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A B S T R A C T   

HIV/AIDS is a distressing and incurable disease of the human beings. In this article, we have proposed a nu-
merical structure for the HIV/AIDS compartmental model with diffusion and delay process. The proposed scheme 
has the proficiency to preserve the positivity of the state variables. Also, the proposed scheme leads to the 
consistency and stability. Two equilibrium states of the model have been described. Moreover, the stability of the 
scheme is examined at these two states. The contribution of the basic reproductive number R0, in stability 
analysis is also investigated. The bifurcation value of the infection parameter γ, for different situations of τ is also 
investigated. Graphical solutions with the aid of computer simulations are presented to clarify the paramount 
features of the proposed numerical design.   

Introduction 

Prevalence of Human Immunodeficiency Virus (HIV) infection is a 
tremendous challenge to the public health authorities, both in the 
developed and developing countries [1–3]. According to a report by 
UNAIDS (Joint Program of United Nations for AIDS), till the end of 2018, 
globally, there were 37.9 million people living with HIV and each year 
about 1 million people die due to HIV related illnesses. UNAIDS has set 
the goal to eliminate the disease from the world by 2030. HIV is a 
retrovirus that destroys the CD4 cells, the cells of human immune system 
(i.e. T helper cells, monocytes, macrophages, and dendritic cells) [4,5],if 
left untreated, HIV continues killing more CD4 cells over time and the 
HIV infection may attain its most serious stage in its host, known as 
Acquired Immunodeficiency Syndrome (AIDS). It takes 2 to 10 years to 
reach at the final stage [6]. At this point, the immune system of the body 
becomes too week to fight against the infectious diseases including, 
tuberculosis [7,8], cryptococcal meningitis (i.e. a fungal infection in the 
brain) [9,10], cryptosporidiosis [11] (i.e. an intestinal infection caused 
by a parasite) and some cancers. Generally, the HIV spreads through 
sexual transmission, blood diffusion and perinatal diffusion (e.g. mother 

feed). The symptoms of HIV infection may include fever, sore throat, 
chills, muscle aches, red rashes on the body, night sweats, swollen lymph 
nodes, sores of mouth, broadened organs or weight loss. Mostly, the HIV 
victims do not reflect the clear symptoms of the attack. As, the symptoms 
of the infection may be similar to other illnesses, so the only way to 
confirm the HIV status is the lab testing. Globally, 8.1 million HIV 
infected persons do not know their HIV status. The factors like social 
stigma, discrimination and expensive health services prevent people 
from HIV testing [12]. Two distinctive types of HIV are characterized as 
HIV-1 and HIV-2. However, within these main types of HIV, many 
genetically distinct subgroups also exist. Moreover, HIV-1 is found to be 
more virulent than HIV-2, which is mostly restricted to West Africa. 
Currently, no vaccine is available to cure the HIV due to the ability of its 
mutation and change within the infected persons. However, Anti- 
Retroviral Therapy (ART) can suppress the HIV load in the patient and 
onward spread of the disease. Life expectancy of HIV patients varies, 
depending upon the subtype and stage of the infection. Average survival 
time of an HIV infected person without treatment is 9 to 11 years, 
however proper treatment with ART can improve the life expectancy of 
the patient more than 10 years after the initiation of the AIDS [6]. 
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According to the UNAID, 2030 will be the final year for the elimination 
of the AIDS from the planet and by the end of year 2020,90% persons 
infected with HIV will know their HIV status. In Pakistan, the first case of 
HIV was reported in 1987 and by the end of 2018 the number of HIV 
infected persons have been reported as 0.165 million [13]. Pakistan is 
situated in between the HIV high risk countries like India and China 
[14]. Although, HIV adult prevalence rate among general public (15–45 
yr) is very low in Pakistan i.e. less then 0.1% [13], but the recent pub-
lications are the major cause of concern. For example, [15] has reported 
an increase of 54% in pediatric HIV cases over the past 13 years and, 
according to UNAIDS report of (2018), there has been 369% increase in 
deaths due to AIDS related illnesses in Pakistan. It has also been reported 
by UNAIDS that 86% of HIV infected persons in Pakistan do not know 
about their status, and only 10% of those are aware with their HIV 
status. The factors conducive to the spread of HIV infection in Pakistan 
includes sharing of needles among injection drug users (IDUs), low 
condom use rate, unscreened blood transfusion, lack of facilities to 
screen the HIV reported persons. The multisectoral and coordinated 
actions are required by the government officials to eradicate the HIV 
infection from the country, which may include the free access to HIV 
testing facilities, availability of ART for the HIV diagnosed persons and 
strict compliance on screening before blood transfusion and use of 
sterilized instruments in hospitals and at barber shops. It is the need of 
the hour to raise the awareness level in general public. 

Many infectious diseases spread by free interaction of the individuals 
in the population. So, isolation or quarantine is advised by the medical 
staff, for the infected person. This important factor is not envisaged in 
many infectious disease models. Due to this point the simple mathe-
matical models were not fit for the prediction of the disease dynamics. 
Keeping in view this missing factor of the simple HIV/AIDS epidemic 
models, we have modified the model by including the diffusion process 
as well as the delay factor in the continuous system. Now, the modified 
model with be able to forecast the infection, more accurately. 

Mathematical model 

HIV/AIDS is a virus which is still incurable. Although, a number of 
researchers are working to find the cure of such a dreadful disease. But, 
still there is nothing perfect, which can play a role to cure this virus 
properly. In such conditions mathematical models are very helpful to 
describe the nature of the disease and the spread of virus. Here, we are 
using SIR three compartmental model to analyze the HIV/AIDS system. 
Li and Ma investigated the key features of HIV-1 disease model by 
considering the delay factor [16]. The considered model was developed 
by two mathematicians Abdullahi and Nweze [17]. According to this 
model the following state variables and parameters are used. S is used 
for the fraction of susceptible populace. I is the fraction of infected 
populace and the value R represents the fraction of recovered or 
removed populace. The parameter Λ represents the population recruit-
ing flow, δ denotes the casuality rate, γ is the rate of becoming infected 
from the susceptible compartment, κ is the rate of becoming recovered 
after getting infection, δ0 represents the casuality rate of the contami-
nated individuals and δ1 shows the causality rate of the cured in-
dividuals. The values N is the complete population and N(t) = S(t) +
I(t) + R(t). 

dS
dt

= ΛN − δS − γSI, (2.1)  

dI
dt

= γS(t − τ)I(t − τ)e− δτ − (κ + δ+ δ0)I, (2.2)  

dR
dt

= κI − (δ+ δ1)R. (2.3) 

In this model, τis positive and finite [22,23], which represents the 
incubation period in which an infected individual will become 

infectious. The incidence rate γS(t − τ)I(t − τ)e− δτ which is in the Eq. (2.2) 
of the model symbolizes the flow rate of susceptible people by which 
they are emitting the compartment at time t − τand entering into the 
contagious compartment at time t. So, the term e− δτsticks to the hy-
pothesis that the casuality of all the persons in the model follow a linear 
relation described by the factor e− δτ. This three compartment (SIR) 
model map out an HIV/AIDS, which consists of three non linear ordinary 
differential equations with delay factor. The assumptions are made by 
taking into account the interaction of the individuals in the population. 
As, the infectious disease can be spread with time as well as space, so we 
can take into account the diffusion factor. Thus, we can transform the 
above ODE model into: 

∂S
∂t

= d1
∂2S
∂x2 +ΛN − δS − γSI, (2.4)  

∂I
∂t

= d2
∂2I
∂x2 + γS(x, t − τ)I(x, t − τ)e− δτ − (κ + δ+ δ0)I, (2.5)  

∂R
∂t

= d3
∂2R
∂x2 + κI − (δ+ δ1)R. (2.6) 

In the above system of equations the 2nd order partial derivatives 
with respect to xdepict the spread in space. The very important factor 
γS(t − τ)I(t − τ)e− δτ defines the rate of disease occurrence at the moment 
(t − τ). It is calculated by applying the principle of mass action. As the 
first two equations of the proposed model are independent of R. So the 
rest two equations can be considered for the purpose. 

∂S
∂t

= d1
∂2S
∂x2 +ΛN − δS − γSI, (2.7)  

∂I
∂t

= d2
∂2I
∂x2 + γS(x, t − τ)I(x, t − τ)e− δτ − (κ + δ+ δ0)I. (2.8) 

By considering the initial data as, 
S(x,0) = f1(x) and I(x,0) = f2(x), along with homogenous 

Neumann boundary constraints. Here, the homogenous Neumann 
boundary conditions describe the no flux boundary conditions. 

The delay factor is one of the most significant feature of the infec-
tious disease models. Many epidemics compartmental models take into 
account the delay feature. To study the role of τ(delay factor) in disease 
dynamics, the following articles are recommended for studying [22–28]. 

Equilibria of the system 

This section is devoted to find the equilibrium points and repro-
ductive number R0. For equilibrium points put dS

dt =
dI
dt = 0 in the Eqs. 

(2.1) and (2.2). 

0 = ΛN − δS − γSI, (2.9)  

0 = γS(t − τ)I(t − τ)e− δτ − (κ + δ+ δ0)I. (2.10) 

Note that we are not considering the Eq. (2.3), as R is not the part of 
Eqs. (2.1) and (2.2) and N = S + I + R. In epidemic models there are 
two types of steady states namely disease free equilibrium (DFE) and 
endemic equilibrium (EE). The DFE point of this HIV/AIDS model is 
obtained by substituting I = 0 in equations (2.9) and (2.10), which is 

∊0(S0, I0) = ∊0
(

ΛN
δ
, 0
)

.

For the calculation of R0, we have dI
dt > 0, this implies that 

γSIe− δτ − (κ + δ + δ0)I > 0, since I > 0, therefore γSe− δτ > (κ + δ + δ0), 
⇒ γSe− δτ

(κ+δ+δ0)
> 1. 

So the value of reproductive number R0 =
γΛNe− δτ

δ(κ+δ+δ0)
when d1 = d2 =

d3 = 0. For the endemic equilibrium point, we have from Eqs. (2.1) and 
(2.2) 
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γSIe− δτ = (κ+ δ+ δ0)I.

This implies that 

S* =
(κ + δ + δ0)

γe− δτ =
ΛN
δR0

.

Now From (2.9), we have 

ΛN − δS = γSI, ⇒ I* =
ΛN − δS*

γS* .

By substituting the value of S* in above and after some simplification 
we have, 

I* =
δ
γ
(R0 − 1).

Note that the value R0is a reproductive number which decides 
whether the disease will go to an end or will persist in the society. If 
R0 < 1the disease will die out and if R0 > 1 then the disease persists in 
the population. 

Numerical analysis of the model 

In mathematical modeling, when we study a physical phenomenon 
then we obtain a system of differential equations. The dynamical system 
with diffusion and delay becomes complicated and its analytical solution 
is a demanding task. In some cases the exact solution can not be found. 
In that case, a numerical design is required to find the numerical solu-
tions. So, to study the behavior of the model we prefer to use the nu-
merical techniques. Although, these techniques do not give us the exact 
or analytical solution of the model, but such schemes help us to study the 
true behavior of the model. There are many well known numerical 
schemes used to find the numerical solution of the model. But, in 
epidemiological models, structure preserving numerical technique is 
required that must possess some meaningful properties like positivity, 
consistency and boundedness of the population. In this regard, we 
develop the non standard finite difference schemes which will surely 
help us to study the physical behavior of the epidemiological models. 

Proposed implicit scheme 

There are many numerical schemes used to find the numerical so-
lutions of the systems of differential equations, but here we are using a 
non standard finite difference scheme which is very helpful to study the 
true behavior of the model. The nonstandard finite difference scheme 
(NSFD) was initially established by R.E Micken in 1989. This scheme 
provides the positivity and boundedness of the model that are the 
essential properties of the state variables. The finite difference methods 
are easy for approximating the solutions of the systems of linear and 
nonlinear systems of partial differential equations [18–20]. In these 
techniques, we convert the continuous model into a discrete formulation 
by the number of function values at selected finite number of points in 
the domain which is easy to handle. The Taylor’s series is the best way to 
obtain these approximations. Now, let M and N be any two finite positive 
integers and τ be any other positive real number. The spatial interval [a,
b] over the time period [0, τ] are discretized according to the partitions 
a = x0 < x1 < x2 < ⋅⋅⋅ < xM = b and 0 = t0 < t1 < t2 < ⋅⋅⋅ < tN = T 
respectively, with the norm h = b− a

M and k = T
N. Divide [a, b] × [0,T] into 

M × N grid points with space and time step sizes h and k respectively. 
The points of the partitions now become as xj = jh and tm = mk, where 
i ∈ 0, 1,2, ⋅⋅⋅,M and m = 0,1,2, ⋅⋅⋅,N. Suppose that, Sm

j , I
m
j andRm

j denotes 
the approximations of S(x, t), I(x, t), andR(x, t) respectively at the grid 
point (jh, mk). In this article, we use a non-standard finite difference 
implicit scheme [31] carrying some important physical properties for 
the discrete model, developed in [21]. Discrete model equations form a 
matrix or iterative process that are used to find the best approximation 

of the solution to the system (2.7)-(2.8). This system can be converted in 
discrete form by using the following approximations. 

∂H
∂t

=
Hm+1

j − Hm
j

Δt
,

∂2H
∂x2 =

Hm+1
j− 1 − 2Hm+1

j + Hm+1
j+1

(Δx)2 .

Now, the discretization of the compartment S in the model is: 

Sm+1
j − Sm

j

Δt
= d1

Sm+1
j− 1 − 2Sm+1

j + Sm+1
j+1

(Δx)2 +ΛN − δSm+1
j Im

j − γSm+1
j .

Sm+1
j − Sm

j = Δtd1
Sm+1

j− 1 − 2Sm+1
j + Sm+1

j+1

(Δx)2 + ΔtΛN−

ΔtγSm+1
j Im

j − ΔtδSm+1
j .

− λ1

(
Sm+1

j− 1 + Sm+1
j+1

)
+ Sm+1

j (1+ 2λ1 +ΔtγIm
j +Δtδ) = Sm

j +ΔtΛN.
(3.1) 

The similar design is used for the compartment I, 

Im+1
j − Im

j

Δt
= d2

Im+1
j− 1 − 2Im+1

j + Im+1
j+1

(Δx)2 + γSm− k
j Im− k

j e− δτ−

(κ + δ + δ0)Im+1
j .

− λ2

(
Im+1

j− 1 + Im+1
j+1

)
+ Im+1

j (1 + 2λ2 + Δt(κ + δ + δ0)) = Im
j +

ΔtγSm− k
j Im− k

j e− δτ.
(3.2)  

and 
λ1 = d1

Δt
Δx2,λ1 = d2

Δt
Δx2. 

Properties of the proposed numerical scheme 

In this portion, some key properties of the system will be 
investigated. 

Stability 

The main concern in the study of approximating the solutions to the 
system of differential equations is the growth of round off errors in the 
numerical solutions. Another main thing to observe is that a small 
change in the initial conditions may cause a large deviation in the so-
lution to the underlying system. In this scenario, if the slight change in 
the initial data does not produce a huge variation in the approximate 
and exact solutions. We say the numerical scheme which gives such 
approximate solutions, is stable. To discuss the stability analysis of the 
proposed scheme, we use the method of Von-Nuemann [29–33]. The 
Von-Neumaan criteria ensures the condition to check the stability of the 
numerical scheme. Here, the NSFD scheme is developed for the HIV/ 
AIDS model. For this purpose, we decompose the numerical error 
occurred in the numerical solutions into the Fourier series. So, linear-
izing the Eqs. (3.1) and (3.2) and substitute. 

Sm
j = ξm

s eiωlh,

Sm+1
j = ξm+1

s eiωlh,

Sm+1
j− 1 = ξm+1

s eiω(j− 1)h,

Sm+1
j+1 = ξm+1

s eiω(l+1)h.

− λ1

(
Sm+1

j− 1 + Sm+1
j+1

)
+ Sm+1

j (1+ 2λ1 +ΔtγIm
j +Δtδ) = Sm

j +ΔΛN.
(4.1)  

− λ1ξm+1
s

(
eiω(l− 1)h + eiω(l+1)h)+ ξm+1

s eiωlh(1+ 2λ1 +Δtδ) = ξm
s eiωlh.

(4.2) 
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ξs
(
− λ1(e− iωh + eiωh) + 1 + 2λ1 + Δtδ

)
= 1.

ξs( − 2λ1cos(ωh) + 1 + 2λ1 + Δtδ) = 1.

ξs

(

− 2λ1 + 4λ1sin2(ωh)
2

+ 1 + 2λ1 + Δtδ
)

= 1.

ξs

(

1 + 4λ1sin2(ωh)
2

+ τδ
)

= 1.

|ξs| =

⃒
⃒
⃒
⃒
⃒
⃒
⃒

1
1 + 4sin2(ωh)

2 + Δtδ)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

〈

1. (4.3) 

By using similar process in Eq. (2.2), we have taken Eq. (2.2) and put 

Im
j = ξm

I eiωlh,

Im+1
j = ξm+1

I eiωlh,

Im+1
j− 1 = ξm+1

I eiω(l− 1)h,

Im+1
j+1 = ξm+1

I eiω(l+1)h.

− λ2

(
Im+1

j− 1 + Im+1
j+1

)
+ Im+1

j (1 + 2λ2 + Δt(κ + δ + δδ0)) = Im
j +

ΔtγSm− m
j Im− k

j ϱ− Ξδτ.

− λ2ξm+1
I

(
eiω(l− 1)h + eiω(l+1)h)+ ξm+1

I eiωlh

(1 + 2λ2 + Δt(κ + μ + δ0)) = ξm
I eiωlh + Δtγξm− k− n

I ejωlhe− δτ.

ξI
(
− λ2(e− iωh + eiωh) + 1 + 2λ2 + Δt(κ + δ + δ0)

)
= 1+Δtξ− k

I e− δτ.

ξI( − 2λ2cos(ωh) + 1 + 2λλ2 + Δt(κ + δ + δ0)) = 1+Δtγξ− k
I e− δτ.

ξI

(

− 2λ1 + 4λ2sin2(ωh)
2

+ 1 + 2λ2 + Δt(κ + δ + α0)

)

= 1+Δtγξ− k
I e− δτ.

ξI

(

1 + 4λ2sin2(ωh)
2

+ Δt(κ + δ + δ0)

)

= 1+Δtγξ− k
I e− δτ.

|ξI | =

⃒
⃒
⃒
⃒
⃒
⃒
⃒

1 + Δtγξ− k
I e− δτ

1 + 4λ2sin2(ωh)
2 + Δt(κ + δ + δ0)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

< 1. (4.4)  

As ξ− k
I < 1. 

Positivity 

In this section, we will investigate the positivity property [33] of the 
numerical scheme with the help of M-matrix theory [20]. Positivity is a 
very important factor in epidemiological models to represent their true 
behavior. Because, in these models we divide the total population into 
different sub-populations according to the nature of the infection. So, 
Each subclass must have non-negative at every time t. 

Theorem 4.1. For any h > 0 and Δt > 0, the system (2.1)-(2.2) is pos-
itive, i.e. Sk > 0, Ek > 0 and Ik > 0 for all k = 0,1,2… 

Proof. The system (2.1)-(2.3) can be written as 

ASk+1 = Sk. (4.5)  

BEk+1 = Ek. (4.6) 

Where A and B are square matrices as 

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a3 a1 0 ⋯ ⋯ ⋯ ⋯ 0
a2 a3 a4 ⋱ ⋮
0 a2 a3 a4 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ a2 a3 a4 0
⋮ ⋱ a2 a3 a4
0 ⋯ ⋯ ⋯ ⋯ 0 a1 a3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.7)  

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b3 b1 0 ⋯ ⋯ ⋯ ⋯ 0
b2 b3 b4 ⋱ ⋮
0 b2 b3 b4 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ b2 b3 b4 0
⋮ ⋱ b2 b3 b4
0 ⋯ ⋯ ⋯ ⋯ 0 b1 b3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.8) 

The principle diagonal elements are a1 = − (2λ1), a2 = − λ1, a4 = − λ1 

and the other elements of the matrices Aare a3 = (1 + 2λ1 + ΔtγIm
j +

Δtδ). The off-diagonal entries of B are b1 = − 2λ2, b2 = − λ2, b4 =

− λ2and diagonal entries are b3 = (1 + 2λ2 + Δt(κ + δ + δ0). The entry 
of column matrix of Skis Sm

j + ΔtbΛN, entry of column matrix Ek is 
Im
j +ΔtγSm− k

j Im− k
j e− δτ of the equations (4.1)-(4.2). Thus A, B are M- 

matrices. So the equations become, 

Sk+1 = A− 1Sk. (4.9)  

Ek+1 = B− 1Ek. (4.10) 

If we consider that Sk > 0,Ek > 0 and Ik > 0, then from the property 
of M-matrix we get Sk+1 > 0,Ek+1 > 0 and Ik+1 > 0. So, by the principle 
of mathematical induction, the theorem is proved. □ 

Consistency of the scheme 

Here, we investigate the consistency of the proposed scheme by using 
Taylor series [29–31,35], which is given as, 

£S =
Sm+1

j − Sm
j

Δt
− d1

Sm+1
j− 1 − 2Sm+1

j + Sm+1
j+1

(Δx)2 − ΛN + γIm
j Sm+1

j + δSm+1
j .

=

(
∂S
∂t

+
Δt
2!

∂2S
∂t2 +

(Δt)2

3!
∂3S
∂t3 + …

)

−
d1

(Δx)2

(

(Δx)2
(

∂2S
∂x2 + 2

(Δx)2

4!
∂4S
∂x4 + ….

)

− 2
(

Δt
∂S
∂t

+
Δt
2!

∂2S
∂t2 +

Δt2

3!
∂3S
∂t3 + …

))

+(γIm
j + δ)

(

Sm
j + Δt

∂S
∂t

+
(Δt)2

2!
∂2S
∂t2 +

(Δt)3

3!
∂3S
∂t3 + …

)

− ΛN.

= −
d1(Δx)2

12

(
∂4S
∂x4

)

+ Δt
(

∂S
∂t

+
Δt
2!

∂2S
∂t2 +

τ2

3!
∂3S
∂t3 + …

)

(

− 2
d1

h2 + kLn
i + μ + ….

)

.

(4.11)  

→0 as h, τ→0.

Now take 

£I =
In+1

i − In
i

τ − d2
In+1

i− 1 − 2In+1
i + In+1

i+1

h2 − βSn− m
i In− m

i e− δτ+

(k + δ + α0)In+1
i .

M. Jawaz et al.                                                                                                                                                                                                                                  



Results in Physics 22 (2021) 103851

5

=

(
∂I
∂t

+
τ
2!

∂2I
∂t2 +

τ2

3!
∂3I
∂t3 + …

)

−
d1

h2

(

h2
(

∂2I
∂x2 + 2

h2

4!
∂4I
∂x4 + ….

)

− 2τ
(

∂I
∂t

+
τ
2!

∂2I
∂t2 +

τ2

3!
∂3I
∂t3 + …

))

+(k + μ + α0)

(

In
i + τ ∂I

∂t
+

τ2

2!
∂2I
∂t2 +

τ3

3!
∂3I
∂t3 + …

)

−

βSn− m
i In− m

i e− δτ.

= −
d2h2

12

(
∂4I
∂x4

)

+ τ
(

∂I
∂t

+
τ
2!

∂2I
∂t2 +

τ2

3!
∂3I
∂t3 + …

) (4.12)  

→0 as h, τ→0.

System Stability at ∊* 

To investigate the stability of the model, we linearize it around the 
point ∊* [35,34] As a consequence, the variational matrix around the 
equilibrium point is given by 

V =

⎛

⎝
α11 − d1κ2 α12

α21 α22 − d2κ2

⎞

⎠. (4.13)  

where, 

α11 = − δ − γI,
α12 = − γS,
α21 = γIe− δτ,

α22 = γSeδτ − (κ + δ + δ0).

The characteristic polynomial associated with V is expressed as; 

ϒ2 +Ξ1ϒ+Ξ2 = 0.

With 

Ξ1 = − (α11 + α22 − d1κ2 − d2κ2).

and
Ξ2 = α11α22 − α12α21 − α11d1κ2 − αd2κ2 + d1d2κ4.

The stability condition furnished by Routh-Hurwitz guarantees that 
Ξ1 > 0 and Ξ2 > 0 are strictly positive. The stability of the submitted 
HIV infectious model for τ = 0 and τ = 4 is studied in the subsequent 
tables i.e. Table 2 and Table 3. 

Significance role of the infection parameter γ 

Case-I, When τ = 0. 
The determinative value of the disease parameter γ, for the first case 

of Table 1, are calculated by taking benefit of the famous criterion set by 
Routh-Hurvitz [35,34]. To investigate the decisive value of the disease 
parameter bifurcation value. The value of S* and I* are substituted in the 
expressions of α11,α12, α21 and α22 to get the following relations, 

α11 = − 71.42857142857142γ,
α12 = − 0.7,
α21 = 71.42857142857142γ − 0.2,
α22 = 0.

By applying the Routh-Hurwitz principle, for the stability of the 
system, we get, 

Ξ1 = 71.42857142857143γ + 0.0493480220054 = J1(γ),
Ξ2 = 51.7624293573374γ − 0.139391193181037 = J2(γ).

J2(γ) = 0 provides the bifurcation value for the parameter β, which 
stables the equilibrium state, i.e, the point of equilibrium. J2(γ) = 0 
provides the value of γ as γ = 0.002692902844, γ⩾0.002692902844 are 
the values that ensure the stability of the system at equilibrium state, 
otherwise unstable i.e. system is unstable, when γ < 0.002692902844. 

Case-II, When τ = 4. 
Now for the case-II, the bifurcation values of γ in the table (1) are also 

calculated by considering Routh-Hurwitz condition. To examine the 
decisive value of the infection parameter γ, the value of S* and I* are 
substituted in α11,α12,α21 and α22, as 

α11 = − 32.09492600837γ,
α12 = − 1.5578786499447,
α21 = 14.4211798567611γ − 0.089865792823444,
α22 = 0.

The well known stability condition described by Routh-Hurwitz en-
sures the following two expressions 

Ξ1 = 32.09492600837297γ + 0.04934802200545 = J1(γ),
Ξ2 = 23.25835876332327γ − 0.13939119318103 = J2(γ).

J2(γ) = 0 decides the bifurcation value for the parameter γ that ensures 
the stability of the system at endemic equilibrium. J2(γ) = 0 decides that 
γ = 0.0059931654938. The endemic equilibrium is stable when γ⩾ 
0.0059931654938 and unstable otherwise. 

Simulations with example 

This part is devoted to present the numerical example with graphical 
behavior by using our suggested numerical approach. For disease free 
state, we consider the values of parameters as, 

N = 1000,Λ = 0.01, γ = 0.01, δ = 0.2, κ = 0.1 and δ0. 
For disease free state, we consider the values of parameters as, 
N = 1000,Λ = 0.05, γ = 0.05, δ = 0.2, κ = 0.1 and δ0. The initial 

conditions are considered as, 

S(x, 0) =

⎧
⎨

⎩

0.7x 0⩽x⩽1/2,
0.7(1 − x) 1/2⩽x⩽1.

Table 2 
Numerical stability of HIV model at ∊* for τ = 0.  

Parameters Ξ1  Ξ2  

case-1 0.763633736291161  0.378233100392336  
case-2 1.477919450576875  0.895857393965710  
case-3 2.192205164862589  1.413481687539084  
case-4 2.906490879148303  1.931105981112458  
case-5 3.620776593434018  2.448730274685832   

Table 3 
Numerical stability of HIV model at ∊* for τ = 4.  

Parameters Ξ1  Ξ2  

case-1 0.370297282089176  0.093192394452195  
case-2 0.691246542172906  0.325775982085428  
case-3 1.012195802256636  0.558359569718660  
case-4 1.333145062340366  0.790943157351893  
case-5 1.654094322424095  1.023526744985126   

Table 1 
Different sets of parametric values.  

Parameters N Λ  γ  δ  κ  δ0  

case-1 1000 0.05  0.01  0.2  0.1  0.4  
case-2 1000 0.05  0.02  0.2  0.1  0.4  
case-3 1000 0.05  0.03  0.2  0.1  0.4  
case-4 1000 0.05  0.04  0.2  0.1  0.4  
case-5 1000 0.05  0.05  0.2  0.1  0.4   
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Fig. 1. Numerical simulations of S(x, t) (susceptible population) using structure preserving implicit method for DFE point at Δx = 0.05,Δt = 0.4, d1 = d2 = 0.01 and 
τ = 0. 

Fig. 2. Numerical simulations of S(x, t) (susceptible population) using structure preserving implicit method for DFE point at Δx = 0.05,Δt = 0.4, d1 = d2 = 0.01 and 
τ = 0 with different rotation. 

Fig. 3. Numerical simulations of S(x, t) (susceptible population) using structure preserving implicit method for EE point at Δx = 0.05,Δt = 0.4, d1 = d2 = 0.01 and 
τ = 0. 
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I(x, 0) =

⎧
⎨

⎩

0.3x 0⩽x⩽1/2,
0.3(1 − x) 1/2⩽x⩽1.

In Figs. 1 and 2, the numerical solution of HIV reaction-diffusion 
infection model is portrayed when τ = 0 at the infection-free point 
with the aid of designed structure-preserving implicit technique. It can 

easily be determined from the graphical behavior that our numerical 
technique maintains the positivity specified by the underlying HIV 
infection model. Also, graphs with different view in Figs. 1 and 3 depict 
that this method sustains the stability at infection-free point. The pro-
posed numerical scheme deals with the human population in a certain 
region. Also, the state variables are associated with the group of in-
dividuals having certain stage of infection. So, the values of the stat 

Fig. 4. Numerical simulations of S(x, t) (susceptible population) using structure preserving implicit method for EE point at Δx = 0.05,Δt = 0.4, d1 = d2 = 0.01 and 
τ = 0 with different rotation. 

Fig. 5. Numerical simulations of I(x, t) (infected population) using structure preserving implicit method for EE point at Δx = 0.05,Δt = 0.4, d1 = d2 = 0.01.  
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variables can never be negative. The simulated graphs are in line with 
the fact mentioned above. The graphs in Figs. 1 and 2 provide a strong 
evidence that our scheme provides a non-negative solution at every 
moment of the time. Further, the numerical values of S(x, t) and I(x, t)
converges to the exact values of S(x, t) and I(x, t) as investigated in 
Section “Mathematical model”, i.e. the proposed scheme preserves the 
steady state (disease free) solution of continuous system. 

Figs. 3 and 4 unveil the solution of HIV reaction-diffusion epidemic 
model graphically by using the suggested structure-preserving implicit 
technique at infection existence point. It is noted that these graphs are 
presented for τ = 0. Again the under discussion scheme sustains the 
positivity of the state variable associated with the underlying HIV 
epidemic model. Also, this technique holds the stability of infection 
existence point as it is illustrated with different view in Figs. 3 and 4. 
Since, the projected system is a compartmental model, in which each 
compartment describes a definite populace of the community, according 
to the status of the infection. Additionally, the populace of any 
compartment is always positive at endemic state. The graphs (a) and b in 
both the Figs. 3 and 4 disclose that numerical solutions are always 
positive at every instance of time and ultimately the graphs converges 
towards the value S* and I* respectively. It shows that our proposed 
scheme retains the steady (endemic equilibrium) state solution of the 
continuous system. 

In Fig. 5, the decisive role of the delay factor τ is illustrated. All the 
graphs in Fig. 5 show the infected individuals for the same values of 
parameters involved in the model for the existence of infection in the 
population, but the value of τ in each graph is changed. It is evident that 
the size of infected population decreases against the greater value of τ. 
Equivalently, there is an inverse relation between the value of τ and the 
infected individuals. Furthermore, the infected population can be 
controlled up to a desired level against a certain value of τ. The value of τ 
is considered as 4 in graph (a), while τ = 8 in sketch (b), τ = 10 in plot (c)
and the value of τ = 12 in pattern (d) of Fig. 5. I is apparent that the size 
of the infected group shrinks as the value of τ increased. So, it is obvious 
that infection can be controlled, significantly, by enhancing the delay 
factor level in the model. 

Conclusion 

In this research work, we have successfully constructed the proposed 
implicit numerical scheme for the non linear HIV/AIDS model with 
diffusion and delay phenomenon. The projected scheme adequately 
preserves the core attributes of the continuous system, for instance 
positivity of the solutions, stability of the system at the points of equi-
libria and consistency. The system stability is also examined by using the 
Routh-Hurwitz criterion for different situations. The numerical and 
bifurcation analysis against different situations is also the part of this 
study. Numerical graphs are also presented with the help of computer 
simulations by selecting the suitable set of parametric values. These 
graphs provide the strong evidence about the reliability and efficiency of 
the scheme i.e. the proposed scheme is reliable and efficient numerical 
design for the non linear dynamical delay diffusion system. In future, the 
current work may be applied to various types of delay diffusive systems 
with multi space dimensions. 
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