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1. Introduction

The classical calculus connected to the traditional integrals and derivatives is considered to be the
core of modern mathematics. The fractional calculus is the generalization of this calculus as it deals
with the integrals and derivatives of any order. There has been a great deal of interest in such type of
generalizing calculus because of the findings obtained by some researchers who utilized the fractional
integrals and derivatives being at the receiving end of modeling some real world problems that arise in
variety of disciplines [1–15]. What makes the fractional calculus distinctive is the fact there are variety
of fractional integrals and derivatives and thus a researcher can choose the best fractional operator
which suited to the problem under investigation. Moreover, there are two kinds of fractional operators.
The first type consist of non-local fractional operators. The second type contains local ones. The local
fractional derivatives were initiated first by Khalil et al. [16,17]. The derivatives proposed in these two
works were modified by [18, 19]. The modified derivative was used by Jarad et al. [20] to generate a
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new class of fractional operators called fractional proportional operators which contain two parameters
and give rise to known fractional operators when one of these parameters tend to certain values. And
even more, these operators were generalized in [21, 22] and fractional proportional operators with
respect to an increasing function were proposed.

The Langevin equation embodying integer order derivative was proposed by Langevin in
1908 [23]. This well known equation delineates the evolution of certain physical phenomena in
fluctuating environments [24] and describes anomalous transport [25]. It was extended to the
fractional order by Lim et al. [26] who proposed a version of Langevin equations involving two
fractional order for the sake of depicturing the viscoelastic anomalous diffusion in the complex
liquids. In [27], the authors considered a generalized Langevin equation that lims mechanical random
forces. Lozinski et al. [28] considered applications of the mentioned equation in polymer rheology
and stochastic simulation. In [29], Laadjal et al. discussed some qualitative properties of solutions to
multi-term fractional Langevin equation with boundary conditions.

Recently, Laadjal et al. [30] have studied the existence and uniqueness of solutions to fractional
proportional differential equation with the help of incomplete Gamma function.

Motivated and inspired by the aforementioned works, in this article, we deliberate the existence and
uniqueness of solutions to the following class of Langevin differential equations:

C
pD

α,ρ,v
a

(
C
pD

β,ρ,v
a + λ

)
x (t) = f (t, x (t)) , t ∈ [a, b], (1.1)

x(a) = 0, x(b) = ξx(η), (1.2)

where ρ ∈ (0, 1], 0 < α, β ≤ 1, a < η < b, λ, ξ ∈ R, f : [a, b] × R −→ R is a given nonlinear function,
v(t) is a strictly increasing continuous function on [a, b] and C

pD
i,ρ,v
a denotes the Caputo fractional

proportional derivative (CFPD) with respect to the function v of order i (i = α, β).
Note that from Eq (1.1), we have the following special cases (with the nonlocal boundary conditions

(1.2)):

Case 1. If v(t) = t for all t ∈ [a, b], Eq (1.1) reduces to a Langevin equation involving two v-CFPDs.
C
pD

α,ρ
a

(
C
pD

β,ρ
a + λ

)
x (t) = f (t, x (t)) . (1.3)

Case 2. If ρ = 1, Eq (1.1) reduces to a Langevin equation involving two v-Caputo fractional derivatives
CDα,v

a

(
CDβ,v

a + λ
)

x (t) = f (t, x (t)) . (1.4)

Case 3. If ρ = 1 and v(t) = t, Eq (1.1) reduces to a Langevin equation involving the usual Caputo
fractional derivatives

CDα
a

(
CDβ

a + λ
)

x (t) = f (t, x (t)) . (1.5)

Case 4. If ρ = 1 and v(t) = ln t for all t ∈ [a, b], a > 0, (1.1) reduces to a Langevin equation involving
Caputo-Hadamard fractional derivatives

CHDα
a

(
CHDβ

a + λ
)

x (t) = f (t, x (t)) . (1.6)

Case 5. If ρ = 1 and v(t) = tµ
µ

, (1.1) reduces to a Langevin equation involving the Katugampola
fractional derivatives

CKDα
a

(
CKDβ

a + λ
)

x (t) = f (t, x (t)) . (1.7)

Moreover, other several special cases can be obtained as well.
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2. Preliminaries

In this section, we present some definitions, propositions, lemmas and theorems needed through the
whole article.

For θ > 0 (with n − 1 < θ ≤ n, n ∈ N) and ψ ∈ L1[a, b], we have the following definitions [3]:
The fractional integral of Reimann-Liouville type of the function ψ is defined by [3]

(Iθaψ) (t) =
1

Γ (θ)

∫ t

a
(t − τ)θ−1 ψ (τ) dτ. (2.1)

The fractional derivative of Reimann-Liouville type of the function ψ is defined by

(RDθ
aψ) (t) =

dn

dtn In−θ
a ψ(t)

=
1

Γ (n − θ)
dn

dtn

∫ t

a
(t − τ)n−θ−1 ψ (τ) dτ. (2.2)

The fractional derivative of Caputo type of the function ψ ∈ C(n)[a, b]. is defined by [3]

(CDθ
aψ) (t) = (In−θ

a ψ(n))(t)

=
1

Γ (n − θ)

∫ t

a
(t − τ)n−θ−1 ψ(n) (τ) dτ. (2.3)

The fractional integral of Katugampola type of the function ψ is defined by [31]

(K Iθ,µa ψ) (t) =
1

Γ (θ)

∫ t

a

(
tµ − τµ

µ

)θ−1

ψ (τ)
dτ
τ1−µ . (2.4)

The Caputo-Katugampola fractional derivative of the function ψ ∈ C(n)[a, b] is defined by [32]

(CKDθ,µ
a ψ) (t) = (K In−θ

a ζnψ)(t)

=
1

Γ (n − θ)

∫ t

a

(
tµ − τµ

µ

)θ−1

ζnψ (τ)
dτ
τ1−µ . (2.5)

where ζ = t1−µ d
dt .

The fractional integral of Haramard type of the function ψ is defined by [3]

(HIθaψ) (t) =
1

Γ (θ)

∫ t

a

(
ln

t
τ

)θ−1
ψ (τ)

dτ
τ
. (2.6)

The Caputo-Hadamard fractional derivative of the function ψ ∈ C(n)[a, b] is defined by [33]

(CHDθ,ρ
a ψ) (t) = (HIn−θ

a γnψ)(t)

=
1

Γ (n − θ)

∫ t

a

(
ln

t
τ

)n−θ−1
γnψ (τ)

dτ
τ

. (2.7)

where γ = t d
dt .
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Let ρ ∈ (0, 1] and v be strictly increasing continuously differentiable function. The Reimann-
Liouville fractional proportional integral (RLFPI) of the function ψ ∈ L1[a, b] with respect to the
function v is defined by [20]

(J θ,ρ,v
a ψ) (t) =

1
ρθΓ (θ)

∫ t

a
(v(t) − v(τ))θ−1 e

ρ−1
ρ (v(t)−v(τ))ψ (τ) v′ (τ) dτ. (2.8)

Let ρ ∈ (0, 1]. The Caputo fractional proportional derivative (CFPD) of the function ψ ∈ C(n)[a, b]
with respect to the function v ∈ C(n)[a, b] is defined by [20]

(CpD
θ,ρ,v
a ψ) (t) = Jn−θ,ρ,v

a (Dn,ρ,vψ) (t)

=
1

ρθΓ (n − θ)

∫ t

a
(v(t) − v(τ))n−θ−1 e

ρ−1
ρ (v(t)−v(τ)) (Dn,ρ,vψ) (τ) v′ (τ) dτ. (2.9)

where
(Dn,ρ,vψ)(t) = (Dρ,vDρ,v · · ·Dρ,v︸             ︷︷             ︸

n-times

ψ)(t), (2.10)

with

(Dρ,vψ)(t) = (1 − ρ)ψ(t) + ρ
ψ′(t)
v′(t)

. (2.11)

Let ρ ∈ (0, 1]. The Reimann-Liouville fractional proportional derivative (RLFPD) of the function ψ
with respect to the function v is defined by [20]

(RPD
θ,ρ,v
a ψ) (t) = Dn,ρ,v(Jn−θ,ρ,v

a ψ)(t)

=
Dn,ρ,v

ρn−θΓ (n − θ)

∫ t

a
(v(t) − v(τ))n−θ−1 e

ρ−1
ρ (v(t)−v(τ))ψ (τ) v′ (τ) dτ. (2.12)

Remark 6. Note that, for ρ = 1 and v(t) = t, the definitions of the RLFPD and CFPD reduce to the
usual definitions of Riemann-Liouville fractional derivative and Caputo fractional derivative,
respetively. On other hand note that RpD

−θ,ρ,v
a = J

θ,ρ,v
a .

Proposition 7 ( [20]). Let ρ ∈ (0, 1], β > 0 and θ > 0 with n− 1 < θ ≤ n, and ψ ∈ L1[a, b], we have the
following properties:

(J θ,ρ,v
a (v(·) − v(a))β−1e

ρ−1
ρ v(·))(t) =

Γ (β)
ρθΓ (θ + β)

(v(t) − v(a))θ+β−1e
ρ−1
ρ v(t); (2.13)

(RpD
θ,ρ,v
a (v(·) − v(a))β−1e

ρ−1
ρ v(·))(t) =

ρθΓ (β)
Γ (β − θ)

(v(t) − v(a))β−θ−1e
ρ−1
ρ v(t); (2.14)

J θ,ρ,v
a (Jβ,ρ,v

a ψ)(t) = Jβ,ρ,v
a (J θ,ρ,v

a ψ)(t) = (J θ+β,ρ,v
a ψ)(t); (2.15)

C
pD

θ,ρ,v
a (J θ,ρ,v

a ψ) (t) = ψ(t); (2.16)

R
pD

θ,ρ,v
a (J θ,ρ,v

a ψ) (t) = ψ(t). (2.17)
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Proposition 8 ( [21]). We have

J θ,ρ,v
a (CpD

θ,ρ,v
a ψ) (t) = ψ (t) −

n−1∑
k=0

ck (v(t) − v(a))k e
ρ−1
ρ (v(t)−v(τ)), ψ ∈ C(n)[a, b], (2.18)

where ck =
(Dk,ρ,vψ)(a)

ρkk! ;

J θ,ρ
a (RpD

θ,ρ,v
a ψ) (t) = ψ (t) −

n∑
k=1

qk (v(t) − v(τ))θ−k e
ρ−1
ρ (v(t)−v(τ)), (2.19)

where qk =
(Jk−θ,ρ,v

a ψ)(a)
ρθ−kΓ(θ−k+1) .

Definition 9 ( [34, 35]). Let θ ∈ C (<(θ) > 0), we have the following definitions:
The upper incomplete Gamma function is defined by

Γ(θ, t) =

∫ +∞

t
yθ−1e−ydy, t ≥ 0. (2.20)

The lower incomplete Gamma function is defined by

γ(θ, t) =

∫ t

0
yθ−1e−ydy, t ≥ 0. (2.21)

The upper regularized incomplete Gamma function is defined by

Q(θ, t) =
Γ(θ, t)
Γ(θ)

. (2.22)

The lower regularized incomplete Gamma function is defined by

P(θ, t) = 1 − Q(θ, t) =
γ(θ, t)
Γ(θ)

. (2.23)

The functions P and Q are also called “Incomplete Gamma functions ratios”.

Lemma 10 ( [34]). Let θ ≥ 0, For all t ≥ 0 we have the following properties:

Γ(θ + 1, t) = θΓ(θ, t) + tθe−t; (2.24)

γ(θ, t) = Γ(θ) − Γ(θ, t); (2.25)

γ(θ + 1, t) = θγ(θ, t) − tθe−t; (2.26)∫ t2

t1
yθ−1e−ydy = γ(θ, t2) − γ(θ, t1), t2 ≥ t1 > 0. (2.27)

Lemma 11 ( [30]). Let θ, µ ∈ R+. It is clear that P(θ, µ(t−a)) is a non-decreasing function with respect
to t ∈ [a, b]. And moreover

P(θ, µ(t − a)) ∈ [0, 1] for all t ≥ a; (2.28)

max
t∈[a,b]
P(θ, µ(t − a)) = P(θ, µ(t − a))|t=b = P(θ, µ(b − a)); (2.29)

min
t∈[a,b]
P(θ, µ(t − a)) = P(θ, µ(t − a))|t=a = 0. (2.30)
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3. Incomplete Gamma functions vs RLFPIs with respect to another function

In this section, we present new essential lemmas related to the incomplete Gamma functions. These
lemmas will be helpful in proving our main results about the existence and uniqueness of solutions for
the considered problem.

Remark 12. In all the following results, we assume that v : [a, b] −→ R is a continuous, differentiable
and strictly increasing function.

Lemma 13. Let ρ ∈ (0, 1], θ > 0, and ψ(t) = 1 for all t ∈ [a, b]. Then

(J θ,ρ,v
a 1) (t) =


P(θ, 1−ρ

ρ (v(t)−v(a)))

(1−ρ)θ
, for ρ ∈ (0, 1),

(v(t)−v(a))θ

Γ(θ+1) , for ρ = 1,

(3.1)

where function P is defined by (2.23). Moreover,

lim
ρ→1−

(J θ,ρ,v
a 1) (t) =

(
Iθ,va 1

)
(t) =

(v(t) − v(a))θ

Γ (θ + 1)
, (3.2)

and

max
t∈[a,b]

[lim(
ρ→1−
J θ,ρ,v

a 1) (t)] =
(v(b) − v(a))θ

Γ(θ + 1)
. (3.3)

Proof. For ρ ∈ (0, 1), from Definition 2.8, we have

(J θ,ρ,v
a 1) (t) =

1
ρθΓ (θ)

∫ t

a
(v(t) − v(τ))θ−1 e

ρ−1
ρ (v(t)−v(τ))v′(τ)dτ. (3.4)

Let y =
1−ρ
ρ

(v(t) − v(τ)), then dy = −
1−ρ
ρ

v′(τ)dτ, So dτ = −
ρ

1−ρ
1

v′(τ)dy. Hence, we have

(J θ,ρ,v
a 1) (t) =

1
ρθΓ (θ)

∫ t

a

(
ρ

1 − ρ
y
)θ−1

e
ρ−1
ρ

(
ρ

1−ρ y
)
v′(τ)

(
−

ρ

1 − ρ
1

v′(τ)
dy

)
=

−1
ρθΓ (θ)

∫ 0

1−ρ
ρ (v(t)−v(a))

(
ρ

1 − ρ
y
)θ−1

e−y ρ

1 − ρ
dy

=
1

(1 − ρ)θ Γ (θ)

∫ 1−ρ
ρ (v(t)−v(a))

0
yθ−1e−ydy

=
γ(θ, 1−ρ

ρ
(v(t) − v(a)))

(1 − ρ)θ Γ (θ)

=
P(θ, 1−ρ

ρ
(v(t) − v(a)))

(1 − ρ)θ
.

For ρ = 1 we have

(J θ,ρ,v
a 1) (t) =

1
Γ (θ)

∫ t

a
(v(t) − v(τ))θ−1 v′(τ)dτ.
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=
(v(t) − v(a))θ

Γ (θ + 1)
.

Concerning the limit formula (3.2) , we have

lim
ρ→1−

(J θ,ρ,v
a 1) (t) = lim

ρ→1−

1
ρθΓ (θ)

∫ t

a
(v(t) − v(τ))θ−1 e

ρ−1
ρ (t−τ)v′(τ)dτ

=
1

Γ (θ)

∫ t

a
(v(t) − v(τ))θ−1 v′(τ)dτ

=
(v(t) − v(a))θ

Γ (θ + 1)
.

Finally, formula (3.3) is immediate and hence the proof is completed. �

Lemma 14. Let X = C([a, b],R) be the Banach space of all continuous functions from [a, b] to R
endowed with the norm ‖ψ‖ = sup

t∈[a,b]
|ψ(t)| , and let ρ ∈ (0, 1], θ > 0 and ψ ∈ X. Then

|(J θ,ρ,v
a ψ)(t)| ≤


P(θ, 1−ρ

ρ (v(t)−v(a)))

(1−ρ)θ
‖ψ‖ , for ρ ∈ (0, 1),

(v(t)−v(a))θ

Γ(θ+1) ‖ψ‖ , for ρ = 1,

(3.5)

for all t ∈ [a, b]. Moreover, for η ∈ [a, b], we have

sup
t∈[a,η]

|(J θ,ρ,v
a ψ)(t)| ≤


P(θ, 1−ρ

ρ (v(η)−v(a)))

(1−ρ)θ
‖ψ‖ , for ρ ∈ (0, 1),

(v(η)−v(a))θ

Γ(θ+1) ‖ψ‖ , for ρ = 1.

(3.6)

Proof. The proof can be carried out by following the same steps as in Lemma 13. �

Lemma 15. Let ρ ∈ (0, 1], t1, t2 ∈ [a, b] (t1 ≤ t2), and δ > 0. Then∫ t2

t1
(v(b) − v(τ))δ−1 e

ρ−1
ρ (v(b)−v(τ))v′(τ)dτ (3.7)

=
ρδΓ (δ)
(1 − ρ)δ

[
P(δ,

1 − ρ
ρ

(v(b) − v(t1))) − P(δ,
1 − ρ
ρ

(v(b) − v(t2)))
]
,

where the function P is given by (2.23).

Proof. The proof can be accomplished by trailing the same steps as in Lemma 3.3 of [30] and
Lemma 13. �

Lemma 16. Let ρ ∈ (0, 1], δ > 0 and a ≤ τ ≤ t1 < t2 ≤ b. Then

lim
t2→t1

∫ t1

a
|(Vδ(t2, τ) − Vδ(t1, τ)) v′(τ)| dτ = 0, (3.8)

where
Vδ(t, τ) = (v(t) − v(τ))δ−1 e

ρ−1
ρ (v(t)−v(τ)). (3.9)
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Proof. To calculate the above limit, the sign of the term inside the absolute value must be studied.
From Remark 12, v′(τ) > 0 for all τ ∈ [a, b], and thus for any s1, s2 ∈ [a, b] such that s2 >

s1, we have v(s2) > v(s1).
For ρ = 1, we look at the three cases δ = 1, δ < 1 and δ > 1 as follows∫ t1

a
|(Vδ(t2, τ) − Vδ(t1, τ)) v′(τ)|ρ=1 v′(τ)dτ

=

∫ t1

a

∣∣∣(v(t2) − v(τ))δ−1
− (v(t1) − v(τ))δ−1

∣∣∣ v′(τ)dτ

=



0, for δ = 1,

1
δ

(
(v(t2) − v(t1))δ − (v(t2) − v(a))δ + (v(t1) − v(a))δ

)
, for 0 < δ < 1,

−1
δ

(
(v(t2) − v(t1))δ − (v(t2) − v(a))δ + (v(t1) − v(a))δ

)
, for δ > 1,

.

hence the integral has the value zero as t2 → t1.

Next, for ρ ∈ (0, 1) and 0 < δ ≤ 1: because δ−1 ≤ 0, ρ−1
ρ

(v(t2)−v(τ)) ≤ 0, and ρ−1
ρ

(v(t1)−v(τ)) ≤ 0,
we conclude that

Vδ(t2, τ) − Vδ(t1, τ) = (v(t2) − v(τ))δ−1 e
ρ−1
ρ (v(t2)−v(τ))

− (v(t1) − v(τ))δ−1 e
ρ−1
ρ (v(t1)−v(τ))

≤ 0.

Then, we get∫ t1

a
|(Vδ(t2, τ) − Vδ(t1, τ)) v′(τ)| dτ =

∫ t1

a
− (v(t2) − v(τ))δ−1 e

ρ−1
ρ (v(t2)−v(τ))v′(τ)dτ

+

∫ t1

a
(v(t1) − v(τ))δ−1 e

ρ−1
ρ (v(t1)−v(τ))v′(τ)dτ.

From Lemma 15, we obtain∫ t1

a
|(Vδ(t2, τ) − Vδ(t1, τ)) v′(τ)| dτ

=
ρδΓ (δ)
(1 − ρ)δ

{
−P(δ,

1 − ρ
ρ

(v(t2) − v(a))) + P(δ,
1 − ρ
ρ

(v(t2) − v(t1)))

+ P(δ,
1 − ρ
ρ

(v(t1) − v(a))) − 0
}

→ 0 as t2 → t1.

Now, for ρ ∈ (0, 1), and δ > 1: since Vδ(t, τ) is continuous function on [a, b] × [a, b], it is uniformly
continuous and hence for any ε > 0 there exists a constant ω = ω(ε) > 0 such that

|Vδ(t2, τ) − Vδ(t1, τ)| < ε,

for all t1, t2, τ1, τ2 ∈ [a, b] and |t2 − t1| < ω, |τ2 − τ1| < ω.
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Therefore, ∫ t1

a
|Vδ(t2, τ) − Vδ(t1, τ)| v′(τ)dτ ≤ ε

∫ t1

a
v′(τ)dτ

= (v(t1) − v(a)) ε
≤ (v(b) − v(a))ε.

Thus, we conclude that∫ t1

a
|(Vδ(t2, τ) − Vδ(t1, τ))| v′(τ)dτ→ 0 uniformly as t2 → t.

The proof is completed. �

4. Equivalence of problem (1.1) and (1.2) to an integral equation

In this section, we prove the equivalence of the considered boundary value problem to an equation
involving fractional proportional integral. In all the following results, we assume that:

e
ρ−1
ρ v(b)(v(b) − v(a))β , ξe

ρ−1
ρ v(η)(v(η) − v(a))β.

Lemma 17. Let ρ ∈ (0, 1], 0 < α, β ≤ 1. For ψ ∈ C([a, b],R). The solution of the following linear
problem

C
pD

α,ρ,v
a

(
C
pD

β,ρ,v
a + λ

)
x (t) = ψ (t) , (4.1)

with the nonlocal boundary conditions (1.2) and the solution of the following integral equation

x(t) = −λ
(
Jβ,ρ,v

a x
)

(t) +
(
Jα+β,ρ,v

a ψ
)

(t) + Qe
ρ−1
ρ v(t)(v(t) − v(a))β

×
[
λ
(
Jβ,ρ,v

a x
)

(b) −
(
Jα+β,ρ,v

a ψ
)

(b) − λξ
(
Jβ,ρ,v

a x
)

(η) + ξ
(
Jα+β,ρ,v

a ψ
)

(η)
]
, (4.2)

where

Q =

[
e
ρ−1
ρ v(b)(v(b) − v(a))β − ξe

ρ−1
ρ v(η)(v(η) − v(a))β

]−1
(4.3)

are equivalent.

Proof. Applying the operator Jα,ρ,v
a to both sides of Eq (4.1) and using the first property of

Propostion 8, we get
C
pD

β,ρ,v
a x(t) + λx (t) − c0e

ρ−1
ρ (v(t)−v(a)) = Jα,ρ,v

a ψ(t).

Next, applying the operator Jβ,ρ,va on both sides of the previous equation yields

x(t) = c0e
ρ−1
ρ (v(t)−v(a)) + c0J

β,ρ,v
a e

ρ−1
ρ (v(t)−v(a))

− λJβ,ρ,v
a x (t) +Jβ,ρ,v

a Jα,ρ,v
a ψ(t),

so,

x(t) = c0e
ρ−1
ρ (v(t)−v(a)) +

c0

Γ(β + 1)ρβ
e
ρ−1
ρ (v(t)−v(a))(v(t) − v(a))β − λJβ,ρ,v

a x (t) +Jα+β,ρ,v
a ψ(t). (4.4)
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From the boundary condition x(a) = 0, we get c0 = 0.
Now, using the boundary condition x(b) = ξx(η), we obtain

c0 =
Γ(β + 1)ρβ

[
λ
(
J

β,ρ,v
a x

)
(b) −

(
J

α+β,ρ,v
a ψ

)
(b) − λξ

(
J

β,ρ,v
a x

)
(η) + ξ

(
J

α+β,ρ,v
a ψ

)
(η)

]
e
ρ−1
ρ (v(b)−v(a))(v(b) − v(a))β − ξe

ρ−1
ρ (v(η)−v(a))(v(η) − v(a))β

. (4.5)

Substituting the values of c0 and c0 in (4.4) we obtain formula (4.2).
Now, to prove the other way, it is enough to replace t by a and b to get the boundary conditions (1.2)

and to obtain (4.1) it is adequate to apply operators C
pD

β,ρ,v
a and C

pD
α,ρ,v
a consecutively to both sides

of (4.2). �

5. Uniqueness result

In this section we hold out the uniqueness of solutions to problem (1.1) and (1.2).
Let X = C([a, b],R) be a Banach space of all continuous functions from [a, b] to R endowed with

the norm ‖x‖ = sup
t∈[a,b]

|x(t)| .

Associated with the problem (1.1) and (1.2), we define a fixed point operator T : X → X by

T x(t) = −λ
(
Jβ,ρ,v

a x
)

(t) +
(
Jα+β,ρ,v

a f (·, x (·))
)

(t) + Qe
ρ−1
ρ v(t)(v(t) − v(a))β

×

[
λ
(
Jβ,ρ,v

a x
)

(b) −
(
Jα+β,ρ,v

a f (·, x (·))
)

(b) − λξ
(
Jβ,ρ,v

a x
)

(η)

+ξ
(
Jα+β,ρ,v

a f (·, x (·))
)

(η)
]
. (5.1)

and we define the constants

S δ =

P(δ, 1−ρ
ρ

(v(b) − v(a)))

(1 − ρ)δ

 (1 + |Q| e
ρ−1
ρ v(a)(v(b) − v(a))β

)
+ |Q| e

ρ−1
ρ v(a)(v(b) − v(a))β |ξ|

P(δ, 1−ρ
ρ

(v(η) − v(a)))

(1 − ρ)δ

 , δ ∈ {β, α + β}. (5.2)

We should remark that the fixed point of operator T is the solution of the integral Eq (4.4) and
consequently the solution of problem (1.1) and (1.2).

Theorem 18. Let ρ ∈ (0, 1) and assume that f : [a, b]×R→ R be a continuous function satisfying the
assumption:

(H1) There exists K > 0 such that | f (t, z1) − f (t, z2)| ≤ K |z1 − z2| , for all t ∈ [a, b], z1, z2 ∈ R, and
| f (t, 0)| ≤ Ω(t), with Ω is a continuous and non-negative function where sup

t∈[a,b]
Ω(t) = %.

Then problem (1.1) and (1.2) has a unique solution on [a, b] if

KS α+β + |λ| S β < 1, (5.3)

where S α+β and S β are given by (5.2).
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Proof. Let us choose r > 0 satisfying

r ≥
%S α+β

1 −
(
KS α+β + |λ| S β

) , (5.4)

and consider Br = {x ∈ X : ‖x‖ ≤ r}. We first show that T Br ⊂ Br.

Let x ∈ Br, for any t ∈ [a, b] we have

|T x(t)| =
∣∣∣∣−λ (
Jβ,ρ,v

a x
)

(t) +
(
Jα+β,ρ,v

a f (·, x (·))
)

(t) + Qe
ρ−1
ρ v(t)(v(t) − v(a))β

×

[
λ
(
Jβ,ρ,v

a x
)

(b) −
(
Jα+β,ρ,v

a f (·, x (·))
)

(b) − λξ
(
Jβ,ρ,v

a x
)

(η)

+ξ
(
Jα+β,ρ,v

a f (·, x (·))
)

(η)
]∣∣∣∣∣

≤ |λ|
∣∣∣∣(Jβ,ρ,v

a x
)

(t)
∣∣∣∣ +

∣∣∣∣(Jα+β,ρ,v
a f (·, x (·))

)
(t)

∣∣∣∣ + |Q| e
ρ−1
ρ v(t)(v(t) − v(a))β

×

[
|λ|

∣∣∣∣(Jβ,ρ,v
a x

)
(b)

∣∣∣∣ +
∣∣∣∣(Jα+β,ρ,v

a f (·, x (·))
)

(b)
∣∣∣∣ + |λ| |ξ|

∣∣∣∣(Jβ,ρ,v
a x

)
(η)

∣∣∣∣
+ |ξ|

∣∣∣∣(Jα+β,ρ,v
a f (·, x (·))

)
(η)

∣∣∣∣ ].
Using (H1) and Lemma 14 we get

|T x(t)| ≤
|λ| P(β, 1−ρ

ρ
(v(b) − v(a))) ‖x‖

(1 − ρ)β

+
P(α + β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)α+β
(K ‖x‖ + %)

+ |Q| e
ρ−1
ρ v(a)(v(b) − v(a))β

[ |λ| P(β, 1−ρ
ρ

(v(b) − v(a)))

(1 − ρ)β
‖x‖

+
P(α + β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)α+β
(K ‖x‖ + %) +

|λ| |ξ| P(β, 1−ρ
ρ

(v(η) − v(a)))

(1 − ρ)β
‖x‖

+
|ξ| P(α + β, 1−ρ

ρ
(v(η) − v(a)))

(1 − ρ)α+β
(K ‖x‖ + %)

]
.

After simplifications, we reach that

|T x(t)| ≤
(
KS α+β + |λ| S β

)
‖x‖ + %S α+β,

where S α+β and S β are given by (5.2). Thus

‖T x‖ ≤
(
KS α+β + |λ| S β

)
r + %S α+β ≤ r,

we obtain T Br ⊂ Br.

Next, we prove that the operator T is a contraction mapping. For x, y ∈ X, for all t ∈ [a, b] we have

|T x(t) − Ty(t)| =
∣∣∣∣−λ (
Jβ,ρ,v

a (x − y)
)

(t) +
(
Jα+β,ρ,v

a ( f (·, x (·)) − f (·, y (·)))
)

(t)
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+Qe
ρ−1
ρ v(t)(v(t) − v(a))β

[
λ
(
Jβ,ρ,v

a (x − y)
)

(b)

−
(
Jα+β,ρ,v

a ( f (·, x (·)) − f (·, y (·)))
)

(b) − λξ
(
Jβ,ρ,v

a (x − y)
)

(η)

+ξ
(
Jα+β,ρ,v

a ( f (·, x (·)) − f (·, y (·)))
)

(η)
]∣∣∣∣∣ .

From (H1) and Lemma 14 we get

|T x(t) − Ty(t)| ≤
|λ| P(β, 1−ρ

ρ
(v(b) − v(a))) ‖x − y‖

(1 − ρ)β
+
P(α + β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)α+β
K ‖x − y‖

+Qe
ρ−1
ρ v(t)(v(t) − v(a))β

 |λ| P(β, 1−ρ
ρ

(v(b) − v(a))) ‖x − y‖

(1 − ρ)β

+
P(α + β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)α+β
K ‖x − y‖ +

|λ| |ξ| P(β, 1−ρ
ρ

(v(η) − v(a))) ‖x − y‖

(1 − ρ)β

+
|ξ| P(α + β, 1−ρ

ρ
(v(η) − v(a)))

(1 − ρ)α+β
K ‖x − y‖

 .
Then, after simplifications, we conclude that

|T x(t) − Ty(t)| ≤
(
KS α+β + |λ| S β

)
‖x − y‖ ,

which on taking the norm for t ∈ [a, b] produces

‖T x − Ty‖ ≤
(
KS α+β + |λ| S β

)
‖x − y‖ .

From the condition (5.3) the operator T is a contraction. Hence, by Banach fixed point theorem the
problem (1.1) and (1.2) has a unique solution on [a, b]. The proof is completed. �

6. Existence result

In this section, by using Leray-Schauder alternative fixed point theorem [36], we present the
following result about the existence of the solutions for the given problem.

Consider the following hypothesis:
(H2) f : [a, b] × R → R are continuous functions and there exist a real positive constants ς0 and ς1

such that
| f (t, z) | ≤ ς0 + ς1|z|,

for all (t, z) ∈ [a, b] × R.

Theorem 19. Let ρ ∈ (0, 1) and assume that (H2) holds. If

ς1S α+β + |λ| S β < 1, (6.1)

then the boundary value problem (1.1) and (1.2) has at least one solution on [a, b].
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Proof. We first show that the operator T is completely continuous.
It is clear that the continuity of f implies the continuity of the operator T . Now, let Υ be any

nonempty bounded subset of X. Then, there exists N > 0 such that for any x ∈ Υ, ‖x‖ ≤ N. Notice that
from condition (H2) for all x ∈ Υ we have

| f (t, x(t)) | ≤ ς0 + ς1N. (6.2)

Next we prove that T (Υ) is uniformly bounded. Let x ∈ Υ. Then, for any t ∈ [a, b] we have

|T x(t)| =
∣∣∣∣−λ (
Jβ,ρ,v

a x
)

(t) +
(
Jα+β,ρ,v

a f (·, x (·))
)

(t) + Qe
ρ−1
ρ v(t)(v(t) − v(a))β

×

[
λ
(
Jβ,ρ,v

a x
)

(b) −
(
Jα+β,ρ,v

a f (·, x (·))
)

(b) − λξ
(
Jβ,ρ,v

a x
)

(η)

+ξ
(
Jα+β,ρ,v

a f (·, x (·))
)

(η)
]∣∣∣∣∣

≤ |λ|
∣∣∣∣(Jβ,ρ,v

a x
)

(t)
∣∣∣∣ +

∣∣∣∣(Jα+β,ρ,v
a f (·, x (·))

)
(t)

∣∣∣∣ + |Q| e
ρ−1
ρ v(t)(v(t) − v(a))β

×

[
|λ|

∣∣∣∣(Jβ,ρ,v
a x

)
(b)

∣∣∣∣ +
∣∣∣∣(Jα+β,ρ,v

a f (·, x (·))
)

(b)
∣∣∣∣ + |λ| |ξ|

∣∣∣∣(Jβ,ρ,v
a x

)
(η)

∣∣∣∣
+ |ξ|

∣∣∣∣(Jα+β,ρ,v
a f (·, x (·))

)
(η)

∣∣∣∣ ].
Benefiting from (H1) and Lemma 14 we notch up that

|T x(t)| ≤
|λ| P(β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)β
N +
P(α + β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)α+β
(ς0 + ς1N)

+ |Q| e
ρ−1
ρ v(a)(v(b) − v(a))β

[ |λ| P(β, 1−ρ
ρ

(v(b) − v(a)))

(1 − ρ)β
N

+
P(α + β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)α+β
(ς0 + ς1N) +

|λ| |ξ| P(β, 1−ρ
ρ

(v(η) − v(a)))

(1 − ρ)β
N

+
|ξ| P(α + β, 1−ρ

ρ
(v(η) − v(a)))

(1 − ρ)α+β
(ς0 + ς1N)

]
< +∞.

Consequently, ‖x‖ < +∞ for any x ∈ Υ. Therefore, T (Υ) is uniformly bounded.
Now, we shadow forth the equicontinuity of T on Υ. Let x ∈ Υ.

For any t1, t2 ∈ [a, b], where t2 > t1, we have

|T x(t2) − T x(t1)| ≤ |λ|
∣∣∣∣(Jβ,ρ,v

a x
)

(t2) −
(
Jβ,ρ,v

a x
)

(t1)
∣∣∣∣

+
∣∣∣∣(Jα+β,ρ,v

a f (·, x (·))
)

(t2) −
(
Jα+β,ρ,v

a f (·, x (·))
)

(t1)
∣∣∣∣

= |λ|

∣∣∣∣∣∣ 1
ρβΓ (β)

∫ t2

a
(v(t2) − v(τ))β−1 e

ρ−1
ρ (v(t2)−v(τ))x (τ) v′(τ)dτ

−
1

ρβΓ (β)

∫ t1

a
(v(t1) − v(τ))β−1 e

ρ−1
ρ (v(t1)−v(τ))x (τ) v′(τ)dτ

∣∣∣∣∣∣
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+

∣∣∣∣∣∣ 1
ρα+βΓ (α + β)

∫ t2

a
(v(t2) − v(τ))α+β−1 e

ρ−1
ρ (v(t2)−v(τ)) f ((τ) , x (τ)) v′(τ)dτ

−
1

ρα+βΓ (α + β)

∫ t1

a
(v(t1) − v(τ))α+β−1 e

ρ−1
ρ (v(t1)−v(τ)) f ((τ) , x (τ)) v′(τ)dτ

∣∣∣∣∣∣ .
Taking the advantage of the relation

∫ t2
a

=
∫ t1

a
+

∫ t2
t1
, we acquire that

|T x(t2) − T x(t1)|

=
|λ|

ρβΓ (β)

∣∣∣∣∣∣
∫ t1

a
(v(t2) − v(τ))β−1 e

ρ−1
ρ (v(t2)−v(τ))x (τ) v′(τ)dτ

+

∫ t2

t1
(v(t2) − v(τ))β−1 e

ρ−1
ρ (v(t2)−v(τ))x (τ) v′(τ)dτ

−

∫ t1

a
(v(t1) − v(τ))β−1 e

ρ−1
ρ (v(t1)−v(τ))x (τ) v′(τ)dτ

∣∣∣∣∣∣ +
1

ρα+βΓ (α + β)

×

∣∣∣∣∣∣
∫ t1

a
(v(t2) − v(τ))α+β−1 e

ρ−1
ρ (v(t2)−v(τ)) f ((τ) , x (τ)) v′(τ)dτ

+

∫ t2

t1
(v(t2) − v(τ))α+β−1 e

ρ−1
ρ (v(t2)−v(τ)) f ((τ) , x (τ)) v′(τ)dτ

−

∫ t1

a
(v(t1) − v(τ))α+β−1 e

ρ−1
ρ (v(t1)−v(τ)) f ((τ) , x (τ)) v′(τ)dτ

∣∣∣∣∣∣
=

|λ|

ρβΓ (β)

∣∣∣∣∣∣
∫ t1

a

(
(v(t2) − v(τ))β−1 e

ρ−1
ρ (v(t2)−v(τ))

− (v(t1) − v(τ))β−1 e
ρ−1
ρ (v(t1)−v(τ))

)
×x (τ) v′(τ)dτ +

∫ t2

t1
(v(t2) − v(τ))β−1 e

ρ−1
ρ (v(t2)−v(τ))x (τ) v′(τ)dτ

∣∣∣∣∣∣ +
1

ρα+βΓ (α + β)

×

∣∣∣∣∣∣
∫ t1

a

(
(v(t2) − v(τ))α+β−1 e

ρ−1
ρ (v(t2)−v(τ))

− (v(t1) − v(τ))α+β−1 e
ρ−1
ρ (v(t1)−v(τ))

)
× f ((τ) , x (τ)) v′(τ)dτ +

∫ t2

t1
(v(t2) − v(τ))α+β−1 e

ρ−1
ρ (v(t2)−v(τ)) f ((τ) , x (τ)) v′(τ)dτ

∣∣∣∣∣∣
≤

|λ|N
ρβΓ (β)

{∫ t1

a

∣∣∣∣(Vβ(t2, τ) − Vβ(t1, τ)
)

v′(τ)
∣∣∣∣ dτ

+

∫ t2

t1

∣∣∣∣(v(t2) − v(τ))β−1 e
ρ−1
ρ (v(t2)−v(τ))v′(τ)

∣∣∣∣ dτ} +
ς0 + ς1N

ρα+βΓ (α + β)

×

{∣∣∣∣∣∣
∫ t1

a

∣∣∣∣(Vα+β(t2, τ) − Vα+β(t1, τ)
)

v′(τ)v′(τ)
∣∣∣∣ dτ

+

∫ t2

t1

∣∣∣∣(v(t2) − v(τ))α+β−1 e
ρ−1
ρ (v(t2)−v(τ))v′(τ)

∣∣∣∣ dτ} ,
where the function Vδ (here δ = β, α + β) is given by (3.9). Thus, from Lemma 15

|T x(t2) − T x(t1)| ≤
|λ|N
ρβΓ (β)

{∫ t1

a

∣∣∣∣(Vβ(t2, τ) − Vβ(t1, τ)
)

v′(τ)
∣∣∣∣ dτ
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+
ρβΓ (β)
(1 − ρ)β

P(β,
1 − ρ
ρ

(v(t2) − v(t1)))
}

+
ς0 + ς1N

ρα+βΓ (α + β)

×

{∣∣∣∣∣∣
∫ t1

a

∣∣∣∣(Vα+β(t2, τ) − Vα+β(t1, τ)
)

v′(τ)
∣∣∣∣ dτ

+
ρα+βΓ (α + β)

(1 − ρ)α+β
P(α + β,

1 − ρ
ρ

(v(t2) − v(t1)))
}
.

Then, by making use of Lemma 16, we achieve

lim
t2→t1
|T x(t2) − T x(t1)| = 0.

Thus, the operator T is equicontinuous. Hence, by Arzela-Ascoli theorem, we deduce that the
operator T is completely continuous.

Finally, we will verify that the set Φ(T ) = {x ∈ X : x = mT x for some 0 < m < 1} is bounded.
For all x ∈ Φ(T ), and for any t ∈ [a, b], we have

|x(t)| = m |T x(t)|

≤
|λ| P(β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)β
‖x‖ +

P(α + β, 1−ρ
ρ

(v(b) − v(a)))

(1 − ρ)α+β
(ς0 + ς1 ‖x‖)

+ |Q| e
ρ−1
ρ v(a)(v(b) − v(a))β

 |λ| P(β, 1−ρ
ρ

(v(b) − v(a)))

(1 − ρ)β
‖x‖

+
P(α + β, 1−ρ

ρ
(v(b) − v(a)))

(1 − ρ)α+β
(ς0 + ς1 ‖x‖) +

|λ| |ξ| P(β, 1−ρ
ρ

(v(η) − v(a)))

(1 − ρ)β
‖x‖

+
|ξ| P(α + β, 1−ρ

ρ
(v(η) − v(a)))

(1 − ρ)α+β
(ς0 + ς1 ‖x‖)

 .
Then, we obtain the following after simplifications

‖x‖ ≤
(
ς1S α+β + |λ| S β

)
‖x‖ + ς0S α+β.

This brings forth to

‖x‖ ≤
ς0S α+β

1 −
(
ς1S α+β + |λ| S β

) ,
which proves that Φ(T ) is bounded. Thus, by Leray-Schauder alternative theorem, the operator T has
at least one fixed point. Hence, the initial value problem (1.1) and (1.2) has at least one solution on
[a, b]. The proof is completed. �

7. Special cases

In this section, we elaborate some special cases. From Lemma (13), in the case ρ = 1 we can replace

the formulas
P(δ, 1−ρ

ρ (v(b)−v(a)))

(1−ρ)δ
and

P(δ, 1−ρ
ρ (v(η)−v(a)))

(1−ρ)δ
by the formulas (v(b)−v(a))δ

Γ(δ+1) and (v(η)−v(a))δ

Γ(δ+1) resprectively.
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Thereof, we conclude that

lim
ρ→1−

S δ =

(
(v(b) − v(a))δ

Γ(δ + 1)

) (
1 + |Q̂|(v(b) − v(a))β

)
+|Q̂‘|(v(b) − v(a))β |ξ|

(
(v(η) − v(a))δ

Γ(δ + 1)

)
:= Ŝ δ, δ ∈ {β, α + β}, (7.1)

where
Q̂ =

[
(v(b) − v(a))β − ξ(v(η) − v(a))β

]−1
.

Accordingly, we can state the following result.

Theorem 20. Let ρ = 1 and f : [a, b] × R → R be a continuous function satisfying assumption (H1).
Then problem (1.2)–(1.4) has a unique solution on [a, b] if

KŜ α+β + |λ| Ŝ β < 1, (7.2)

where Ŝ δ (δ = α + β, β) is given by (7.1).

Because P(α, x) ∈ [0, 1] for all α, x ∈ R+, we obtain the inequalities:

S α+β ≤
S ∗

(1 − ρ)α
, and S β ≤ S ∗, (7.3)

where

S ∗ =
1 + (1 + |ξ|) |Q| e

ρ−1
ρ v(a)(v(b) − v(a))β

(1 − ρ)β
. (7.4)

So, from Theorem 18 and Theorem 19 we obtain the following results:

Corollary 21. Let ρ ∈ (0, 1) and f : [a, b]×R→ R be a continuous function satisfying the assumption
(H1). Then the problem (1.1) and (1.2) has a unique solution on [a, b] if

KS ∗

(1 − ρ)α
+ |λ| S ∗ < 1, (7.5)

where S ∗ is given by (7.4).

Corollary 22. Let ρ ∈ (0, 1), and assume that (H2) holds. If

ς1S ∗

(1 − ρ)α
+ |λ| S ∗ < 1, (7.6)

then the boundary value problem (1.1) and (1.2) has at least one solution on [a, b].

8. Applications

In this section, we bring in two examples in order to corroborate our theoretical results.

AIMS Mathematics Volume 7, Issue 1, 1273–1292.



1289

Example 23. Consider the following problem

C
pD

3
4 ,

3
4 ,t

0

(
C
pD

1
2 ,

3
4 ,t

0 + 1
8

)
x (t) = 1 − t +

sin x(t)
11 , t ∈ [0, 1], (8.1)

x(0) = 0, x(1) = 1
2 x(1

2 ), (8.2)

Here v(t) = t, a = 0, b = 1, η = 0.5, α = 0.75, β = 0.5, ρ = 0.75, ξ = 1/2, λ = 1/8, and f (t, x(t)) =

1 − t +
sin x(t)

11 .

So, we get | f (t, x) − f (t, y)| ≤ K |x − y| , where K = 1
11 .

By using Matlab program with the given value, we obtain

S β = 4.681316269082853,

S α+β = 4.216579478045753,

and

KS α+β + |λ| S β = 0.968489940730425 < 1.

By virtue of Theorem 18, we conclude that problem (8.1) and (8.2) has a unique solution on [0, 1].

Example 24. Consider the following problem

C
pD

1
4 ,

1
2 ,ln(t)

1

(
C
pD

1
2 ,

1
2 ,ln(t)

1 + 1
10

)
x (t) =

e−t+|x(t)|+ln|x(t)|
24 , t ∈ [1, e], (8.3)

x(1) = 0, x(e) = 1
7 x( 3

2 ), (8.4)

Here v(t) = ln(t), a = 1, b = e, η = 1.5, α = 0.25, β = 0.5, ρ = 0.5, ξ = 1/7, λ = 1/10, and
f (t, x(t)) =

e−t+|x(t)|+ln|x(t)|
24 .

So, we get | f (t, x)| ≤ e−1
24 + 1

12 |x| ,(i.e., ς1 = 1
12 ).

By using Matlab program with the given value, we obtain

S β = 5.295418315878468,

S α+β = 5.529735638675511,

and

ς1S α+β + |λ| S β = 0.990353134810806 < 1.

In so far as Theorem 19, we go through that problem (8.3) and (8.4) has at least one solution on
[1, e].
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9. Conclusions

In this article, we discussed the existence and uniqueness of solutions to a certain type of Langevin
equation subject to nonlocal boundary conditions with the assistance of the lower regularized
incomplete Gamma function. The derivative involved in this type of Langevin equation is the
generalized Caputo propotional fractional derivative which encloses many of the known fractional
derivatives. To the best of our knowledge, this article is the first to handle the existence and
uniqueness of solutions to differential equations in the frame of such generalized fractional derivatives
of a function with respect to another function.
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