H4) there exist χ1,χ2 and χ3 : R+ → R
+ upper semi-

continuous from the right and non-decreasing func-
tions such that

|f (t, u)− f (t, v)| ≤ χ1(|u − v|), (28)

|g(t, u)− g(t, v)| ≤ χ2(|u − v|), (29)

|h(t, u)− h(t, v)| ≤ χ3(|u − v|), (30)

for all t ∈ [0, T] a.e u and v∈ R, and

(t) :=
(
�1χ2(t)+�2χ3(t)+ TG∗

ψχ1(t)
)
< t,

for all t > 0, (31)

where �1 and �2 are given by (23) and (24) respectively.
Then the problem (3)–(5) has a unique solution.

Proof: Wedefine theoperatorN as in (26). For any x, y ∈
C([0, T],R), and t ∈ [0, T], by using (H4), we get

|(Nx)(t)− (Ny)(t)|

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

∫ σ

0
|(ψ(σ)− ψ(s))α−1

ψ ′(s)||g(s, x(s))− g(s, y(s))|ds

+ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

∫ η

0
|(ψ(η)− ψ(s))β−1

ψ ′(s)||h(s, x(s))− h(s, y(s))|ds

+
∫ T

0
|Gψ(t, s)||f (s, x(s))− f (s, y(s))|ds

≤ (ψ(T)+ 1)(ψ(σ))α

(ψ(T)− ψ(0)+ 2)�(α + 1)
χ2(‖x − y‖∞)

+ (ψ(T)+ 1)(ψ(η))β

(ψ(T)− ψ(0)+ 2)�(β + 1)
χ3(‖x − y‖∞)

+ TG∗
ψχ1(‖x − y‖∞)

≤ �1χ2(‖x − y‖∞)+�2χ3(‖x − y‖∞)

+ TG∗
ψχ1(‖x − y‖∞)

≤ (‖x − y‖∞).

By taking the supremum, we obtain,

‖(Nx)(t)− (Ny)(t)‖∞ ≤ (‖x − y‖∞).

Since (t) < t for all t>0, then Boyd–Wong’s con-
traction principle can be applied and N has a unique
fixed point which is the unique solution of the problem
(3)–(5). �

Remark 3.5: Theorem 3.4 is a generalization of
Theorem 3.2. Indeed for

χ1(t) = kt, χ2(t) = k∗t, and χ3(t) = k∗∗t,

condition (H4) becomes (H1–H3), and (31) is satisfied if
and only if (25) holds.

Our next existence result for the problem (3)–(5) is
based on Leray–Schauder nonlinear alternative [28].

Theorem 3.6: Assume that the following hypotheses
hold

(H5) f : I × R → R is a continuous function.
(H6) There exists φf ∈ L1(I,R+), and a continuous and

non-decreasing function χ1 : R+ → R
+ such that

|f (t, u)| ≤ φf (t)χ1(|u|), for all t ∈ I a.e u ∈ R.

(H7) There exists φg ∈ L1(I,R+), and a continuous and
non-decreasing function χ2 : R+ → R

+ such that

|g(t, u)| ≤ φgχ2(|u|), for all t ∈ I a.e u ∈ R.
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(H8) There exists φh ∈ L1(I,R+), and a continuous and
non-decreasing function χ3 : R+ → R

+ such that

|h(t, u)| ≤ φhχ3(|u|), for all t ∈ I a.e u ∈ R.

(H9) There exists a number C> 0 such that

C

aχ2(C)+ bχ3(C)+ cG∗
ψχ1(C)

> 1, (32)

where

a = ψ(T)+ 1
(ψ(T)− ψ(0)+ 2)

Iα0+;ψφg(t),

b = ψ(T)+ 1
(ψ(T)− ψ(0)+ 2)

Iβ0+;ψφh(t),

c =
∫ T

0
φf (s)ds.

(33)

Then the problem (3)–(5) has at least one solution on I.

Proof: Consider the operator N defined by (26), by
applying Leray–Schauder nonlinear alternative we will
prove thatN has a fixed point. The proof will be given in
several steps

Step 1: N is continuous. Let yn be a sequence such that
yn → y in C([0, T],R). Then for each t ∈ [0, T]

|(Nyn)(t)− (Ny)(t)|

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

∫ σ

0
|(ψ(σ)− ψ(s))α−1

ψ ′(s)|‖g(s, yn(s))− g(s, y(s))‖∞ ds

+ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

∫ η

0
|(ψ(η)− ψ(s))β−1

ψ ′(s)|‖h(s, yn(s))− h(s, y(s))‖∞ ds

+
∫ T

0
|Gψ(t, s)|‖f (s, yn(s))− f (s, y(s))‖∞ ds

≤ �1‖g(., yn(.))− g(., y(.))‖∞
+�2‖h(., yn(.))− h(., y(.))‖∞
+ TG∗

ψ‖f (., yn(.))− f (., y(.))‖∞.

Since f, g and h are continuous functions, we have

‖(Nyn)(t)− (Ny)(t)‖ → 0, as n → +∞.

Step 2: F maps bounded sets into bounded sets in
C([0, T],R). For any ν > 0 there exists a positive con-
stant l such that for each y ∈ Bν := {y ∈ C([0, T],R), ‖y‖∞
≤ ν}, we have ‖N(y)‖ ≤ l. By using (H6)-(H8) for each
t ∈ [0, T], one can obtain

|(Ny)(t)|

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

×
∫ σ

0
(ψ(σ)− ψ(s))α−1ψ ′(s)|g(s, y(s))|ds

+ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

×
∫ η

0
(ψ(η)− ψ(s))β−1ψ ′(s)|h(s, y(s))|ds

+
∫ T

0
Gψ(t, s)|f (s, y(s))|ds

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

χ2(‖y‖∞)

×
∫ σ

0
(ψ(σ)− ψ(s))α−1ψ ′(s)φg(s)ds

+ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

χ3(‖y‖∞)

+
∫ η

0
(ψ(η)− ψ(s))β−1ψ ′(s)φh(s)ds

+ χ1(‖y‖∞)G∗
ψ

∫ T

0
φf (s)ds.

Thus, for each t ∈ [0, T]

‖(Ny)(t)‖∞ ≤ χ2(ν)
(ψ(T)+ 1)

(ψ(T)− ψ(0)+ 2)
Iα0+;ψφg(σ )

+ χ3(ν)
(ψ(T)+ 1)

(ψ(T)− ψ(0)+ 2)
Iβ0+;ψφh(η)

+ χ1(ν)G
∗
ψ

∫ T

0
φf (s)ds := l.

Step 3: N maps bounded sets into equicontinuous sets
of C([0, T],R). Let t1, t2 ∈ (0, T]. If t1 < t2 then ψ(t1) <
ψ(t2), and let y ∈ Bν where Bν is a bounded set of
C([0, T],R) as given in step 2. Then we obtain

|(Ny)(t2)− (Ny)(t1)|

≤ ψ(t2)− ψ(t1)

(ψ(T)− ψ(0)+ 2)�(α)

×
∫ σ

0
(ψ(σ)− ψ(s))α−1ψ ′(s)|g(s, y(s))|ds

+ ψ(t2)− ψ(t1)

(ψ(T)− ψ(0)+ 2)�(β)

×
∫ η

0
(ψ(η)− ψ(s))β−1ψ ′(s)|h(s, y(s))|ds

+
∫ T

0
|Gψ(t2, s)− Gψ(t1, s)||f (s, y(s))|ds

≤ ψ(t2)− ψ(t1)

(ψ(T)− ψ(0)+ 2)�(α)
χ2(ν)

×
∫ σ

0
(ψ(σ)− ψ(s))α−1ψ ′(s)φg(s)ds

+ ψ(t2)− ψ(t1)

(ψ(T)− ψ(0)+ 2)�(β)
χ3(ν)

×
∫ η

0
(ψ(η)− ψ(s))β−1ψ ′(s)φh(s)ds

+ χ1(ν)‖Gψ(t2, s)− Gψ(t1, s)‖∞
∫ T

0
φf (s)ds,
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which tend to 0, since ψ(t2)− ψ(t1) → 0 when t2 −
t1 → 0 independently of y. In view of the Ascoli-Arzelà
theorem and the consequence of Steps 1 to 3, we con-
clude that N is completely continuous.

Step 4: There exists an open sets U ⊂ C([0, T],R) with
y = θN(y) for θ ∈ (0, 1) and y ∈ ∂U. Let y be a solution
of y − θN(y) = 0 for θ ∈ (0, 1). Then for t ∈ [0, T] we get

|y(t)| = |θ(Ny)(t)|

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

×
∫ σ

0
(ψ(σ)− ψ(s))α−1ψ ′(s)|g(s, y(s))|ds

+ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

×
∫ η

0
(ψ(η)− ψ(s))β−1ψ ′(s)|h(s, y(s))|ds

× +
∫ T

0
Gψ(s, t)|f (s, y(s))|ds

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

χ2(‖y‖∞)

×
∫ σ

0
(ψ(σ)− ψ(s))α−1ψ ′(s)φg(s)ds

+ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

χ3(‖y‖∞)

×
∫ η

0
(ψ(η)− ψ(s))β−1ψ ′(s)φh(s)

ds + χ1(‖y‖∞)G∗
ψ

∫ T

0
φf (s)ds,

taking the supremum for t ∈ [0, T], yields

‖y‖∞
aχ2(‖y‖∞)+ bχ3(‖y‖∞)+ cG∗

ψχ1(‖y‖)
≤ 1.

�

By the condition (H9), there exists a positive con-
stant C such that ‖y‖ = C. Next we define U = {y ∈
C([0, T],R), ‖y‖ < C} and note that the operator N :
∂U → C([0, T],R) is continuous and completely contin-
uous. From the choice of U, there is no y ∈ ∂U such that
y − θNy = 0 for some θ ∈ (0, 1). Therefore by the non-
linear alternative of Leray–Schauder type, we deduce
that N has a fixed point y ∈ Ū which is a solution of the
problem (3)–(5).

Our next existence result for the problem (3)–(5)
based on Leray–Schauder’s Degree theory [29].

Theorem 3.7: Along with condition (H4), assume that
the following hypotheses hold

(H10) there exist constants κ ≥ 0 andM> 0 such that

|f (t, u)| ≤ κ|u| + M, for t ∈ I, a.e u ∈ R,

(H11) there exist constants ϑ ≥ 0 andM∗ such that

|g(t, u)| ≤ ϑ |u| + M∗, for t ∈ I, a.e u ∈ R,

(H12) there exist constants ν ≥ 0 andM∗∗ such that

|h(t, u)| ≤ ν|u| + M∗∗, for t ∈ I, a.e u ∈ R,

where κ ,ϑ and ν satisfying the following condition

ϑ�1 + ν�2 + κTG∗
ψ < 1,

�1 and �2 are given by (23) and (24), respectively. Then
the problem (3)–(5) has at least one solution on [0, T].

Proof: Based on the fixed point problem, we have

y = Ny, (34)

if and only if y is solution of the problem (3)–(5) where
N : C([0, T],R) → C([0, T],R) defined by 26. we simply
need to establish the existence of at least one solution
y ∈ C([0, T]) for 34. In order to complete the proof we
set a ball BR ⊂ C([0, T]) with a constant radius R>0 as
follows

BR = {y ∈ C[0, T] : max
t∈[0,T]

|y(t)| < R}.

We need to demonstrate that, N : B̄R → C[0, T] satisfies

y = λNy, for all u ∈ ∂Bν , and all λ ∈ [0, 1]. (35)

Let us define

H(λ, y) = λNy,

where λ ∈ [0, 1] and y ∈ C([0, T]). From Theorem 3.6,
we know that the operator N is continuous, and com-
pletely continuous. Then, by theArzèla–Ascoli theorem,
a continuous map hλ defined by hλ(y) = y − H(λ, y) =
y − λN(y) is also completely continuous. The following
Leray–Schauder degrees are well defined unless (35)
holds, then by the homotopy in-variance of topological
degree, it is concluded that

deg(hλ, BR, 0) = deg(I − λN, BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I, BR, 0) = 1 = 0,

for 0 ∈ BR, and I indicates the unit operator. By the
non-zero property of Leray–Schauder degree, we have
h1(y) = y − Ny = 0 for at least x ∈ BR. In order to
prove 35, let us assume that y = λNy for some λ ∈ [0, 1]
and for all t ∈ [0, T], thus

|y(t)| = |λ(Ny)(t)|

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

×
∫ σ

0
|(ψ(σ)− ψ(s))α−1ψ ′(s)||g(s, y(s))|

× ds + (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

×
∫ η

0
|(ψ(η)− ψ(s))β−1ψ ′(s)||h(s, y(s))|
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× ds +
∫ T

0
|Gψ(s, t)||f (s, y(s))|ds

≤ (ψ(T)+ 1)(ψ(σ))α

(ψ(T)− ψ(0)+ 2)�(α + 1)
(ϑ |y| + M∗)

+ (ψ(T)+ 1)(ψ(η))β

(ψ(T)− ψ(0)+ 2)�(β + 1)
(ν|y| + M∗∗)

+ (κ|y| + M)TG∗
ψ

= �1(ϑ |y| + M∗)+�2(ν|y| + M∗∗)

+ (κ|y| + M)TG∗
ψ ,

on which, taking the supremum for t ∈ [0, T], and
solving for ‖y‖∞ yields

‖y‖∞ ≤
M∗�1 + M∗∗�2 + MTG∗

ψ

(1 − ϑ�1 − −ν�2 − κTG∗
ψ)

.

If

R =
M∗�1 + M∗∗�2 + MTG∗

ψ

(1 − ϑ�1 − ν�2 − κTG∗
ψ)

+ 1,

the inequality 35 holds. This completes the proof. �

The last existence result depends on the Krasnosel-
skii–Schaefer type fixed point theorem [30].

Theorem 3.8: Let A and B be twomappings of a Banach
space X, such that

(i) A is a contraction, and
(ii) B is completely continuous.

Then, either

(a) theoperatorequationy = A(y)+ B(y)hasasolution,
or

(b) the set E = {u ∈ X : u = λA(u/λ)+ λB(u)} is
unbounded for 0 < λ < 1.

Theorem 3.9: Assume that (H2), (H3) and (H6) hold.
Furthermore, if (

�1k
∗ +�2k

∗∗) < 1, (36)

and

‖y‖∞(1 −�1k∗ −�2k∗∗)
g∗α−1(ψ(σ))α + h∗β−1(ψ(η))β + cG∗

ψψ(‖y‖∞)
> 1,

(37)
holds, where�1, and�2 defined by (23), and (24) respec-
tively, g∗ = supt∈[0,T] |g(t, 0)|, h∗ = supt∈[0,T] |h(t, 0)|,
the problem (3)–(5) has at least one solution on I.

Proof: We define the operators A, B : C([0, T],R) →
C([0, T],R) by

(Ay)(t) = ψ(T)− ψ(t)+ 1
(ψ(T)− ψ(0)+ 2)�(α)

Iα0+ ;ψg(σ , y(σ ))

+ ψ(t)− ψ(0)+ 1
(ψ(T)− ψ(0)+ 2)�(β)

Iβ0+ ;ψh(η, y(η)),

(By)(t) =
∫ T

0
Gψ(t, s)f (s, y(s))ds,

where Gψ is a Green’s function given by (11). The oper-
ator A is a contraction map from the Banach space
C([0, T],R) into itself. Indeed, by using conditions (H1)
and (H2), for x, y ∈ C([0, T],R), we get

|Ay(t)− Ax(t)|

≤ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

∫ σ

0
|(ψ(σ)

− ψ(s))α−1ψ ′(s)||g(s, y(s))− g(s, x(s))|ds

+ (ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

∫ η

0
|(ψ(η)

− ψ(s))β−1ψ ′(s)||h(s, y(s))− h(s, x(s))|ds

≤ (ψ(T)+ 1)(ψ(σ))α

(ψ(T)− ψ(0)+ 2)�(α + 1)
k∗‖y

− x‖∞|+ (ψ(T)+ 1)(ψ(η))β

(ψ(T)−ψ(0)+2)�(β+1)
k∗∗‖y−x‖∞

≤ (�1k
∗ +�2k

∗∗)‖y − x‖∞,

which, on taking supremum over t ∈ [0, T], yields

‖Ay(t)− Ax(t)‖∞ ≤ (�1k
∗ +�2k

∗∗)‖y − x‖∞.

Therefore A is a contraction as (36) holds. Clearly B is
completely continuous by using condition (H6). Thus,
we just need to prove that E := {y ∈ C([0, T]) y =
λA(y/λ)+ λB(y), λ ∈ (0, T)} is bounded. Let y ∈ E; then
for each t ∈ [0, T], we are led to the homotopy equation

y(t) = λA(
y

λ
)(t)+ λB(y)(t).

From (H2), (H3) and (H6) we have

|y(t)| ≤ λ(ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(α)

∫ σ

0
|(ψ(σ)

− ψ(s))α−1ψ ′(s)|

×
(∣∣∣∣g(s, y(s)λ )− g(t, 0)

∣∣∣∣ + |g(t, 0)|
)
ds

+ λ(ψ(T)+ 1)
(ψ(T)− ψ(0)+ 2)�(β)

∫ η

0
|(ψ(η)

− ψ(s))β−1ψ ′(s)|

×
(∣∣∣∣h(s, y(s)λ )− h(t, 0)

∣∣∣∣ + |h(t, 0)|
)
ds

+ λ

∫ T

0
|Gψ(s, t)||f (s, y(s))|ds

≤ (ψ(T)+ 1)(ψ(σ))α

(ψ(T)− ψ(0)+ 2)�(α + 1)
k∗‖y‖∞

+ g∗ sup
0<σ<T

∣∣∣∣ 1α (ψ(σ)− ψ(s))α
∣∣∣σ
0

∣∣∣∣
+ (ψ(T)+ 1)(ψ(η))β

(ψ(T)− ψ(0)+ 2)�(β + 1)
k∗∗‖y‖∞
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+ h∗ sup
0<η<T

∣∣∣∣ 1β (ψ(η)− ψ(s))β
∣∣∣η
0

∣∣∣∣
+ χ1(‖y‖∞)G∗

ψ

∫ T

0
φf (s)ds

≤ �1k
∗‖y‖∞ +�2k

∗∗‖y‖∞ + g∗ (ψ(σ))α

α

+ h∗ (ψ(η))β

β
+ cG∗

ψχ1(‖y‖∞),

on which, taking the supremum for t ∈ [0, T], yields

‖y‖∞(1 −�1k∗ −�2k∗∗)
g∗α−1(ψ(σ))α + h∗β−1(ψ(η))β + cG∗

ψχ1(‖y‖∞)
≤ 1.

(38)
By means of (37), it follows that there exist R>0 such
that ‖y‖ > R for each y ∈ E. Therefore ‖y‖ ≤ R for each
y ∈ E, and the Krasnoselskii–Schaefer type fixed point
theorem indicates that the set E is bounded. �

4. Example

In this section, we give an example to illustrate the use-
fulness of themain results. Let us consider the following
fractional boundary value problem

cDq
0+ ;ψy(t) = sin(π2 t)

5π
log(y)

(1 + log(y))
,

(t, y) ∈ [0, 1] × [e,+∞), (39)

y(0)− 1
3t2

y′(0) = I1/30+,ψg

(
1
7
, y

(
1
7

))
, (40)

y(T)+ 1
3t2

y′(T) = I2/70+,ψh

(
1
2
, y

(
1
2

))
, (41)

where 1 < q ≤ 2, σ = 1
5 , η = 1

2 , and T = 1. Set

f (t, x) = sin(π2 t) log(x)

5π(1 + log(x))
, (t, x) ∈ [0, 1] × [e,∞),

g(t, x) = x

(1 + 5t)2
, (t, x) ∈ [0, 1] × [e,∞),

h(t, x) = x

(1 + 3t)2
, (t, x) ∈ [0, 1] × [e,∞).

Let us take ψ(t) = t3 + 1. Clearly ψ is an increasing
function on [0, 1] and ψ ′(t) = 3t2 is a continuous func-
tion on [0, 1].

Let u, v ∈ [e,+∞), and t ∈ [0, 1]. Then, we have

|f (t, u)− f (t, v)| ≤ sin(π2 t)

5π

∣∣∣∣ log(u)
(1 + log(u))

− log(v)
(1 + log(v))

∣∣∣∣
= sin(π2 t)

5π
| log(u)− log(v)|

(1 + log(u))(1 + log(v))

≤ sin(π2 t)

5π
| log(u)− log(v)|

≤ sin(π2 t)

5π
|u − v| ≤ 1

5π
|u − v|.

Thus, condition (H1) holds with k = 1/5π . It is easy to
show that conditions (H2) –(H3) are satisfied with k∗ =
1
36 , k

∗∗ = 1
16 .

From (11) Green’s function Gψ is given by

Gψ(t, s)

= 3t2 ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t3 − s3)q−1

�(q)
− (t3 + 1)
(T3 + 2)�(q)

(1 − s3)q−1

− (t3+1)
(T3+2)�(q−1)

(1 − s3)q−2, 0 ≤ s ≤ t,

− (t3 + 1)
(T3 + 2)�(q)

(1 − s3)q−1

− (t3+1)
(T3+2)�(q−1)

(1 − s3)q−2, t ≤ s ≤ 1.

(42)

From 42 we have∫ 1

0
Gψ(t, s)ds =

∫ t

0
Gψ(t, s)ds +

∫ 1

t
Gψ(t, s)ds

= − 3t5

�(q + 1)
− 3t2(t3 + 1)

3�(q + 1)
(1 − t3)q

+ 3t2(t3 + 1)
3�(q + 1)

− 3t2(t3 + 1)
3�(q)

(1 − t3)q−1

+ 3t2(t3 + 1)
3�(q)

+ 3t2(t3 + 1)
3�(q + 1)

(1 − t3)q

+ 3t2(t3 + 1)
3�(q)

(1 − t3)q−1.

A simple calculation yields

G∗
ψ <

3
�(q + 1)

+ 3
�(q)

.

Now

�1k
∗ +�2k

∗∗ + TG∗
ψk

= (ψ( 15 ))
α

36�(α + 1)
+ (ψ( 12 ))

β

16�(β + 1)

+ 3
5π�(q + 1)

+ 3
5π�(q)

< 1,

thus condition (25) is satisfiedwith T = 1, q ∈ (1, 2], and
for each α and β ∈ (0, 1). By Theorem 3.2, the prob-
lem (39)–(41) has a unique solution on [0, 1].

5. Conclusion

The fractional calculus has been attracting many scien-
tists because of the good results obtainedwhen the tra-
ditional derivatives are replaced with fractional deriva-
tives. Hence, studying the qualitative properties such as
the existence and uniqueness of solutions to differen-
tial equations in the framework of fractional derivatives
has gained importance. In this article, we discussed the
existence and uniqueness of a certain class of bound-
ary value problem in the frame of ψ-Caputo fractional
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derivatives and with boundary conditions expressed in
terms of ψ-Riemann–Liouville fractional integrals. This
class of boundary value problem is new and is the gen-
eralization of some systems discussed in the literature.
In fact, the ψ-fractional operators contain within them-
selves some conventional fractional operators such as
the Riemann–Liouville and Hadamard fractional opera-
tors and many others.
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