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In this article we develop a numerical algorithm based on redefined extended cubic

B-spline functions to explore the approximate solution of the time-fractional Klein–Gordon

equation. The proposed technique employs the finite difference formulation to discretize

the Caputo fractional time derivative of order α ∈ (1, 2] and uses redefined extended

cubic B-spline functions to interpolate the solution curve over a spatial grid. A stability

analysis of the scheme is conducted, which confirms that the errors do not amplify during

execution of the numerical procedure. The derivation of a uniform convergence result

reveals that the scheme is O(h2 + 1t2−α ) accurate. Some computational experiments

are carried out to verify the theoretical results. Numerical simulations comparing the

proposed method with existing techniques demonstrate that our scheme yields superior

outcomes.

Keywords: redefined extended cubic B-spline, time fractional Klein-Gorden equation, Caputo fractional derivative,

finite difference method, convergence analysis

1. INTRODUCTION

The subject of fractional-order differential equations has attracted considerable interest due to
its applications in a wide range of fields, such as traffic flow, earthquakes and other physical
phenomena, signal processing, finance, control theory, fractional dynamics, and mathematical
modeling [1–10]. In recent years, the analytical and numerical study of fractional-order differential
equations has become a dynamic area of research. Several numerical and analytical techniques
have been developed to handle these types of equations [11–22]. There are a number of different
definitions of fractional-order derivatives, with different applications. An excellent overview can be
found in the works [23–31]. This article is concerned with the following time-fractional non-linear
Klein–Gordon equation (KGE):

∂α

∂tα
v(x, t)+ ρ

∂2

∂x2
v(x, t)+ ρ1v(x, t)+ ρ2vσ (x, t) = f (x, t), 0 < x ≤ L, t0 < t ≤ T, (1)
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v(x, t0) = ϕ1(x), vt(x, t0) = ϕ2(x), (2)

v(0, t) = ϕ3(t), v(L, t) = ϕ4(t), (3)

where ∂α

∂tα represents the Caputo fractional time derivative, v =
v(x, t) denotes the displacement of the wave at (x, t), α ∈ (1, 2]
is the fractional order of the time derivative, f (x, t) is the source
term, ρ, ρ1 and ρ2 are real numbers, and σ = 2 or 3.

The fractional KGE plays a significant role in quantum
mechanics, the study of solitons, and condensed matter physics.
Many approaches have been adopted to solve equations of
Klein/sine–Gordon type efficiently, including the Adomian
decomposition method, the variational iteration method [32–
34], and the homotopy analysis method [35]; see also the
references cited in these works. Jafari et al. proposed using
fractional B-splines for approximate solution of fractional
differential equations [36]. In Vong and Wang [37, 38] space
compact difference schemes were applied to one- and two-
dimensional time-fractional Klein–Gordon-type equations, and
stability and convergence of the proposed numerical approaches
were established with the aid of an energy method. In Dehghan
et al. [39] the authors used a meshless method based on
radial basis functions to develop an unconditionally stable
numerical scheme for fractional Klein/sine–Gordon equations.
The Adomian decomposition method and an iterative method
were applied in Jafari [40] to solve Klein–Gordon-type equations
involving fractional time derivatives. A fully spectral approach
was employed in Chen et al. [41] that uses finite differences for
time discretization and Legendre spectral approximation in the
spatial direction to construct numerical solutions of non-linear
partial differential equations involving fractional derivatives. A
sinc–Chebyshev collocation method (SCCM) was developed in
Nagy [42] for numerical treatment of the time-fractional non-
linear KGE. Recently, in Kanwal et al. [43], Genocchi polynomials
were employed together with the Ritz–Galerkin scheme to solve
fractional KGEs and diffusion wave equations. A linearized
second-order scheme was introduced in Lyu and Vong [44] to
solve non-linear time-fractional Klein–Gordon-type equations.
Later on, in Doha et al. [45], a space–time spectral approximation
was proposed for solving non-linear variable-order fractional
Klein/sine–Gordon differential equations.

In this article we propose using redefined extended cubic B-
spline (RECBS) functions for numerical solution of the time-
fractional KGE. RECBS functions are basically a generalization
of typical cubic B-spline functions that involve a free parameter
which provides the flexibility to fine-tune the solution curve. We
employ the usual finite central difference approach to discretize
the Caputo fractional time derivative and use RECBS functions
for spatial integration.

This article is organized as follows. The Caputo definition of
fractional time derivative and the finite difference formulation
for temporal discretization are reviewed in section 2; this section
also includes a brief introduction to extended cubic B-spline and
RECBS functions and their applications to space discretization.
The stability analysis of the proposed algorithm is presented
in section 3, and the description of theoretical convergence is

given in section 4. The approximate results are reported and
discussed in section 5. Finally, concluding remarks are given
in section 6.

2. DESCRIPTION OF NUMERICAL
TECHNIQUE

2.1. Time Discretization
Let the time domain [0,T] be divided into R subintervals of equal
length 1t = T

R with endpoints 0 = t0 < t1 < · · · < tR = T,
where tr = r1t and r = 0 : 1 :R. We first discretize the Caputo
fractional derivative at t = tr+1 as [46]

∂αv(x, tr+1)

∂tα
=

1

Ŵ(2− α)

tk∫

0

∂2v(x,w)

∂w2
(tr+1 − w)−α+1 dw

(1 < α ≤ 2)

=
1

Ŵ(2− α)

r∑

k=0

tk+1∫

tk

∂2v(x,w)

∂w2
(tr+1 − w)−α+1 dw.

=
1

Ŵ(2− α)

r∑

k=0

v(x, tk+1)− 2v(x, tk)+ v(x, tk−1)

1t2

tk+1∫

tk

(tr+1 − w)−α+1 dw+ lr+1
1t (4)

=
1

Ŵ(2− α)

r∑

k=0

v(x, tk+1)− 2v(x, tk)+ v(x, tk−1)

1t2

tr−k+1∫

tr−k

(ǫ)−α+1 dǫ + lr+1
1t

=
1

Ŵ(2− α)

r∑

k=0

v(x, tr−k+1)− 2v(x, tr−k)+ v(x, tr−k−1)

1t2

tk+1∫

tk

(ǫ)−α+1 dǫ + lr+1
1t

=
1

Ŵ(3− α)

r∑

k=0

v(x, tr−k+1)− 2v(x, tr−k)+ v(x, tr−k−1)

1tα

((k+ 1)2−α − k2−α)+ lr+1
1t

=
1

Ŵ(3− α)

r∑

k=0

pk

v(x, tr−k+1)− 2v(x, tr−k)+
v(x, tr−k−1)

1tα
+ lr+1

1t ,

where pk = (k + 1)2−α − k2−α , ǫ = (tr+1 − w), and lr+1
1t is the

truncation error. The truncation error is bounded, i.e.,

|lr+1
1t | ≤ ψ(1t)2−α , (5)

where ψ is a constant. The coefficients pk in (4) possess the
following attributes:
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• the pk’s are non-negative for k = 0, 1, 2, . . . , r;
• 1 = p0 > p1 > p2 > p3 > · · · > pn, and pn → 0 as n → ∞;
• (2p0−p1)+

∑r−1
k=1(−pk+1+2pk−pk−1)+(2pr−pr−1)−pr = 1.

Substituting Equation (4) into Equation (1), we get

1

Ŵ(3− α)(1t)α

r∑

k=0

pk
[
v(x, tr−k+1)− 2v(x, tr−k)+ v(x, tr−k−1)

]

+ρvxx(x, t)+ ρ1v(x, t)+ ρ2vσ (x, t) = f (x, t)

(r = 0, 1, 2, . . . ,R− 1). (6)

Suppose β = 1
Ŵ(3−α)(1t)α and v(x, tr+1) = vr+1. Applying a

θ-weighted scheme, Equation (6) takes the form

βp0(v
r+1 − 2vr + vr−1)+ β

r∑

k=1

pk(v
r−k+1 − 2vr−k + vr−k−1)

+ θ(ρvr+1
xx

+ ρ1vr+1) = f r+1 − (1− θ)(ρvrxx + ρ1vr)− ρ2(vσ )r

(r = 0, 1, 2, . . . ,R− 1). (7)

For θ = 1, we obtain the following semi-discretized
numerical scheme:

(βp0 + ρ1)vr+1 + ρvr+1
xx = 2βp0v

r + β
r∑

k=1

pk(v
r−k+1 − 2vr−k

+ vr−k−1)− ρ2(vσ )r − βp0vr−1 + f r+1(r = 0, 1, 2, . . . ,R− 1).
(8)

2.2. Extended Cubic B-Spline Functions
Let the spatial domain [a, b] be partitioned intoM parts of equal
length h = b−a

M with boundary points a = x0 < x1 < · · · <
xM = b, where xm = x0 +mh form = 0 : 1 :M. For a sufficiently
continuous function v(x, t), there always exists a unique extended
cubic B-spline (ECBS) approximation V∗(x, t):

V∗(x, t) =
M+1∑

m=−1

ξm(t)Sm(x, λ), (9)

where the ξm(t) are to be calculated and the fourth-degree
ECBS blending functions Sm(x, λ) are defined as [47]

Sm(x, λ) =
1

24h4





4h(x− xm−2)3(1− λ)+ 3(x− xm−2)4λ if x ∈ [xm−2, xm−1),

h4(4− λ)+ 12h3(x− xm−1)+ 6h2(x− xm−1)2(2+ λ)
− 12h(x− xm−1)3 − 3(x− xm−1)4λ if x ∈ [xm−1, xm),

h4(4− λ)− 12h3(x− xm+1)− 6h2(x− xm+1)2(2+ λ)
+ 12h(x− xm+1)3 + 3(x− xm−1)4λ if x ∈ [xm, xm+1),

−4h(x− xm+2)3(1− λ)− 3(x− xm+2)4λ if x ∈ [xm+1, xm+2),

0 otherwise.

(10)

Here λ, with−n(n− 2) ≤ λ ≤ 1, is a real number responsible
for fine-tuning the curve, and n gives the degree of the ECBS used
to generate different forms of ECBS functions. The approximate
solution (V∗)rm = V∗(xm, tr) and its first two derivatives with

respect to the spatial variable x at the rth time step can be
expressed in terms of ξm as [48]





(V∗)rm = b1ξ
r
m−1 + b2ξ

r
m + b1ξ

r
m+1,

(V∗
x )

r
m = b3ξ

r
m−1 − b3ξ

r
m+1,

(V∗
xx)

r
m = b4ξ

r
m−1 + b5ξ

r
m + b4ξ

r
m+1,

(11)

where b1 = 4−λ
24 , b2 = 16+2λ

24 , b3 = −1
2h , b4 = 2+λ

2h2
, and

b5 = −4−2λ
2h2

.

2.3. Redefined Extended Cubic B-Spline
Functions
In the typical ECBS collocation method, the basis functions
S−1, S0, . . . , SM+1 do not vanish at the boundaries of the
spatial domain when Dirichlet-type end conditions are imposed.
Therefore, we need to redefine them so that the resulting set of
basis functions will vanish at the boundaries. For this, a weight
function 8(x, t) is introduced to eliminate ξ−1 and ξM+1 from
Equation (9) in the following manner [49]:

V(x, t) = 8(x, t)+
M∑

m=0

ξm(t)S̃m(x, λ), (12)

where the weight function 8(x, t) and the redefined ECBS
(RECBS) functions are given by

8(x, t) =
S−1(x, λ)

S−1(x0, λ)
ϕ3(t)+

SM+1(x, λ)

SM+1(xM , λ)
ϕ4(t) (13)

and.




S̃m(x, λ) = Sm(x, λ)−
Sm(x0 ,λ)
S−1(x0 ,λ)

S−1(x, λ) form = 0, 1,

S̃m(x, λ) = Sm(x, λ) form = 2 : 1 :M − 2,

S̃m(x, λ) = Sm(x, λ)−
Sm(xM ,λ)

SM+1 (xM ,λ)SM+1 (x, λ) form = M − 1,M.

(14)

2.4. Space Discretization
Using Equation (12) in Equation (8) at t = tr+1, we obtain

(βp0 + ρ1)Vr+1 + ρVr+1
xx = 2βp0V

r + β
r∑

k=1

pk(V
r−k+1

− 2Vr−k + Vr−k−1)− ρ2(Vσ )r − βp0Vr−1 + f r+1.

(15)

Discretizing at x = xj, we get

(β + ρ1)Vr+1
j + ρ(Vxx)

r+1
j = 2βVr

j + β
r∑

k=1

pk(V
r−k+1
j − 2Vr−k

j
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+ Vr−k−1
j )− ρ2(V

σ )rj − βVr−1
j + f r+1

j (j = 0, 1, 2, . . . ,M).

(16)

Using (12), the last expression takes the form

(β + ρ1)
[
8r+1

j +
M∑

m=0

ξ r+1
m S̃m(xj, λ)

]
+ ρ

[
(8xx)

r+1
j

+
M∑

m=0

ξ r+1
m S̃m(xj, λ)

]

= 2βVr
j + β

r∑

k=1

pk(V
r−k+1
j − 2Vr−k

j + Vr−k−1
j )

− ρ2(Vσ )rj − βV
r−1
j + f r+1

j

(j = 0, 1, 2, . . . ,M). (17)

Consequently, we get the following system ofM+ 1 equations in
M + 1 unknowns:




a∗1
a1 a2 a1

a1 a2 a1
. . .

. . .
. . .

a1 a2 a1
a1 a2 a1

a∗1







ξ r+1
0
ξ r+1
1
...
...

ξ r+1
M−1
ξ r+1
M




=




y0
y1
...
...

yM−1

yM




, (18)

where

a∗1 =
12ρ(λ+ 2)

h2(λ− 4)
, a1 =

h2(β + ρ1)(λ− 4)+ 12ρ(λ+ 2)

24h2
,

a2 =
h2(β + ρ1)(λ+ 8)− 12ρ(λ+ 2)

12h2
,

yj = 2βVr
j + β

r∑

k=1

pk(V
r−k+1
j − 2Vr−k

j + Vr−k−1
j )

− ρ2(Vσ )rj − βV
r−1
j +9r+1

j ,

9r
j = f rj − (β + ρ1)8r

j − ρ(8xx)
r
j .

To start the numerical procedure, we use the given initial
conditions to obtain the set of equations





(V ′)0m = ϕ
′
1(xm) form = 0,

(V)0m = ϕ1(xm) form = 1 : 1 :M − 1,

(V ′)0m = ϕ
′
1(xm) form = M.

(19)

The matrix representation of (19) is




b1
∗ b2

∗

b1 b2 b1
b1 b2 b1

. . .
. . .

. . .
b1 b2 b1

b1 b2 b1
−b2

∗ −b1
∗







ξ 00
ξ 01
...
...

ξ 0M−1
ξ 0M




(20)

=




(ϕ′1)0 − (8′)00
(ϕ1)1 −80

1
...
...

(ϕ1)M−1 −80
M−1

(ϕ′1)M − (8′)0M




,

where b1
∗ = 8+λ

h(4−λ) and b2
∗ = 1

h
. We solve (20) to obtain

[ξ 00 , ξ
0
1 , . . . , ξ

0
M]T . The ξj values are then substituted into (12) to

get V0. Now we can use (18) for r = 0, 1, 2, . . . ,R − 1. However,
for r = 0 the term involving V−1 appears in Equation (18). This
issue is resolved by using the following substitution derived from
the velocity condition given in (2):

V−1 = V0 −1tφ2(x).

3. STABILITY ANALYSIS

We use the Fourier method to study the stability of the proposed
numerical method. Let εrm and ε̃rm denote, respectively, the exact
and approximate growth factors of the Fourier modes. The error,
̺rm, is given by

̺rm = εrm − ε̃rm, m = 1 : 1 :M − 1, r = 0 : 1 :R, (21)

where ̺r = [εr1, ε
r
2, . . . , ε

r
M−1]

T .
For the sake of simplicity, we shall investigate the stability of

the proposed scheme with f = 0. The equation for the round-off
error is derived from Equations (8) and (21) as

(βb1 + ρ1b1 + ρb4)̺r+1
m−1 + (βb2 + ρ1b2 + ρb5)̺r+1

m

+ (βb1 + ρ1b1 + ρb4)̺r+1
m+1

= 2β
(
b1̺

r
m−1 + b2̺

r
m + b1̺

r
m+1

)
− β

(
b1̺

r−1
m−1 + b2̺

r−1
m

+ b1̺
r−1
m+1

)

− β
r∑

k=1

pk

[
b1
(
̺r−k+1
m−1 − 2̺r−k

m−1 + ̺
r−k−1
m−1

)

+ b2
(
̺r−k+1
m − 2̺r−k

m + ̺r−k−1
m

)

+ b1
(
̺r−k+1
m+1 − 2̺r−k

m+1 + ̺
r−k−1
m+1

)]
. (22)

The error equation satisfies the end conditions

̺0m = ϕ1(xm), m = 1 : 1 :M, (23)

and

̺r0 = ϕ3(tr), ̺rM = ϕ4(tr), r = 0 : 1 :R. (24)

We define the grid function as

̺r =
{
̺rm if xm − h

2 < x ≤ xm + h
2 , for m = 1 : 1 :M − 1,

0 if a ≤ x ≤ 2a+h
2 or 2b−h

2 ≤ x ≤ b.
(25)
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Now, ̺r(x) can be written in the form of a Fourier
series as follows:

̺r(x) =
∞∑

r=−∞
εr(n)e

2πιnx
b−a , r = 1 : 1 :R, (26)

where

εr(n) =
1

b− a

∫ b

a
̺r(x)e

−2πιnx
b−a dx. (27)

Taking the ‖ · ‖2 norm, we get

‖̺r‖2 =
(
R−1∑

n=1

h|̺rn|2
) 1

2

=
(∫ a+ h

2

a
|̺r|2 dx+

R−1∑

n=1

∫ xn+ h
2

xn− h
2

|̺r|2 dx+
∫ b

b− h
2

|̺r|2 dx
) 1

2

=
(∫ b

a
|̺r|2 dx

) 1
2

.

From Parseval’s equality we have
∫ b
a |̺r(n)|2 dx=

∑∞
−∞ |εn(m)|2,

so the above expression can be written as

‖̺r‖22 =
∞∑

r=−∞
|εr(n)|2. (28)

Next, we consider the solution in terms of Fourier series,

̺rk = εre
ινkh, (29)

where ι =
√
−1 and ν = 2πn

b−a
. Using Equation (29) in Equation

(22) and then dividing by eiνkh gives

(βb1 + ρ1b1 + ρb4)εr+1e
−ινh + (βb2 + ρ1b2 + ρb5)εr+1

+ (βb1 + ρ1b1 + ρb4)εr+1e
ινh

= 2β
(
b1εre

−ινh + b2εr + b1εre
iνh
)
− β

(
b1εr−1e

−ινh

+ b2εr−1 + b1εr−1e
iνh
)

− β
r∑

k=1

pk

[
b1
(
εr−k+1e

−ινh − 2εr−k + εr−k−1e
ινh
)

+ b2
(
εr−k+1 − 2εr−k + εr−k−1

)

+ b1
(
εr−k+1e

−ινh − 2εr−ke
ινh + εr−k−1e

ινh
)]
. (30)

We know that eiνh + e−iνh = 2 cos(νh), so after collecting like
terms, the following useful relation is obtained:

εr+1 =
1

η

[
2εr−εr−1−

r∑

k=1

pk
(
εr−k+1−2(b1+b2)εr−k+εr−k−1

)]
,

(31)

where η = 1+ ρ1
β
+ 12ρ(2+ν) sin2(νh/2)
βh2{−6+(4−ν) sin2(νh/2)} . Now it is obvious that

η ≥ 1 for ν > −2.

TABLE 2 | Absolute and relative errors for Example 5.1 with M = 100,

1t = 0.001, and α = 1.6.

SCCM [42] Proposed method

t x L∞ L2 L∞ L2

0.4

0.4 9.3726× 10−4 1.3282× 10−2 1.6174× 10−5 1.2207× 10−5

0.6 9.4592× 10−4 1.6950× 10−2 6.3939× 10−6 1.1035× 10−6

0.8 6.5448× 10−4 1.4462× 10−1 5.1612× 10−6 3.2573× 10−6

0.8

0.4 1.7359× 10−4 8.6999× 10−4 2.4030× 10−5 9.1532× 10−6

0.6 1.2080× 10−4 1.6683× 10−3 6.7766× 10−6 2.8126× 10−6

0.8 2.4657× 10−4 1.9263× 10−2 3.5003× 10−6 9.0128× 10−7

TABLE 1 | Absolute errors for Example 5.1 with M = 100, 1t = 0.001, and different values of α.

SCCM [42] Proposed method

x α = 1.5 α = 1.7 α = 1.9 α = 1.5 α = 1.7 α = 1.9

0.1 8.7105× 10−4 4.3675× 10−4 5.0452× 10−4 1.0827× 10−6 4.6777× 10−6 9.5482× 10−6

0.2 8.7781× 10−4 9.8359× 10−4 7.5328× 10−5 9.2126× 10−6 1.1035× 10−6 3.6308× 10−5

0.3 6.2089× 10−4 4.8897× 10−5 1.1241× 10−4 2.9024× 10−6 1.2573× 10−5 9.1646× 10−6

0.4 5.7015× 10−4 7.6534× 10−4 1.6772× 10−4 3.6966× 10−6 8.1441× 10−6 7.0990× 10−6

0.5 5.1476× 10−4 9.3043× 10−4 2.5022× 10−4 8.3386× 10−6 2.5203× 10−7 2.3918× 10−5

0.6 4.8948× 10−4 9.4248× 10−4 2.5022× 10−4 1.0128× 10−5 7.3829× 10−6 9.8467× 10−5

0.7 5.1671× 10−4 7.5585× 10−5 2.5022× 10−4 8.9851× 10−6 7.1672× 10−6 7.1855× 10−6

0.8 5.3919× 10−4 5.2006× 10−4 2.5022× 10−4 5.3467× 10−6 7.2518× 10−6 3.2774× 10−5

0.9 6.0660× 10−4 5.4848× 10−4 2.5022× 10−5 1.7505× 10−7 9.7572× 10−6 2.8528× 10−6
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Lemma 3.1. Let εr be the solution of Equation (31). Then |εr| ≤
|ε0| for r = 0 : 1 :R.

Proof: For r = 0 in (31), we have

|ε1| =
1

η
|ε0| ≤ |ε0| for η ≥ 1.

Suppose that the result is true for r = 1 : 1 :R. Then, from
Equation (31) we get

|εr+1| ≤
1

η
|εr| −

1

η

r∑

k=1

pk
(
|εr−k+1| − 2|εr−k| + |εr−k−1|

)

≤
1

η
|ε0| −

1

η
|ε0| −

r∑

k=1

pk
(
|ε0| − |ε0|

)

≤ |ε0|.

Theorem 1. The implic it collocation technique presented in
Equation (13) is unconditionally stable.

Proof: Using Lemma (3.1) and Equation (28), we obtain

‖̺r‖2 ≤ |̺0|2, r = 0 : 1 :R.

4. CONVERGENCE OF THE SCHEME

To investigate the convergence of the proposed scheme, we follow
the approach in Khalid et al. [50]. Before proceeding, we state the
following useful theorems [51, 52].

Theorem 2. Let 5 = {a = x0, x1, . . . , xM = b} be a partition
of [a, b] with xm = mh for m = 0, . . . ,M, and let v ∈ C4[a, b]

TABLE 3 | Comparison of absolute errors for Example 5.1 using three different

methods with M = 100, 1t = 0.001, and α = 1.4 or 1.6.

α (x, t) VIM [34] SCCM [42] Proposed method

1.4

(0.1, 0.1) 9.2852× 10−3 8.4385× 10−4 3.6460× 10−7

(0.2, 0.2) 2.2201× 10−3 1.1433× 10−4 3.0191× 10−7

(0.3, 0.3) 3.5651× 10−2 5.3780× 10−3 1.1558× 10−6

(0.4, 0.4) 4.9628× 10−2 1.5545× 10−4 1.6174× 10−5

(0.5, 0.5) 6.4449× 10−2 5.3227× 10−4 8.4214× 10−6

(0.6, 0.6) 7.9514× 10−2 1.3268× 10−3 6.5725× 10−6

(0.7, 0.7) 9.1443× 10−2 1.9159× 10−3 3.6215× 10−6

(0.8, 0.8) 8.7942× 10−2 2.0414× 10−3 3.5112× 10−6

(0.9, 0.9) 9.2321× 10−4 1.8996× 10−3 5.7354× 10−8

1.6

(0.1, 0.1) 4.1518× 10−4 1.1685× 10−4 7.3256× 10−6

(0.2, 0.2) 1.0319× 10−3 2.5887× 10−4 2.3576× 10−5

(0.3, 0.3) 1.7757× 10−2 2.8863× 10−5 2.1107× 10−5

(0.4, 0.4) 2.6987× 10−2 2.3912× 10−4 1.6174× 10−5

(0.5, 0.5) 3.8327× 10−2 1.7692× 10−5 8.3440× 10−6

(0.6, 0.6) 5.0993× 10−2 1.4174× 10−4 6.9744× 10−7

(0.7, 0.7) 6.1379× 10−2 1.4334× 10−5 3.5898× 10−6

(0.8, 0.8) 5.6577× 10−2 1.6653× 10−4 3.5003× 10−6

(0.9, 0.9) 3.8618× 10−2 1.7449× 10−5 5.5205× 10−8

and f ∈ C2[a, b]. Suppose Ṽ(x, t) is the spline that interpolates the
solution curve of this problem at the knots xm ∈ 5. Then there
exist constants̥m, not depending on h, such that

‖ξ j
(
v(x, t)− Ṽ(x, t)

)
‖∞ ≤ ̥jh

4−j ∀ t ≥ 0, j = 0, 1, 2. (32)

Lemma 4.1. The extended B-splines in (10) satisfy the inequality

M∑

m=0

|Sm(x, λ)| ≤ 1.75 for 0 ≤ x ≤ 1. (33)

Proof: By the triangle inequality we have

∣∣∣∣∣

M∑

m=0

Sm(x, λ)

∣∣∣∣∣ ≤
M∑

m=0

|Sm(x, λ)|.

For any knot xm, we have

M∑

m=0

|Sm(x, λ)| = |Sm−1(xm, λ)| + |Sm(xm, λ)|

+ |Sm+1(xm, λ)| = 1 <
7

4
.

From (11) we obtain

Sm(xm, λ) =
1

12
(8+ λ), Sm−1(xm−1, λ) =

1

12
(8+ λ),

Sm+1(xm, λ) =
1

24
(4− λ), Sm−2(xm−1, λ) =

1

24
(4− λ).

Then, for x ∈ [xm−1, xm], Sm(x, λ) and Sm−1(x, λ) are bounded
above by 1

12 (8+ λ).
Similarly, Sm+1(x, λ) and Sm−2(x, λ) are bounded above

by 1
24 (4− λ)

FIGURE 1 | Numerical solution of Example 5.1 with 1t = 0.001, M = 100,

and α = 1.5 at different time stages.
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For any point xm−1 ≤ x ≤ xm, we obtain

M∑

m=0

|Sm(x, λ)| = |Sm−1(x, λ)| + |Sm(x, λ)| + |Sm+1(x, λ)|

+|Sm−2(x, λ)| =
1

12
(λ+ 20).

Since λ ∈ [−8, 1], we have 1 ≤ 5
3 + λ ≤ 1.75. Hence,

M∑

m=0

|Sm(x, λ)| ≤ 1.75.

Theorem 3. The extended cubic B-spline approximation V(x, t)
for the analytical exact solution v(x, t) of problem (1)–(3) exists,
and if f ∈ C2[0, 1] then

‖v(x, t)− V(x, t)‖∞ ≤ ˜̥h2 ∀ t ≥ 0, (34)

where h is reasonably small and ˜̥ > 0 is a constant not depending
on h.

Proof: Let Ṽ(x, t) =
∑M

m=0 dm(t)ηm(x) be the calculated spline
for the approximate solutionV(x, t) and the exact solution v(x, t).

Let Lv(xm, t) = LV(xm, t) = ỹ(xm, t), with m = 0 : 1 :M, be
the collocation conditions. Then

LṼ(x, t) = ỹ(xm, t), m = 0 : 1 :M.

Now, at any time step, the problem can be expressed in the form
of a difference equation L(Ṽ(xm, t)− V(xm, t)) as

(βb1 + ρ1b1 + ρb4)ζ r+1
m−1 + (βb2 + ρ1b2 + ρb5)ζ r+1

m (35)

+ (βb1 + ρ1b1 + ρb4)ζ r+1
m+1

= 2β
(
b1ζ

r
m−1 + b2ζ

r
m + b1ζ

r
m+1

)
− β

(
b1ζ

r−1
m−1 + b2ζ

r−1
m

+ b1ζ
r−1
m+1

)
− β

r∑

k=1

pk

[
b1
(
ζ r−k+1
m−1 − 2ζ r−k

m−1 + ζ
r−k−1
m−1

)

+ b2
(
ζ r−k+1
m − 2ζ r−k

m + ζ r−k−1
m

)

+ b1
(
ζ r−k+1
m+1 − 2ζ r−k

m+1 + ζ
r−k−1
m+1

)]
+

1

h2
ηr+1
m .

The boundary conditions can be rewritten as

b1ζ
r+1
m−1 + b2ζ

r+1
m + b1ζ

r+1
m+1 = 0, m = 0,M,

FIGURE 3 | Absolute error for Example 5.1 when M = 100, α = 1.50, and

1t = 0.001.

FIGURE 4 | Approximate solution of Example 5.1 with M = 100, t = 0.5, and

different values of α.

FIGURE 2 | Exact and approximate solutions of Example 5.1 with M = 100, 1t = 0.001, and α = 1.50. (A) Exact. (B) Numerical.
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where

ζ rm = ξ rm − drm, m = 0 : 1 :M,

and

ηrm = h2[yrm − ỹrm], m = 0 : 1 :M.

From (32) we have

|ηrm| = h2|yrm − ỹrm| ≤ ̥h4.

We define ηr = max{|ηrm| : 0 ≤ m ≤ M}, ẽrm = |ζ rm| and
ẽr = max{|erm| : 0 ≤ m ≤ M}.

For r = 0, Equation (35) transforms into the
following relation:

(βb1 + ρ1b1 + ρb4)ζ 1m−1 + (βb2 + ρ1b2 + ρb5)ζ 1m
+ (βb1 + ρ1b1 + ρb4)ζ 1m+1

= (β + ρ1)
(
b1ζ

0
m−1 + b2ζ

0
m + b1ζ

0
m+1

)
+

1

h2
η1m.

Using the initial condition e0 = 0, we obtain

(βb2 + ρ1b2 + ρb5)ζ 1m = (βb1 + ρb4)(ζ 1m+1 − ζ 1m−1)

+ρ1b1(ζ 1m+1 − ζ 1m−1)+
1

h2
η1m.

Taking absolute values of ηrm and ζ rm and with adequately small h,
we have

ẽ1m ≤
6̥h4

βh2(λ+ 2)+ 12(−2− λ)ρ + ρ1h2(2+ λ)

TABLE 4 | Experimental order of convergence (EOC) for Example 5.1 with

α = 1.3 and 1t = 0.001.

M L∞ EOC L2 EOC

10 3.1950× 10−2 — 2.9355× 10−2 —

20 9.0451× 10−3 1.8206 8.7109× 10−3 1.7527

40 2.4778× 10−3 1.8680 2.2128× 10−3 1.9769

80 6.3842× 10−4 1.9564 5.9376× 10−4 1.8979

using the boundary conditions, from which we conclude that

ẽ1 ≤ ̥1h
2, (36)

where̥1 is independent of the spatial grid spacing.
Using the induction technique, we assume that ẽkm ≤ ̥kh

2 is
true for k = 1 : 1 : r.
Let̥ = max{̥k : 0 ≤ k ≤ r}; then Equation (35) becomes

(βb1 + ρ1b1 + ρb4)ζ r+1
m−1 + (βb2 + ρ1b2 + ρb5)ζ r+1

m

+ (βb1 + ρ1b1 + ρb4)ζ r+1
m+1

= 2β
(
b1ζ

r
m−1 + b2ζ

r
m + b1ζ

r
m+1

)
− β

(
b1ζ

r−1
m−1 + b2ζ

r−1
m + b1ζ

r−1
m+1

)

+ β
[
(p0 − 2p1 + p2)(b1ζ

r
m−1 + b2ζ

r
m + b1ζ

r
m+1)

+ (p1 − 2p2 + p3)(b1ζ
r−1
m−1 + b2ζ

r−1
m + b1ζ

r−1
m+1)

+ · · · + (pr−4 − 2pr−3 + pr−2)(b1ζ
1
m−1 + b2ζ

1
m

+ b1ζ
1
m+1)+ pr−1(b1ζ

0
m−1 + b2ζ

0
m + b1ζ

0
m+1)

]
+

1

h2
ηr+1
m .

Again, taking absolute values of ηrm and ζ rm, we have

ẽr+1
m ≤

6̥h2

βh2(2+ λ)+ 12(−2− λ)ρ + ρ1h2(2+ λ)[
2β(b1ζ

r
m−1 + b2ζ

r
m + b1ζ

r
m)

− β
r−1∑

k=0

(pk+1 − 2pk − pk−1)̥h2 +̥h2
]
.

TABLE 6 | Absolute and relative errors for Example 5.2 when M = 100,

1t = 0.001 and α = 1.6.

SCCM [42] Proposed method

t x L∞ L2 L∞ L2

0.4

0.4 3.1780× 10−6 9.0475× 10−5 1.1769× 10−7 9.1321× 10−8

0.6 3.1780× 10−6 9.0475× 10−5 1.0126× 10−6 8.0341× 10−7

0.8 2.1040× 10−5 9.6921× 10−4 7.2740× 10−6 1.2573× 10−6

0.8

0.4 5.8118× 10−4 7.6534× 10−4 1.8278× 10−5 8.9616× 10−6

0.6 2.4754× 10−4 5.8118× 10−4 1.2788× 10−6 7.8014× 10−7

0.8 4.7365× 10−4 1.7994× 10−3 1.0951× 10−5 9.5597× 10−6

TABLE 5 | Absolute errors for Example 5.2 when M = 100, 1t = 0.001 using different values of α.

SCCM [42] Proposed method

x α = 1.5 α = 1.7 α = 1.9 α = 1.5 α = 1.7 α = 1.9

0.1 1.6396× 10−3 1.5471× 10−3 1.4380× 10−3 2.6129× 10−6 8.4422× 10−6 9.8439× 10−6

0.2 1.2808× 10−3 1.1272× 10−3 9.4914× 10−4 3.0564× 10−5 1.4959× 10−7 6.7965× 10−6

0.3 1.0869× 10−3 8.9663× 10−4 6.7913× 10−4 9.7609× 10−6 2, 7610× 10−6 1.0853× 10−5

0.4 8.4196× 10−4 6.3348× 10−4 3.9687× 10−4 1.9015× 10−6 5.8360× 10−6 7.0990× 10−6

0.5 7.8252× 10−4 5.6868× 10−4 3.2651× 10−4 3.2181× 10−6 7.1727× 10−6 3.1898× 10−5

0.6 8.4196× 10−4 6.3348× 10−4 3.9687× 10−4 1.9015× 10−5 5.8360× 10−6 4.1207× 10−6

0.7 1.0869× 10−3 8.9663× 10−4 6.7913× 10−4 9.7609× 10−6 2.7610× 10−6 8.6781× 10−6

0.8 1.2808× 10−3 1.1272× 10−3 9.4914× 10−4 3.0564× 10−5 1.4959× 10−7 6.7965× 10−6

0.9 1.6396× 10−3 1.5471× 10−3 1.4380× 10−3 2.6129× 10−6 8.4422× 10−6 9.8439× 10−6
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Using the boundary conditions, we have

ẽr+1
m ≤ ̥h2.

Hence, for all values of n,

ẽr+1
m ≤ ̥h2. (37)

Now,

Ṽ(x, t)− V(x, t) =
M∑

m=0

(
dm(t)− ξm(t)

)
Sm(x).

Taking the infinity norm and applying Lemma (3.1), we obtain

‖Ṽ(x, t)− V(x, t)‖∞ ≤ 1.75̥h2. (38)

Making use of the triangle inequality, we get

‖v(x, t)−V(x, t)‖∞ ≤ ‖v(x, t)−Ṽ(x, t)‖∞+‖Ṽ(x, t)−V(x, t)‖∞.
(39)

Using the inequalities (32) and (38) in (39), we obtain

‖v(x, t)− V(x, t)‖∞ ≤ ̥0h
4 + 1.75̥h2 = ˜̥h2,

where ˜̥ = ̥0h
2 + 1.75̥.

Using the above theorem with expression (5), it is
easy to conclude that the numerical approach converges
unconditionally. Therefore,

‖v(x, t)− V(x, t)‖∞ ≤ ˜̥h2 + ψ(1t)2−α ,

where ˜̥ is a constant and α ∈ (1, 2]. Hence, theoretically, the
proposed scheme is O(h2 +1t2−α) accurate.

5. NUMERICAL RESULTS AND
DISCUSSION

To examine the accuracy of the proposed method, we conduct
a numerical study of some test problems. The L∞ and L2 error
norms are calculated as [53]

L∞ = max
0≤m≤M

|V(xm, t)− v(xm, t)|,

L2 =

√√√√h

M∑

m=0

|V(xm, t)− v(xm, t)|2.

Also, the experimental order of convergence (EOC) is computed
by the following important formula [54]:

EOC =
1

log 2
log

[
L∞(2m)

L∞(m)

]
.

All numerical computations were performed using
Mathematica 9.0.

Example 5.1. Consider the non-linear time-fractional KGE [42]

∂αv

∂tα
−
∂2v

∂x2
+v2(x, t) = f (x, t), 0 < t ≤ 1, 0 < x ≤ 1, (40)

TABLE 7 | Absolute errors for Example 5.2 when M = 100 and 1t = 0.001.

α (x, t) VIM [34] SCCM [42] Proposed method

1.4

(0.1, 0.1) 3.9211× 10−5 2.3809× 10−5 1.9749× 10−6

(0.2, 0.2) 6.1713× 10−4 5.2644× 10−5 1.7326× 10−5

(0.3, 0.3) 2.1989× 10−3 6.0187× 10−6 5.2839× 10−6

(0.4, 0.4) 2.5545× 10−3 6.6640× 10−5 9.9062× 10−6

(0.5, 0.5) 5.3405× 10−3 4.0011× 10−5 1.3396× 10−6

(0.6, 0.6) 3.1409× 10−2 1.5837× 10−4 1.3557× 10−5

(0.7, 0.7) 8.0092× 10−2 9.1922× 10−4 9.6832× 10−6

(0.8, 0.8) 1.3528× 10−1 2.9084× 10−3 3.5290× 10−5

(0.9, 0.9) 1.4272× 10−1 3.8732× 10−3 9.0059× 10−6

1.6

(0.1, 0.1) 1.0402× 10−5 2.3809× 10−5 1.4963× 10−6

(0.2, 0.2) 1.4424× 10−4 5.2644× 10−5 1.5765× 10−6

(0.3, 0.3) 6.7115× 10−5 6.0187× 10−6 2.1699× 10−7

(0.4, 0.4) 3.0493× 10−3 6.4440× 10−5 1.1769× 10−6

(0.5, 0.5) 1.6350× 10−2 4.0011× 10−5 1.2375× 10−6

(0.6, 0.6) 4.9599× 10−2 1.5837× 10−4 2.1232× 10−6

(0.7, 0.7) 1.0675× 10−1 9.1922× 10−4 1.8721× 10−6

(0.8, 0.8) 1.6942× 10−1 2.9084× 10−3 1.0951× 10−5

(0.9, 0.9) 1.7521× 10−1 3.8732× 10−3 2.2989× 10−5

TABLE 8 | Experimental order of convergence (EOC) for Example 5.2 with

α = 1.5 and 1t = 0.001.

M L∞ EOC L2 EOC

10 2.0835× 10−2 – 1.8459× 10−2 –

20 5.2813× 10−3 1.9760 4.7833× 10−3 1.9482

40 1.3057× 10−3 2.0161 1.1406× 10−3 2.0688

80 3.2509× 10−4 2.0059 2.8172× 10−4 2.0174

FIGURE 5 | Numerical solution for Example 5.2 with 1t = 0.001, M = 100,

and α = 1.5 at different time stages.
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FIGURE 6 | Exact and numerical solutions of Example 5.2 with M = 100, 1t = 0.001, and α = 1.5. (A) Exact. (B) Numerical.

where f (x, t) = Ŵ( 52 )

Ŵ( 52−α)
(1−x)

5
2 t

3
2−α− 15

4 (1−x)
1
2 t

3
2 + (1−x)5t3.

The initial/end conditions can be extracted from the analytical

exact solution (1− x)
5
2 t

3
2−α .

For Example 5.1, the piecewise-defined approximate
solution obtained using the proposed method with α = 1.25,
0 ≤ x ≤ 1, n = 100, and 1t = 0.01 is given by

V(x) =





0.+ x(297.276+ x(−29930.4+ x(993222.+ 225927.x))) if x ∈ [0.00, 0.01],

0.999999+ x(−2.49738+ x(1.82587+ (1.38305− 27.8749x)x)) if x ∈ [0.01, 0.02],

0.99999+ x(−2.49605+ x(1.75961+ (2.48215− 27.7432x)x)) if x ∈ [0.02, 0.03],

0.99996+ x(−2.49308+ x(1.66094+ (3.57055− 27.6103x)x)) if x ∈ [0.03, 0.04],
...

...

−0.118298+ x(6.72761+ x(−26.6775+ (38.9565− 20.3042x)x)) if x ∈ [0.49, 0.50],

−0.201484+ x(7.21369+ x(−27.5747+ (39.3734− 20.1068x)x)) if x ∈ [0.50, 0.51],
...

...

−2.7339+ x(13.6165+ x(−24.3154+ (18.715− 5.28228x)x)) if x ∈ [0.96, 0.97],

−1.89304+ x(10.2593+ x(−19.2941+ (15.3811− 4.45319x)x)) if x ∈ [0.97, 0.98],

−0.518579+ x(5.07656+ x(−12.0155+ (10.8746− 3.41708x)x)) if x ∈ [0.98, 0.99],

4.86293+ x(−13.1733+ x(10.3424+ (−0.616646− 1.41541x)x)) if x ∈ [0.99, 1.00].

The absolute numerical errors at different grid points of the
RECBS solution for Example 5.1 using1t = 0.001 andM = 100
are reported in Table 1. It can easily be seen that our scheme is
more accurate than the SCCM [42]. In Table 2 the absolute and
relative numerical errors are listed for ourmethod withM = 100,
1t = 0.001, and α = 1.6 at x = 0.4, 0.6, 0.8 when t = 0.4, 0.8.
We can see that the computational results are superior to those
obtained from the SCCM [42]. Table 3 compares the absolute
errors of the proposed method, the variational iteration method
(VIM) [34], and the SCCM [42] under different values of α.
Figure 1 shows the behavior at different time stages of numerical
solutions obtained using α = 1.5, M = 100, and 1t = 0.001.
The 3D visuals of exact and numerical solutions with α = 1.5

and M = 100 are shown in Figure 2. The comparison between
the exact and approximate solutions using M = 100 is plotted
in Figure 3. Figure 4 depicts the absolute error between the exact
and numerical solutions when α = 1.3, M = 100, and 1t =
0.001. The values of the EOC along the spatial grid, using 1t =
0.001 and α = 1.5, are given in Table 4. The experimental rate of
convergence of the proposed method is found to be in line with
the theoretical results.

Example 5.2. Consider the fractional KGE [34, 42]

∂α

∂tα
v(x, t)−

∂2

∂x2
v(x, t)+ v(x, t)+

3

2
v3(x, t) = f (x, t),

0 < x ≤ 1, 0 < t ≤ 1, (41)

where the forcing term f (x, t) on right-hand side is given by

f (x, t) =
1

2
Ŵ(3+ α) sin(πx)t2 + (1+ π2)t2+α sin(πx)

+
3

2

[
sin(πx)t2+α

]3
,
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FIGURE 7 | Absolute error for Example 5.2 when M = 100, α = 1.5, and

1t = 0.001.

For Example 5.2, the piecewise-defined numerical solution
obtained using the proposed method with α = 1.5, 0 ≤ x ≤ 1,
n = 100, and1t = 0.01 is given by

V(x) =





8.71156× 10−19 + x(3.13867+ x(2.8549× 10−14+ (−4.97167− 11.4015x)x)) if x ∈ [0.00, 0.01],

−1.14461× 10−6 + x(3.13904+ x(−0.041176+ (−3.14329− 34.194x)x)) if x ∈ [0.01, 0.02],

−0.0000194466+ x(3.14196+ x(−0.205754+ (0.51013− 56.9551x)x)) if x ∈ [0.02, 0.03],

−0.000112001+ x(3.15183+ x(−0.575584+ (5.98188− 79.6639x)x)) if x ∈ [0.03, 0.04],
...

...

−40.7681+ x(339.328+ x(−1039.38+ (1422.21− 733.23x)x)) if x ∈ [0.49, 0.50],

−44.2829+ x(360.934+ x(−1083.83+ (1453.18− 733.97x)x)) if x ∈ [0.50, 0.51],
...

...

−71.1059+ x(298.709+ x(−460.613+ (312.674− 79.6639x)x)) if x ∈ [0.96, 0.97],

−53.5088+ x(223.56+ x(−340.406+ (227.31− 56.9551x)x)) if x ∈ [0.97, 0.98],

−34.2394+ x(143.149+ x(−214.635+ (139.919− 34.194x)x)) if x ∈ [0.98, 0.99],

−13.2345+ x(57.3823+ x(−83.3239+ (50.5776− 11.4015x)x)) if x ∈ [0.99, 1.00].

The initial/boundary conditions can be extracted from the
analytical exact solution v(x, t) = sin(πx)t2+α . The absolute
numerical errors at different grid points of the RECBS solution
for Example 5.2 using 1t = 0.001 and M = 100 are listed
in Table 5. Again it can be observed that our scheme is more
accurate than the SCCM [42]. Table 6 reports the absolute and
relative errors in our numerical computation with M = 100,
1t = 0.001, and α = 1.6 at x = 0.4, 0.6, 0.8 when t = 0.4, 0.8.
It is clear that the results are better than those obtained by the
SCCM [42].Table 7 compares the absolute errors of the proposed
method, VIM [34], and SCCM [42] under different values of α.

The EOC in the spatial direction, using1t = 0.001 and α = 1.50,
is tabulated in Table 8. The experimental rate of convergence of
the proposed scheme is found to be in line with the theoretical
prediction. Figure 5 shows the behavior at different time stages
of numerical solutions obtained using α = 1.5, M = 100, and
1t = 0.001. The 3D plots of exact and numerical solutions with
α = 1.5 and M = 100 are displayed in Figure 6. The absolute
error between the exact and approximate solutions using α = 1.3,
M = 100, and1t = 0.001 is plotted in Figure 7.

6. CONCLUSION

In this work we have conducted a numerical investigation
of the time-fractional Klein–Gordon equation by applying
the redefined extended cubic B-spline collocation method. A
finite central difference formulation is employed for temporal
discretization, while a set of redefined extended cubic B-spline
functions is used to interpolate the solution curve in the spatial
direction. The unconditional stability of the proposed scheme is
established, and the orders of convergence along the space and

time grids are shown to be O(h2) and O(1t)2−α , respectively.
The computational outcomes of the proposed algorithm show
that the order of convergence agrees with the theoretical results.
The numerical scheme has been tested on different problems, and
comparison of the results reveals our method’s advantage over
VIM [34] and SCCM [42].
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