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Abstract
In this work, we establish some necessary results about existence theory to a class of
boundary value problems (BVPs) of hybrid fractional differential equations (HFDEs) in
the frame of Atangana–Baleanu–Caputo (ABC) fractional derivative. Making use of
Krasnoselskii and Banach theorems, we obtain the required conditions. Some
appropriate results of Hyers–Ulam (H–U) stability corresponding to the considered
problem are also established. Also a pertinent example is given to demonstrate the
results.
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1 Introduction
In previous decades, the area of fractional calculus got much attention from researchers.
This is because of numerous applications of fractional order differential equations (FDEs)
in mathematical modeling of real world phenomena (see [1–5]). The researchers therefore
considered FODEs in their research a lot in the last many years. They established various
analyses for the mentioned area including qualitative results for the existence of solution,
numerical and stability results, etc. For the respective analysis of FODEs, the researchers
used different tools like fixed point approach, Picard type theory, etc. In this respect, huge
research work has been established, for details we refer to [6–9].

Here we remark that a class formed from quadratic perturbations of nonlinear differen-
tial equations called hybrid differential equations has got proper attention. In this regard,
Dhage and Lakshmikantham [10] established significant results and theories. The respec-
tive existence theory of solution to the mentioned area is very important and can be es-
tablished by using hybrid type fixed point approach. As it is known, fractional calculus
is more realistic to describe many real world problems including memory and hereditary
properties of various materials and processes as compared to classical calculus. There-
fore researchers have extended the idea of fractional calculus to investigate H-FDEs from
different aspects including existence results and stability theory. In this regard, various in-
teresting results have been established in the literature (see [11–18]). Nowadays, fractional
partial differential equations have received a great deal of attention in both analysis and
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application, and they are used to model various phenomena in diverse areas of science, for
instance, chemistry, biology, physics, control theory, and engineering (see [17, 19–21]).

Fractional order derivative has been defined in various ways. Since the mentioned
derivative is in fact a definite integral, including its integer counterpart is a special case.
Therefore various definitions have been given in the literature in the last decades. Among
these definitions, the Riemann–Liouville and Caputo ones have been used in plenty of re-
search articles. Since these definitions involve a singular type kernel, it often makes some
complication in numerical treatment of some problems. Therefore very recently Caputo
and Fabrizio have defined a new differential operator by replacing singular kernel with
nonsingular (exponential type) kernel (we refer to [22]). In subsequent years Atangana and
Baleanu introduced a more general definition than Caputo–Fabrizio by including Mittag-
Leffler (ML) type kernel (abbreviated as ABC derivative of fractional order). The con-
cerned derivative got much attention and has been used in plenty of research works (see
[23–26]). Using the ABC derivative of fractional order, various problems have been studied
for existence and stability results, we refer to [27, 28]. In addition, generalized ML kernel
operators have been studied by many researchers in applied fields of engineering and sci-
ences. Such kernel types of operators are nonsingular ML kernels with one parameter and
also arbitrary ML kernel parameters studied in [29]. Furthermore, some fractional oper-
ators have been studied with ML kernels (see [30]). On the other hand, intuitively, fixed
point theory can be used in various fields of science and engineering as an authoritative
modeling tool to obtain experimental solutions and results. From a broader point of view,
the fixed point theory can also be seen as an attempt to link the biological or computa-
tional science research on innumerable abstract spaces, on convergence analysis, and on
compactness [31]. Further, fixed point theorems are the main core for obtaining the nec-
essary and sufficient conditions for the existence and uniqueness of fractional differential
equations. In particular, Banach’s fixed point theorem is essential for the uniqueness of the
solution, but it needs a strong hypothesis to be applied (see [32, 33]). Some authors may
use a priori limits in system solutions to prove the existence of solutions (see [34, 35]).

Motivated by the aforementioned work, in this article we investigate the following BVP
of H-FDEs under the ABC derivative of fractional order:

⎧
⎨

⎩

ABC
0 Dω

t [φ(t) – F (t,φ(t))] = G (t,φ(t)), 0 < ω ≤ 1, t ∈ [0, ξ ] = I ,

φ(0) =
∫ ξ

0
(ξ–η)ω–1

�(ω) H (η,φ(η)) dη,
(1)

where

F ,G ,H : I × R → R.

Here we state that the considered problem is subjected to the nonlinear integral boundary
condition (IBC). The BVPs have many applications which can be traced out in the applied
mathematical sciences. For instance, in the theory of thermal ignition of gases, nonlin-
ear diffusion generated by nonlinear sources, and concentration in chemical or biological
problems. Further BVPs under IBCs have various applications of mathematical modeling
in thermal conduction process, hemic conduction procedure, and hydrodynamics prob-
lems, see [36, 37]. Keeping in mind the importance of integral BVPs, in this paper, we study
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the aforesaid considered problem (1) for qualitative analysis of existence and stability re-
sults of Ulam type. The concerned H–U stability has been investigated for usual FODEs
in detail, see [38–40]. So far the mentioned stability has been very rarely considered for
H-FODEs under ABC derivative of fractional order. We use fixed point approach due to
Krasnoselskii [41] and Banach’s contraction principle to derive sufficient results for the
existence of at least one solution and unique solution. Further, using the concepts of non-
linear analysis, we also establish stability results of H–U type. Finally, a pertinent example
is given to justify the results.

This paper is organized as follows: The first part contains a detailed introduction. The
second part contains basic results. The third portion is devoted to existence results. Por-
tion four is related to stability results. In the fifth portion, we give an example, and the last
part is related to brief conclusion.

2 Axillary results
In this section, we study some fundamental results, which are used in our main work.

Definition 1 ([42]) Let w ∈ H1(0, ξ ) with ω ∈ (0, 1], the ABC derivative of fractional order
is defined as

ABC
0 Dω

t w(t) =
N (ω)
1 – ω

∫ t

0

dw
dη

Eω

[
–ω(t – η)

1 – ω

]

dη,

where Eω =
∑∞

i=0
tiω

�(ωi+1) is a Mittag-Leffler function. Also N (ω) is called normalization
function.

Definition 2 ([43]) The corresponding integral is expressed for w as

AB
0 Iωt w(t) =

(1 – ω)
N (ω)

w(t) +
ω

N (ω)

∫ t

0

(t – η)ω–1

�(ω)
w(η) dη.

Lemma 1 ([44]) The solution of

ABC
0 Dω

t φ(t) = κ(t),

φ(0) = φ0,

with the conditions such that the right-hand side vanishes at t = 0 is given by

φ(t) = φ0 +
(1 – ω)
N (ω)

κ(t) +
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1κ(η) dω.

Here we denote by Z = AC(J ) the Banach space under the norm ‖φ‖Z = maxt∈J |φ(t)|.

Theorem 1 ([45]) Let for a convex set B of Z with a mapping A w = Fw + Gu such that
1. Fw + Gu for every u, w ∈ B;
2. F is compact and continuous;
3. G is contraction,

then A has at least one fixed point.
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3 Main results
In this part, we investigate conditions for the existence of at least one solution to H-FDEs
(1).

Lemma 2 If κ ∈ L(J ), then the solution φ ∈ AC(J ) of linear BVPs with nonlinear inte-
gral BCs

⎧
⎨

⎩

ABC
0 Dω

t φ(t) = κ(t), 0 < ω ≤ 1, t ∈ J ,

φ(0) =
∫ ξ

0
(ξ–η)ω–1

�(ω) H (η,φ(η)) dη,

is given by

φ(t) =
∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη +

(1 – ω)
N (ω)

κ(t)

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1κ(η) dη.

(2)

Proof 1 Thanks to Lemma 1, we can easily obtain result (2).

Corollary 1 In view of Lemma 2, the solution of nonlinear integral BVPs (1) is given by

φ(t) = F
(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)
+

∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη.

(3)

To derive the interrelated results, we need the following hypothesis to hold:
(A1) For constants LF , LG , LH > 0, we have for any φ, φ̄ ∈ Z

∣
∣F

(
t,φ(t)

)
– F

(
t, φ̄(t)

)∣
∣ ≤ LF

∣
∣φ(t) – φ̄(t)

∣
∣,

∣
∣G

(
t,φ(t)

)
– G

(
t, φ̄(t)

)∣
∣ ≤ LG

∣
∣φ(t) – φ̄(t)

∣
∣,

and

∣
∣H

(
t,φ(t)

)
– H

(
t, φ̄(t)

)∣
∣ ≤ LH

∣
∣φ(t) – φ̄(t)

∣
∣.

(A2) For any real constants CG , MG > 0, we have

∣
∣G

(
t,φ(t)

)∣
∣ ≤ CG

∣
∣φ(t)

∣
∣ + MG .

(A3) Also, for real constants CH > 0, MH > 0, we have

∣
∣H

(
t,φ(t)

)∣
∣ ≤ CH

∣
∣φ(t)

∣
∣ + MH .



Gul et al. Advances in Difference Equations        (2021) 2021:437 Page 5 of 12

On using (3), we define the operator A : Z → Z by

A φ(t) = F
(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)
+

∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη, t ∈ J .

(4)

Theorem 2 Under hypothesis (A1), the considered problem (1) has a unique solution if

ϒ =
(

LF +
(1 – ω)
N (ω)

LG +
LH ξω

�(ω + 1)

(

1 +
ω

N (ω)

))

< 1.

Proof 2 If φ, φ̄ ∈ Z , from (4) we have

∥
∥A (φ) – A (φ̄)

∥
∥

Z
= max

t∈J

∣
∣A φ(t) – A φ̄(t)

∣
∣

= max
t∈J

∣
∣
∣
∣F

(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)

+
∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη

– F
(
t, φ̄(t)

)
–

(1 – ω)
N (ω)

G
(
t, φ̄(t)

)

–
∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η, φ̄(η)

)
dη

–
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η, φ̄(η)

)
dη

∣
∣
∣
∣

≤ LF‖φ – φ̄‖Z +
(1 – ω)
N (ω)

LG ‖φ – φ̄‖Z

+
LH ξω

�(ω + 1)
‖φ – φ̄‖Z +

ωLH ξω

N (ω)�(ω + 1)
‖φ – φ̄‖Z .

Hence, we obtain

∥
∥A (φ) – A (φ̄)

∥
∥

Z
≤

(

LF +
(1 – ω)
N (ω)

LG +
LH ξω

�(ω + 1)

(

1 +
ω

N (ω)

))

‖φ – φ̄‖Z .

Thus we get

∥
∥A (φ) – A (φ̄)

∥
∥

Z
≤ ϒ‖φ – φ̄‖Z . (5)

Therefore, A is a contraction and the said problem (1) has unique solutions.

Thanks to Theorem 1, we derive the next result.
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Theorem 3 Thanks to hypotheses (A1) and (A2), the H-FDE (1) has at least one solution
if

LF +
(1 – ω)
N (ω)

LG < 1.

Proof 3 Here we define two operators F and G from (4) as

Fφ(t) = F
(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)
,

Gφ(t) =
∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη.

(6)

Step 1. Let φ, φ̄ ∈ Z , we have from (6)

∣
∣Fφ(t) – Fφ̄(t)

∣
∣ ≤ ∣

∣F
(
t,φ(t)

)
– F

(
t, φ̄(t)

)∣
∣ +

∣
∣
∣
∣
(1 – ω)
N (ω)

(
G

(
t,φ(t)

)
– G

(
t, φ̄(t)

))
∣
∣
∣
∣.

On simplification, we obtain

‖Fφ – Fφ̄‖Z ≤ LF‖φ – φ̄‖Z +
(1 – ω)
N (ω)

LG ‖φ – φ̄‖Z .

We have

‖Fφ – Fφ̄‖Z ≤
(

LF +
(1 – ω)
N (ω)

LG

)

‖φ – φ̄‖Z .

Thus F is contraction.
Step 2. To derive the required condition in respect of G, let B = {φ ∈ Z ;‖φ‖Z ≤ ρ},

then from (6) we can do

∣
∣Gφ(t)

∣
∣ ≤

∣
∣
∣
∣

∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

∣
∣
∣
∣ +

∣
∣
∣
∣

ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη

∣
∣
∣
∣

≤
∫ ξ

0

(ξ – η)ω–1

�(ω)
∣
∣H

(
η,φ(η)

)∣
∣dη +

ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1∣∣G

(
η,φ(η)

)∣
∣dη,

‖Gφ‖Z ≤ ξω

�(ω + 1)
(
CH ‖φ‖Z + MH

)
+

ωξω

N (ω)�(ω + 1)
(
CG ‖φ‖Z + MG

)
,

‖Gφ‖Z ≤ ξω

�(ω + 1)

(

CH ρ + MH +
ω

N (ω)
(CG ρ + MG )

)

= 
,

‖Gφ‖Z ≤ 
.

Thus G is bounded. Further, as H , G are continuous, therefore G is also.



Gul et al. Advances in Difference Equations        (2021) 2021:437 Page 7 of 12

Step 3. For equicontinuity, let t1 < t2 ∈ J , we have

∣
∣Gφ(t2) – Gφ(t1)

∣
∣ ≤

∣
∣
∣
∣

ω

N (ω)�(ω)

∫ t2

0
(t2 – η)ω–1G

(
η,φ(η)

)
dη

–
ω

N (ω)�(ω)

∫ t1

0
(t1 – η)ω–1G

(
η,φ(η)

)
dη

∣
∣
∣
∣

≤
∣
∣
∣
∣

ω

N (ω)�(ω)

∫ t1

0

[
(t2 – η)ω–1 – (t2 – η)ω–1]G

(
η,φ(η)

)
dη

∣
∣
∣
∣

+
∣
∣
∣
∣

ω

N (ω)�(ω)

∫ t2

t1

(t2 – η)ω–1G
(
η,φ(η)

)
dη

∣
∣
∣
∣

≤ ω

N (ω)�(ω + 1)
(CG ρ + MG )

(
tω
1 – tω

2
)
. (7)

Obviously, from (7), we see that t1 → t2, the right-hand side of the above inequality goes to
zero, therefore ‖Gφ(t2) – Gφ(t1)‖Z → 0 as t1 → t2. As the operator Gφ is continuous and
bounded, so it is uniformly continuous. Also G(B) ⊂ B is compact. Thanks to Arzelá–
Ascoli theorem, the operator G fulfills all the conditions of complete continuity. Hence
H-FDE (1) has at least one solution.

4 Stability results
This portion is devoted to establishing results about H–U stability for considered H-FDE
(1).

Definition 3 H-FDE (1) is H–U stable if, for any ε > 0, for the given inequality

∣
∣ABC
0 Dω

t
[
φ(t) – F

(
t,φ(t)

)]
– G

(
t,φ(t)

)∣
∣ < ε for all t ∈ J ,

there exists the unique solution φ̄ with a constant WF such that

∣
∣φ(t) – φ̄(t)

∣
∣ ≤ WF ε for all t ∈ J .

Further, H-FDE problem (1) will be generalized H–U stable if there exists a nondecreasing
function ϕ : (0, 1) → (0,∞) such that

∣
∣φ(t) – φ̄(t)

∣
∣ ≤ WFϕ(ε) for all t ∈ J ,

with ϕ(0) = 0.

The given result is needed.

Remark 1 If we have a function ψ independent of φ ∈ Z with ψ(0) = 0 and ψ(ξ ) = 0 with
1. |ψ(t)| ≤ ε for every t ∈ J ;
2. ABC

0 Dω
t [φ(t) – F (t,φ(t))] = G (t,φ(t)) + ψ(t) for all t ∈ J .

Lemma 3 The solution of the given H-FDE problem
⎧
⎨

⎩

ABC
0 Dω

t [φ(t) – F (t,φ(t))] = G (t,φ(t)) + ψ(t), 0 < ω ≤ 1, t ∈ J ,

φ(0) =
∫ ξ

0
(ξ–η)ω–1

�(ω) H (η,φ(η)) dη
(8)
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is

φ(t) = F
(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)
+

(1 – ω)
N (ω)

ψ(t)) +
∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1ψ(η) dη. (9)

Moreover, from (9), we have

∣
∣
∣
∣φ(t) –

[

F
(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)
+

∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη

]∣
∣
∣
∣

≤
(

(1 – ω)
N (ω)

+
ωξω

N (ω)�(ω + 1)

)

ε. (10)

Proof 4 Thanks to Lemma 2, we obtain solution (9). Further, thanks to Remark 1, result
(10) is obvious.

Theorem 4 Under Lemma 3, the solution of considered H-FDE (1) is H–U and generalized
H–U stable if ϒ < 1 exists.

Proof 5 If φ ∈ Z is any solution of problem (1) and φ̄ ∈ Z is at most one result of (1),
then consider

‖φ – φ̄‖Z = max
t∈J

∣
∣φ(t) – φ̄(t)

∣
∣

= max
t∈J

∣
∣
∣
∣φ(t) –

[

F
(
t, φ̄(t)

)
+

(1 – ω)
N (ω)

G
(
t, φ̄(t)

)

+
∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η, φ̄(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η, φ̄(η)

)
dη

]∣
∣
∣
∣

= max
t∈J

∣
∣
∣
∣φ(t) –

[

F
(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)

+
∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη

]

+
(

F
(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)
+

∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη

)
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–
(

F
(
t, φ̄(t)

)
+

(1 – ω)
N (ω)

G
(
t, φ̄(t)

)
+

∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η, φ̄(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η, φ̄(η)

)
dη

)∣
∣
∣
∣. (11)

Hence we get on using �1 = (1–ω)
N (ω) + ωξω

N (ω)�(ω+1)

‖φ – φ̄‖Z ≤ max
t∈J

∣
∣
∣
∣φ(t) –

[

F
(
t,φ(t)

)
+

(1 – ω)
N (ω)

G
(
t,φ(t)

)

+
∫ ξ

0

(ξ – η)ω–1

�(ω)
H

(
η,φ(η)

)
dη

+
ω

N (ω)�(ω)

∫ t

0
(t – η)ω–1G

(
η,φ(η)

)
dη

]∣
∣
∣
∣

+ max
t∈J

∣
∣F

(
t,φ(t)

)
– F

(
t, φ̄(t)

)∣
∣ +

(1 – ω)
N (ω)

max
t∈J

∣
∣G

(
t,φ(t)

)
– G

(
t, φ̄(t)

)∣
∣

+ max
t∈J

∫ ξ

0

(ξ – η)ω–1

�(ω)
∣
∣H

(
η,φ(η)

)
– H

(
η, φ̄(η)

)∣
∣dη. (12)

Using hypothesis (A1), after some simplification in (12), we obtain by using Lemma 3

‖φ – φ̄‖Z ≤ �1ε

+
[

LF +
(

(1 – ω)
N (ω)

+
ωξω

N (ω)�(ω + 1)

)

LG

+
ξωLH

�(ω + 1)

]

‖φ – φ̄‖Z . (13)

Hence, we get from (13)

‖φ – φ̄‖Z ≤ �1

1 – ϒ
ε. (14)

Thus, the solution is H–U stable. Further, for generalized H–U stability, we have

WF =
�1

1 – ϒ
,

and there exists a nondecreasing function ϕ ∈ C((0, 1), (0,∞)). Then from (14) we get

‖φ – φ̄‖Z ≤ WFϕ(ε) with ϕ(0) = 0.

So the required result for generalized H–U stability is received.

5 Example of our analysis
In this part, we justify our results via examples as follows.

Example 1 Consider the given H-FDE
⎧
⎨

⎩

ABC
0 D

1
2
t [φ(t) – cos |φ(t)|

35 ] = t3+sin |φ(t)|
45 , t ∈ [0, 1],

φ(0) =
∫ 1

0
(1–η)ω–1

�(ω)
1

25 exp(–φ(η)) dη,
(15)
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where

F
(
t,φ(t)

)
=

cos |φ(t)|
35

, G
(
t,φ(t)

)
=

t3 + sin |φ(t)|
45

and H (t,φ(t)) = 1
25 exp(–φ(t)). As ξ = 1 and ω = 1

2 , let φ, φ̄ ∈ Z , one has

∣
∣F

(
t,φ(t)

)
– F

(
t, φ̄(t)

)∣
∣ =

∣
∣
∣
∣
cos |φ(t)|

35
–

cos |φ̄(t)|
35

∣
∣
∣
∣

≤ 1
35

∣
∣φ(t) – φ̄(t)

∣
∣,

∣
∣G

(
t,φ(t)

)
– G

(
t, φ̄(t)

)∣
∣ =

∣
∣
∣
∣
t3 + sin |φ(t)|

45
–

t3 + sin |φ̄(t)|
45

∣
∣
∣
∣

≤ 1
45

∣
∣φ(t) – φ̄(t)

∣
∣

and

∣
∣H

(
t,φ(t)

)
– H

(
t, φ̄(t)

)∣
∣ =

∣
∣
∣
∣

1
25

exp
(
–φ(t)

)
–

1
25

exp
(
–φ̄(t)

)
∣
∣
∣
∣

≤ 1
25

∣
∣φ(t) – φ̄(t)

∣
∣.

Thus we have Lf = 1
35 , Lg = 1

45 , and Lh = 1
25 . Now we check the conditions of the theorems

and obtain

ϒ = LF +
1 – ω

N (ω)
LG +

LH ξω

�(ω + 1)

(

1 +
ω

N (ω)

)

=
409

6300
< 1.

Thus, the condition of Theorem 2 is satisfied. Therefore, problem (15) has a unique solu-
tion. Next

LF +
1 – ω

N (ω)
LG =

25
630

< 1.

Thus, the condition of Theorem 3 is also satisfied, hence the given problem (15) has at
least one solution. Also for H–U stability

LF +
(

1 – ω

N (ω)
+

ωξω

N (ω)�(ω + 1)

)

LG +
ξωLH

�(ω + 1)
=

377
3150

≈ 0.11968 < 1.

Thus problem (15) is H–U and generalized H–U stable.

6 Conclusion
This work has successfully developed existence and stability results for the integral BVP
of H-FDEs under nonsingular kernel type derivative. The concerned BC is nonlinear of
integral type. Such problems have many applications in mathematical modeling of ther-
mal and hydrodynamical problems. Based on fixed point approach, we have established
some adequate results for at least one solution. Also some interesting results for H–U type
stability have been derived. The aforesaid derived results have been justified by providing
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a suitable problem. In the future, the aforesaid analysis can be extended to a nonlinear
coupled system with integral BCs involving a Mittag-Leffler type derivative.
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