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A B S T R A C T   

The present paper describes a three compartment mathematical model to study the transmission of the current 
infection due to the novel coronavirus (2019-nCoV or COVID-19). We investigate the aforesaid dynamical model 
by using Atangana, Baleanu and Caputo (ABC) derivative with arbitrary order. We derive some existence results 
together with stability of Hyers-Ulam type. Further for numerical simulations, we use Adams–Bashforth (AB) 
method with fractional differentiation. The mentioned method is a powerful tool to investigate nonlinear 
problems for their respective simulation. Some discussion and future remarks are also given.   

1. Introduction 

studding the existing literature, one can read that in history 
numerous outbreak came out which totally changed the life situation of 
the people on this earth. In last four centuries some famous pandemic in 
which millions of people lasted their lives. In the past century two 
outbreaks killed many millions people in Europe, Asia and Middle east 
as well as in Africa [1,2]. Infectious diseases is a massive threat for 
humanity and can greatly effect the economy of a state. Proper under-
standing of a disease’ dynamics could play an important role in elimi-
nation of the infection from the community. Further, implementation of 
suitable control strategies against the disease transmission have been 
assumed a big challenge. Currently the coronavirus outbreak greatly 
destroyed the lives of many people around the globe. The mentioned out 
break was initiated in China Wuhan at the end of 2019 and with a very 
rapid speed of fifty or sixty days it spread out in the whole globe. WHO 
announced it as a pandemic. For some detail see [3–6]. Therefore 
numerous measures have been taken by different countries to control it. 
Also researchers have started to form different procedure to cure and 
control it. In this regards, the approach of mathematical modeling is one 
of the key tool for handling such and other challenges. A number of 
general and disease models have been investigated in existing literature 

which enables us to explore and control the spread of infectious diseases 
in a better way [7,8]. 

The above mentioned epidemic models as well as many other in the 
literature are actually based on integer-order differential equations 
(IDEs). However, in the last few years, it is noticed that with the help of 
fractional-order differential equations (FDEs) one can model universal 
phenomenon with a greater degree of accuracy [9]. This idea was 
implemented in many field including engineering, economics, control 
theory, finance and some up to the mark results were founded. Frac-
tional calculus is the generalization of classical integer-order calculus. 
The increasing interest of using FDEs in the modeling of complex real 
world problems is due to its various properties which are could not be 
founded in IDEs. In contrast of IDEs which are local in nature, the FDEs 
are non-local and posses the memory effects which make it more supe-
rior as in many situations the future state of the model depends not only 
upon the current state but also on the previous history. These features 
enables FDEs to effectively model the phenomenon having not only the 
non-Gaussian but also for non-Markovian behavior. Further, the clas-
sical IDEs are unable to provide the information in between two 
different integer values and it can be make clear with the help of FDEs. 
Various type of fractional-order operators were introduced in existing 
literature to over come such limitations of integer-order derivative. The 
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applications of these fractional operators can be found in various fields 
[10,11]. 

During the eighteen century when Reimann, Liouvilli, Euler and 
Fourier are struggling in producing significant results in ordinary cal-
culus. At the same time, great contributions were made in the area of 
fractional calculus as well and reinstated and valuable work has been 
carried out later on. This is due to the various application of fractional 
calculus in the filed of mathematical modeling where several hereditary 
materials and memory process cannot be explained clearly by ordinary 
calculus. Because fractional calculus which include classical calculus is a 
special case has greater degree of freedom in differential operator as 
compared to ordinary differential operator which is local in nature. The 
important applications of the said calculus may be traced out in [12–17]. 
Therefore, researchers have given very much attention in studying of 
fractional derivatives and integrals. In fact fractional derivative is a 
definite integral which geometrically interpret the accumulation of the 
whole function or the whole spectrum which globalize it. Investigation 
of differential equations for qualitative study, numerical and optimiza-
tion, significant contribution has been made by researchers, we refer few 
as [18–21]. It is also remarkable that fractional differential operators 
have been defined by number of ways. It is a well known fact that the 
definite integral has no regular kernel, therefore both type of kernel 
have been involved in various definition. One of the important definition 
which has very recently attracted the attention is the ABC derivative 
introduced by Atangana-Baleanu and Caputo [22] in 2016. The 
mentioned derivative exhibit the singular kernel by nonsingular kernel 
and therefore were greatly studied [23–25]. For numerical purposes 
large numbers of methods have been developed, see for detail [28–36]. 
The famous Adams–Bashforth method has also used for numerical pur-
pose in past see [37]. 

To properly know the mechanism of transmission and hence control 
the COVID-19 mathematically, we will formulate a model with the help 
of available literature. The current study is actually divided into three 
main parts; the statistic, dynamic and control. In the first part, we just 
studied the qualitative aspects of the disease and estimated the key rates 
form the real data. In the dynamics part, the authors have tried to 
answer questions like when the disease will dies out? When does it will 
persist in the population? Which parameters are more responsible for 
the disease spreading? Mathematically, we will calculate the possible 
equilibria of the model and its stability analysis will be carried out using 
the methods of linearization, the Lyapunov theory and geometrical 
approach. On the other hand the area devoted to mathematical model-
ling plays an important role to investigate the dynamics of a disease and 
hence its control particularly in the absence of vaccination or at early 
stages of the disease. The area devoted to investigate biological models 
for infectious diseases is warm area of research in recent time. Many 
mathematical models can be found in the literature which study stability 
theory, existence results and optimization of biological models, we refer 
a few as ([13–16]). Similar to other diseases [26,27], we can model 
COVID-19 [38,39], and can predict its future behavior. Also, one can 
look for possible prevention strategies as well. Inspired from the nice 
properties of FDEs particularly using the definition of (ABC) derivative, 
we intend to capture the transmission of COVID-19 in the from of 
⎧
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with given initial conditions 

P(0) = P0, I(0) = I0, Q(0) = Q0, (2)  

where 0 < r⩽1. Here P(t) is the susceptible human population, I(t)
represent the people who are infected with COVID-19 and Q(t) is the 
people who are quarantined at time t. We place the following assump-
tions on the model:  

a1. All of the parameters and states of the model under discussion are 
nonnegative.  

a2. The susceptible people move to the infection classes and there is a 
constant inflow into the susceptible population.  

a3. Initially infected or suspected people move to quarantined class 
and confirmed cases from quarantined come back to the infected 
compartment. 

The detail of parameters used in model (1) with complete descriptions 
are given in Table 1. Further the involve state functions of the model 
obey N(t) = P(t)+I(t)+Q(t), where the total population is N. Since most 
of iterative methods often faced to convergence problems. Therefore it 
was needed to search some sophisticated tools of numerical analysis 
which may help to find the numerical solution with good accuracy and 
reliability for usual FDEs as well as those problem involving ABC de-
rivative. Therefore the authors [40] extended the well known 
Adams–Bashforth numerical procedure for the concerned FDEs. They 
successfully find numerical results with good accuracy to some chaotic 
problems. After that the technique mentioned afore has frequently used 
to deal those problems involving ABC derivative, see detail in [41–43]. 
For numerical purpose stability is also needed so Ulam type stability is 
investigated for suggested model. Also the existence of the new con-
structed model is guaranteed by applying fixed point theorems of 
Banach and Krassnoselskii’s. The mentioned stability has been investi-
gated for usual fractional derivatives in large numbers of research arti-
cles like [44–46], however, the same was not investigated for ABC 
derivatives. Finally the results are displayed against real data which has 
taken from a source about Pakistan during the month of March, 2020. 

2. Deterministic form of our proposed model and its properties 

Considering the above discussion, the deterministic form of model 
(1) is formulated as follows: 

d
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(3)  

with initial conditions 

P(0) = P0 > 0, I(0) = I0⩾0, Q(0) = Q0⩾0, (4) 

The model (3) whose the transmission structure is depicted in the 
Fig. 1. We discuss the well possedness of the proposed model (3) then we 
will use the method of [26,47,48] then we have the following axioms. 

Proposition 2.1. The model (3) is in orthant R3
+ is invariant. 

Proof. Let Y = (P, I,Q)
T , then system (3) becomes 

dY(t)
dt

= LY +C, (5) 

Table 1 
Description of the parameters used in model (1).  

Notation Parameters description 

λ  Recruitment rate 
γ  The disease transmission rate 
d0  Natural death rate 
η  Rate at which infected are getting quarantine 
μ  Disease-related death rate in quarantined individuals 
σ  Rate at which quarantined people getting infection 
h  Disease-related death rate in infected people  
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where 

L =

⎛

⎝
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0
0

⎞

⎠.

Clearly, C⩾0 and L preserve the axioms of Metzler matrix, so system (3) 
is invariant in R3

+. 

Proposition 2.2. The solution of (3) i.e., (P, I,Q) with (4) are positive. 

Proof. It could be clearly noted that the solution of the first equation of 
system (3) becomes 

dP(t)
dt

+
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The solution of equation (6) is 
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∀t > 0, which shows that P(t) > 0. Similarly the second equation of 
(3) gives the form 
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which implies that I(t)⩾0. Continuing the same process it is very simple 
to prove that Q(t) is also positive. Thus (P, I,Q) is nonnegative. 

Proposition 2.3. The solution i.e., (P, I,Q) of the proposed problem is 
given by (3)–(4) is bounded. 

Proof. Since 

T(t) = P(t)+ I(t)+Q(t). (8) 

The differentiation of the above Eq. (8) gives 

dT
dt

+ d0T = λ − μQ − hI. (9) 

Clearly, dT
dt + d0T⩽λ. Solving we obtain 
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⩽
λ
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+ T
(

0
)

e− d0 t, (10)  

which gives that 0 < T
(

P, I,Q)⩽ λ
d0 

as t→∞. 

Proposition 2.4. If T
(

0)⩽ λ
d0

, then the proposed problem is stated by (3)– 
(4) is a well-defined dynamical system the region is given by 

Δ =

{(

P, I,Q
)

∈ R3
+ : 0 < T⩽

λ
d0

}

, (11)  

which is biologically feasible. Moreover every solution in Δ remains in Δ for 
t⩾0. 

Proof. It is very much clear that all the states variables of the proposed 
problem are nonnegative, so the problem as stated by (3)–(4) is well- 

posed and biologically feasible. From T
(

0)⩽ λ
d0

, we concludes that 

T
(

t)⩽ Λ
d0

. So every solution of (3) along with (4) in Δ remains in Δ. 

2.1. Basic reproductive number and stability of disease-free equilibrium 

Let 

a = d0 + h+ η, b = d0 + μ+ σ. (12) 

The disease-free state (E1) takes the form 

E1 =

(

P1, 0, 0
)

, P1 =
λ
d0

. (13) 

This disease free state is used to calculate the threshold parameter 
(R 0), also called the basic reproduction number i.e., the average of 
secondary number of infections. Moreover, the threshold parameter 
(R 0) is used in the calculating of the endemic state. We follow the 
Watmough et al.[26,47] method for the purposes of calculating the 
threshold parameter.. We know that I* > 0, so 

I* =
γΛb − d0ab + d0ση

ab − ση .

By rearranging the terms, we can write I☆ in the following way 

I* =
bλγ − d0(b(d0 + h) + η(d0 + μ))

γ(b(d0 + h) + η(d0 + μ)) =
d0

γ
(R 0 − 1). (14) 

The term R 0 used in (14) and so called the threshold number or 
threshold quantity which is given by 

R 0 =
bλγ

d0(b(d0 + h) + η(d0 + μ)) . (15)  

Lemma 2.5. If R 0 < 1 then model (3) is stable locally at DFE (E1) 
defined in (13). 

Proof. Let J* is the Jacobian matrix of model (3) at E1, then 

J* =

⎛

⎝
− d0 − γP1 0

0 γP1 − a 0
0 η − b

⎞

⎠. (16) 

Fig. 1. Flowchart of our proposed model (1).  
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For obtaining the characteristic polynomial, we set |J* − ΛA|=0, where A 
is identity matrix. Thus The three eigenvalues of the Jacobean matrix at 
disease free equilibrium (DFE) are Λ1 = − d0, Λ2 = − b and Λ3 =
b(d0+h)+η(d0+μ)

b (R 0 − 1) − ησ
b . Clearly, the first two eigenvalues are nega-

tive, whereas, the third eigenvalue is negative only if R 0 < 1. Hence the 
proof. 

Theorem 2.6. Assume that R 0 < 1, then model (3) is stable globally at 
DFE (E1) (13). Otherwise unstable. 
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Thus, when R 0 < 1, then dF
dt < 0. Also, dF

dt = 0 if and only if P(t) = P1, I(t)
= 0 and Q(t) = 0, which proves the conclusion. 

3. Fundamental results 

Definition 3.1. If x(t) ∈ H
1(0, τ) and r ∈ (0,1], then the ABC deriva-

tive is defined by 
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We remark that if we replace M r
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then we get the so-called Caputo-Fabrizo differential 

operator. Further it is to be noted that 
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Here ABC(r) is known as normalization function which is defined as 
ABC(0) = ABC(1) = 1. Also E r stands for famous special function 
called Mittag–Leffler which is a generalization of the exponential func-
tion [19]. 

Definition 3.2. [20,21] The Mittag–Leffler function E r is defined as 
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Here again if we have r1 = r2 = 1, then E 1,1(t) = exp(t). 

Definition 3.3. Let x ∈ L[0,T], then the corresponding integral in ABC 
sense is given by 
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Lemma 3.4. (See Proposition 3 in [44]) The solution of the given 
problem for 1 > r > 0 

ABC
D r

0x
(
t
)
= z
(
t
)
, t ∈

[
0,T
]
, x(0) = x0,

is provided by 

x
(

t
)

= x0 +
(1 − r)
ABC(r)

z
(

t
)

+
r

Γ(r)ABC(r)

∫ t

0
(t − y)r− 1z

(

y
)

dy.

Note: For the qualitative analysis, we define Banach space H = X ×

X × X , where X = C[0,T] under the norm 
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The following fixed point theorem will be used to proceed in our 
main results. 

Theorem 3.5. ([46]) Let B be a convex subset of Hand assume that F ,

G are two operators with 

1.  F w+G w ∈ B for every w ∈ B ; 
2.  F is contraction; 
3.  G is continuous and compact. 

Then the operator equation F w+G w = w has at least one solution. 

4. Qualitative analysis of the considered model 

Before analyzing any biological model, it is natural to ask weather 
such dynamical problem really exist or not. This question is guaranteed 
by fixed point theory. Here, we will try to use the same theory for the 
proposed problem (1) being part of this research. Regarding to the 
aforesaid need, we express the right sides of model (1) as 

g1(t,P, I,Q) = λ − γP(t)I(t) − d0P(t),
g2(t,P, I,Q) = γP(t)I(t) − (d0 + h + η)P(t) + σQ(t),
g3(t,P, I,Q) = ηI(t) − (d0 + μ + σ)Q(t).

(20) 

With the help of (20), the developed system can be written in the 
form of 
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where 
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Expressing some growth condition and Lipschitzian assumption for 
existence uniqueness as:  

(A1) There exists constants CΘ,DΘ, such that 

|Θ(t,W (t))|⩽CΘ|W | +DΘ.

(A2) There exists constants LΘ > 0 such that for each W , W ∈ H such 
that 

|Θ
(

t,W
)
− Θ

(
t,W

)
|⩽LΘ

[
|W | − W |

]
.

Theorem 4.1. Under the hypothesis (A1,A2), the Integral equation (22) 
has at least one solution which consequently means that the considered sys-
tem (1) has the same number of solution if (1− r)

ABC(r)LΘ < 1. 

Proof. We prove the theorem in two step as bellow: 
Step I: Let W ∈ B , where B = {W ∈ H : ‖W ‖⩽ρ, ρ > 0} is closed 
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Hence F is contraction. 
Step-II: To show that G is relatively compact, we must show that G 

is bounded, and equi-continuous. To show this, we proceed as: Clearly, 
G is continuous as Θ is continuous and also for any W ∈ B , we have 

‖G (W )‖ = max
t∈[0,τ]

⃦
⃦
⃦
⃦

r
ABC(r)Γ(r)

∫ t

0
(t − y)r− 1Θ

(

y,W

(

y
))

dy
⃒
⃒
⃒
⃒,

⩽
r

ABC(r)Γ(r)

∫ τ

0
(τ − y)r− 1

⃒
⃒
⃒
⃒Θ
(

y,W

(

y
))⃒
⃒
⃒
⃒dy,

⩽
τr

ABC(r)Γ(r)

[

CΘρ + DΘ

]

.

(26)  

Hence (36) implies that G is bounded. For equi-continuity we let t1 >

t2 ∈ [0, τ], so that 

|G (W (t1) − G (W (t1)| =
r

ABC(r)Γ(r)

⃒
⃒
⃒
⃒

∫ t1

0
(t1 − y)r− 1Θ

(

y,W

(

y
))

dy 

−

∫ t1

0
(t1 − y)r− 1Θ

(

y,W

(

y
))

dy
⃒
⃒
⃒
⃒, ⩽

[CΘρ + DΘ]

ABC(r)Γ(r)

[

tr
1 − tr

2

]

. (27) 

Right side in (27) becomes zero at t1→t2. Since G is continues and so 

|G (W (t1) − G (W (t1)|→0, as t1→t2.

Since, G is a bounded operator and continuous as well, therefore, G 

is uniformly continuous and bounded. Thus, by Arzelá-Ascoli theorem G 

is relatively compact and so completely continuous. Hence, by Theorem 
4.1 the integral equation (22) has at least one solution and consequently 
the system under consideration has at least one solution. 

For uniqueness we give the next result. 

Theorem 4.2. Under assumption (A2), the integral equation (22) has 
unique solution which yields that the system under consideration (1) has the 

unique result if 
[
(1− r)LΘ
ABC(r) +

τrLΘ
ABC(r)Γ(r)

]〈

1. 

Proof. Let the operator T : H→H defined by 

TW

(

t
)

= W 0

(

t
)

+ [Θ(t,W (t))

− Θ0(t)]
(1 − r)
ABC(r)

+
r

ABC(r)Γ(r)

∫ t

0
(t − y)r− 1Θ

(

y,W

(

y
))

dy, t

∈

[

0, τ
]

.

(28) 

Let W ,W ∈ H, then one can take 
⃦
⃦
⃦TW − T W

⃦
⃦
⃦⩽

(1 − r)
ABC(r)

max
t∈[0,τ]

⃒
⃒
⃒
⃒Θ
(

t,W

(

t
))

− Θ
(

t,W
(

t
))⃒
⃒
⃒
⃒,

+
r

ABC(r)Γ(r)
max
t∈[0,τ]

⃒
⃒
⃒
⃒

∫ t

0
(t − y)r− 1Θ

(

y,W
(

y
))

dy

−

∫ t

0
(t − y)r− 1Θ

(

y,W

(

y
))

dy
⃒
⃒
⃒
⃒,⩽A

⃦
⃦
⃦W − W

⃦
⃦
⃦, (29)  

where 

A =

[
(1 − r)LΘ

ABC(r)
+

τrLΘ

ABC(r)Γ(r)

]

. (30) 

Hence, T is contraction from (29). Thus, the integral equation (22) 
has a unique solution and so does system (1) has a unique solution. 

Next, to develop and present some results on stability of the problem, 
we will consider a small perturbation ϕ ∈ C[0,T] which depends only on 
the solution and ϕ(0) = 0. Further.  

• |ϕ(t)|⩽ε, for ε > 0;  
• ABCD r

+0W (t) = Θ(t,W (t)) + ϕ(t).

Lemma 4.3. The solution of the perturbed problem 
ABC

D r
+0W

(
t
)
= Θ

(
t,W

(
t
))

+ ϕ
(
t
)
,W (0) = W 0. (31)  

satisfies the following relation 

|W (t)−
(

W 0

(

t
)

+ [Θ(t,W (t)) − Θ0(t)]
(1 − r)
ABC(r)

+
r

ABC(r)Γ(r)

∫ t

0
(t − y)r− 1Θ

(

y,W

(

y
))

dy
)⃒
⃒
⃒
⃒, ⩽

Γ(r) + τr

ABC(r)Γ(r)
ε = Ωτ,r.

(32)   

Proof. The proof is straight forward so we omit it. 

Theorem 4.4. Under assumption (A2) together with Result 32 in Lemma 
4.3, the solution of the integral equation (22) is Ulam-Hyers stable and 
consequently, the analytical results of the considered system are Ulam-Hyers 
stable if A < 1, where A is given in (30). 

Proof. Let W ∈ H be any solution and W ∈ H be unique solution of 

A. Din et al.                                                                                                                                                                                                                                      



Results in Physics 19 (2020) 103510

6

(22), then   

‖W − W ‖⩽Ωτ,r +A‖W − W ‖. (33)  

From (33), we can write 

‖W − W ‖⩽
Ωτ,r

1 − A
‖W − W ‖. (34)  

Hence the result (34) concluded that the solution of (22) is Ulam-Hyers 
stable and consequently the solution of the considered system is Ulam 
-Hyers stable. 

5. Numerical analysis of the constructed model (1) 

Here we are going to construct a numerical procedure for the con-
cerned model to perform simulation. Here we use a coupled numerical 
method due to the combination of “fundamental theorem of fractional 
calculus and the two-step Lagrange polynomial” as used in [49]. From 
first equation of model (1), we let 

ABC
D r

+0P
(
t
)
= g1(t,P(t), I(t),R(t)),P(0) = P0. (35) 

Inview of Lemma 3.4, (35) implies that 

P
(

t
)

= P0
1 − r

ABC(r)
g1

(

t,P
(

t
)

, I
(

t
)

,Q
(

t
))

+
r

ABC(r)
1

Γ(r)

∫ t

0
(t − y)r− 1g1

(

y,P
(

y
)

, I
(

y
)

,R
(

y
))

dy. (36) 

Now interm of Lagrange interpolation polynomials, we may write 
over [tk, tk+1], the function 

g1(y,P(y), I(y),R(y)) with h = tk − tk− 1  

as 

Pk ≈
1
h
[(y − tk− 1)g1(tk,P(tk), I(tk),Q(tk)) − (y

− tk)g1(tk− 1,P(tk− 1), I(tk− 1),Q(tk− 1))]. (37) 

Plugging (37) in (36), we may write (36) as 

P(tn+1) = P0 +
(1 − r)
ABC(r)

g1

(

tk,P

(

tk

)

, I

(

tk

)

,Q

(

tk

))

+
r

ABC(r)Γ(r)
∑n

j=0

(
g1
(
tj,P
(
tj
)
, I
(
tj
)
,Q
(
tj
))

h

∫ tj+1

tj

(

y − tj− 1

)

(tn+1 − y)r− 1dy

−
g1
(
tj− 1,P

(
tj− 1
)
, I
(
tj− 1
)
,Q
(
tj− 1
))

h

∫ tj+1

tj

(

y − tj

)

(tn+1 − y)r− 1dy

)

= P0 +
(1 − r)
ABC(r)

g1

(

tn,P

(

tn

)

, I

(

tn

)

,Q

(

tn

))

+
r

ABC(r)Γ(r)
∑n

j=0

(
g1
(
tj,P
(
tj
)
, I
(
tj
)
,R
(
tj
))

h
Ωj− 1,r

−
g1
(
tj− 1,P

(
tj− 1
)
, I
(
tj− 1
)
,Q
(
tj− 1
))

h
Λj,r

)

,

(38)  

where the notions Ωj− 1,r and Λj,r are given bellow 

Ωj− 1,r =

∫ tj+1

tj

(
y − tj− 1

)
(tn+1 − y)r− 1dy

= −
1
r
[(

tj+1 − tj− 1
)(

tn+1 − tj+1
)r

−
(
tj − tj− 1

)(
tn+1 − tj

)r ]

−
1

r(r + 1)

[(
tn+1 − tj+1

)r+1
−
(
tn+1 − tj

)r+1
]

(39)  

and 

Λj,r =

∫ tj+1

tj

(
y − tj

)
(tn+1 − y)r− 1dy

= −
1
r
[(

tj+1 − tj
)(

tn+1 − tj+1
)r ]

−
1

r(r + 1)

[(
tn+1 − tj+1

)r+1 

−
(
tn+1 − tj

)r+1
]
. (40) 

⃒
⃒
⃒W

(
t
)
− W

(
t
)⃒
⃒
⃒ =

⃒
⃒
⃒
⃒W

(

t
)

−

(

W 0

(

t
)

+
[
Θ
(

t,W
(

t
))

− Θ0

(
t
)] (1 − r)

ABC(r)
+

r
ABC(r)Γ(r)

∫ t

0
(t − y)r− 1Θ

(

y,W

(

y
))

dy
)⃒
⃒
⃒
⃒,

⩽
⃒
⃒
⃒
⃒W

(

t
)

− W

(

t
)⃒
⃒
⃒
⃒ =

⃒
⃒
⃒
⃒W

(

t
)

−

(

W 0

(

t
)

+ [Θ(t,W (t)) − Θ0(t)]
(1 − r)
ABC(r)

+
r

ABC(r)Γ(r)

∫ t

0
(t − y)r− 1Θ

(

y,W
(

y
))

dy
)⃒
⃒
⃒
⃒,

−

(

W 0

(

t
)

+ [Θ(t,W (t)) − Θ0(t)]
(1 − r)
ABC(r)

+
r

ABC(r)Γ(r)

∫ t

0
(t − y)r− 1Θ

(

y,W

(

y
))

dy
)⃒
⃒
⃒
⃒,

−

(

W 0

(

t
)

+
[
Θ
(

t,W
(

t
))

− Θ0

(
t
)] (1 − r)

ABC(r)
+

r
ABC(r)Γ(r)

∫ t

0
(t − y)r− 1Θ

(

y,W

(

y
))

dy
)⃒
⃒
⃒
⃒,

⩽ Ωτ,r +
(1 − r)LΘ

ABC(r)

⃦
⃦
⃦
⃦W − W

⃦
⃦
⃦
⃦+

τrLΘ

ABC(r)Γ(r)

⃦
⃦
⃦
⃦W − W

⃦
⃦
⃦
⃦,
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Put tj = jh, in (39) and (40), one has  

and   

Substituting (41) and (42) into (38), we get 

P

(

tn+1

)

= P

(

t0

)

+
1 − r

ABC(r)
g1

(

tn,P

(

tn

)

, I

(

tn

)

,Q

(

tn

))

+
r

ABC(r)
∑n

j=0

(
g1
(
tj,P
(
tj
)
, I
(
tn
)
,Q
(
tn
))

Γ(r + 2)
hr[(n + 1 − j)r

(n − j + 2 + r)

− (n − j)r
(n − j + 2

+ 2r)] −
g1
(
tj− 1,P

(
tj− 1
)
, I
(
tj− 1
)
,Q
(
tj− 1
))

Γ(r + 2)
hr[(n + 1 − j)r+1

− (n − j)r( n

− j + 1 + r
)]
)

.

(43) 

Similarly 

Table 2 
Values and sources of parameter used in numerical simulation.  

Parameter Value Source 

Λ  0.03805333333 fitted 
γ  0.00594474 estimated 
d0  0.007121000000 [47] 
η  0.144211141 estimated 
ν  0.007121000000 [47] 
σ  0.0052281 estimated 
k  0.027864676 estimated  

Fig. 2. Dynamics of susceptible individuals S(t) for R 0 < 1.  

Ωj− 1,r = −
hr+1

r
[(j + 1 − (j − 1) )(n + 1 − (j + 1) )r

− (j − (j − 1) )(n + 1 − j)r
] −

hr+1

r(r + 1)
[
(n + 1 − (j + 1) )r+1

− (n + 1 − j)r+1 ]

=
hr+1

r(r + 1)
[
− 2(r + 1)(n − j)r

+ (r + 1)(n + 1 − j)r
− (n − j)r+1

+ (n + 1 − j)r+1 ]

=
hr+1

r(r + 1)
[(n − j)r

( − 2(r + 1) − (n − j) ) + (n + 1 − j)r
(r + 1 + n + 1 − j) ]

=
hr+1

r(r + 1)
[(n + 1 − j)r

(n − j + 2 + r) − (n − j)r
(n − j + 2 + 2r) ].

(41)   

Λj,r = −
hr+1

r
[(j + 1 − j)(n + 1 − (j + 1) )r

] −
hr+1

r(r + 1)
[
(n + 1 − (j + 1) )r+1

− (n + 1 − j)r+1 ]

=
hr+1

r(r + 1)
[
− (r + 1)(n − j)r

− (n − j)r+1
+ (n + 1 − j)r+1 ]

=
hr+1

r(r + 1)
[
(n − j)r

( − (r + 1) − (n − j) ) + (n + 1 − j)r+1 ]

=
hr+1

r(r + 1)
[
(n + 1 − j)r+1

− (n − j)r
(n − j + 1 + r)

]
.

(42)   
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I

(

tn+1

)

= I

(

t0

)

+
1 − r

ABC(r)
g2

(

tn,P

(

tn

)

, I

(

tn

)

,Q

(

tn

))

+
r

ABC(r)
∑n

j=0

(
g1
(
tj− 1,P

(
tj− 1
)
, I
(
tj− 1
)
,Q
(
tj− 1
))

Γ(r + 2)
hr[(n + 1 − j)r

(n − j + 2

+ r) − (n − j)r
(n − j + 2

+ 2r)] −
g2
(
tj− 1,P

(
tj− 1
)
, I
(
tj− 1
)
,Q
(
tj− 1
))

Γ(r + 2)
hr[(n + 1 − j)r+1

− (n − j)r( n

− j + 1 + r
)]
)

(44)  

Fig. 5. Fractional dynamics of susceptible class in model (1) at various values 
of fractional order r. 

Fig. 6. Fractional dynamics of infected class in model (1) at various values of 
fractional order r. 

Fig. 7. Fractional dynamics of quarantined class in model (1) at various values 
of fractional order r. Table 3 

Description of the parameters that are involved in the considered model (1).  

Notation Parameters description Numerical value 

λ  Recruitment rate 0.003  
γ  Disease transmission rate 0.009  
d0  Natural death rate 0.009  
η  Rate at which infected are getting quarantine 0.004  
μ  Disease-related death rate in quarantined 

individuals 
0.004  

σ  Rate at which quarantined people getting infection 0.003  
h  Disease-related death rate in infected people 0.007  
P0  Initial population of susceptible 10 million  
I0  Initially infected population 0.01 million  
Q0  Quarantined people at t = 0  0.0011 million   

Fig. 3. Behavior of infected population when R 0 < 1.  

Fig. 4. Quarantine population in case of R 0 < 1.  

A. Din et al.                                                                                                                                                                                                                                      



Results in Physics 19 (2020) 103510

9

and 

Q

(

tn+1

)

= Q

(

t0

)

+
1 − r

ABC(r)
g3

(

tn,P

(

tn

)

, I

(

tn

)

,Q

(

tn

))

+
r

ABC(r)
∑n

j=0

(
g3
(
tj− 1,P

(
tj− 1
)
, I
(
tj− 1
)
,Q
(
tj− 1
))

Γ(r + 2)
hr[(n + 1 − j)r

(n − j + 2

+ r) − (n − j)r
(n − j + 2

+ 2r)] −
g3
(
tj− 1,P

(
tj− 1
)
, I
(
tj− 1
)
,Q
(
tj− 1
))

Γ(r + 2)
hr[(n + 1 − j)r+1

− (n − j)r( n

− j + 1 + r
)]
)

.

(45)  

6. Numerical interpretation and discussion 

This part is composed on two subsections. In first subsection we 
simulation the model 1 corresponding to integer order derivative by 
taking different initial values. 

6.1. Numerical results and discussion for model 1 at r = 1 

We carry out the simulation of the model 3 to verify the previous 
analytical results with the help of graphical representations. We used the 
data where its corresponding numerical values and sources are pre-
sented in Table 2. By using the values shown in Table 2, sample simu-
lation were carried out for susceptible population. We have consider 
four different initial population of susceptible individual, that is, P0 =

58.498998, 65.498998, 50.498998, 70.498998 where the population 
was considered in million and 58.498998 million is the actual popula-
tion. Whenever R 0 < 1. In the case of R 0 < 1, each solution curve S(t)
almost taking 550 days in order to reach to its equilibrium value P0 =

5.343818752. It means that if we wish to eliminate the disease from the 
community, still it will take enough time. Further, the figures show that 
the disease will effect a major portion of the population during the 
indicated course of outbreak. Further, Figs. 2–4 verify our theoretical 
findings that the disease-free equilibrium is locally and globally 
asymptotically stable if and only if R 0 < 1. 

6.2. Numerical results under fractional order derivative 

Now we taking Numerical simulation for model 1. We take some 
approximation to real values of the parameters of some locality which is 
considered in the model. The assumed values of the parameters are 
presented as given in Table 3. We took hypothetical initial population of 
susceptible, infected and quarantined to be 10,0.01,0.0011 millions, 
respectively. The approximate percentage of the density in the total 
population twenty-one thousands of the selected people susceptible 
people were 0.6, infected were 0.2 and quarantined were of 0.2. Thank 
to the numerical procedure is given in Section 5, we simulate the results 
in the following Figs. 5–7 as: We have simulated the results by using the 
afore established numerical method of in Section 5 subject to the given 
numerical values. From 5, we see that as the papulation of susceptible 
class is decreasing with different rate due to fractional order. As a results 
infection is going on increasing at various fractional order in Fig. 6. 
Smaller the order faster the growth and decay rate and hence these 
classes rapidly approaching to their concerned stable position. On the 
other hand when the infected papulation is increasing as a result more 
people should be sent to quarantined and hence the density of this class 
is also growing as shown in Fig. 7. From Figs. 5–7, one can observe that 
fractional derivative produces the global dynamics of the concerned 
model in which smaller the order faster will be the growth and decay 
rate of the concerned papulation and vice versa. 

7. Conclusion 

A new mathematical model of three different compartments of pre-
sent novel coronavirus infection has been established under the nonlocal 
and nonsingular kernel type derivative. Further its existence has been 
demonstrated via the use of classical fixed point results of Banach and 
Guo -Krasnoselskii. Also stability results have been established. By using 
Adams–Bashforth numerical method of fractional type the numerical 
simulations were performed which addressed as the infection go on 
increasing, then more people will be pushed into quarantined so that 
other people may be saved from being infected in a community. On the 
other hand if before self quarantined is adopted then the process may go 
on reverse direction and infection will be deceasing and hence healthy 
community may be restored. 
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