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Abstract
In this note, we formulate a new linear operator given by Airy functions of the first
type in a complex domain. We aim to study the operator in view of geometric
function theory based on the subordination and superordination concepts. The new
operator is suggested to define a class of normalized functions (the class of univalent
functions) calling the Airy difference formula. As a result, the suggested difference
formula joining the linear operator is modified to different classes of analytic
functions in the open unit disk.
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1 Introduction
The field of geometric function theory is rich with different types of linear, differential,
integral, and mixed operators. A few linear operators have been formulated in this field,
such as the Carlson–Shaffer operator [1], hypergeometric linear operator [2, 3], and Fox–
Write linear operator [4]. In this note, we present a linear operator formulated by the Airy
functions [5], which are special functions determined by the hypergeometric function of
a complex variable. These functions are solutions for the Airy equation f ′′(z) – zf (z) = 0.
The class of these differential equations plays an important role in applied sciences such as
optics, economy, and astronomy. The greatest benefit of Airy functions in mathematical
studies is development in the fields of special functions and statistical studies [6]. The
formula of the Airy function of a complex variable is given by
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Figure 1 Three behavior graphs of Airy Aı(z) and Airy distribution functions respectively
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where the integral is over the open unit disk U := {z ∈ C : |z| < 1}, 3n/3 ≈ 1
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Moreover, the Airy distribution function of the random variable χ is given by the formula
(see Fig. 1)

P(χ ) = 2e–2/3χ3[
χAı

(
χ2) – (Aı)′

(
χ2)]. (2)

By using the complex probability [7, 8], Eq. (2) can be extended to the complex domain as
follows:

P(z) = 2e–2/3z3[
χAı

(
z2) – (Aı)′

(
z2)]. (3)
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2 Methods
Let � be the class of normalized functions in U having the series

f (z) = z +
∞∑

n=2

ϕnzn, z ∈ U . (4)

And let S∗, C be the classes of starlike and convex functions respectively. The Hadamard
product (convolution product) is defined by the series

f (z) ∗ g(z) = z +
∞∑

n=2

ϕnψnzn, z ∈ U ,

where g(z) = z +
∑∞

n=2 ψnzn. An analytic function f ∈ U is on subordination with the an-
alytic function g ∈ U represented by f ≺ g if there occurs an analytic function w with
|w(z)| ≤ |z| such that f = (g(w)). In the sequel, we shall use the class of normalized func-
tions � satisfying f (0) = 0 and f ′(0) = 1 having the series (see [9])

f (z) = z +
∞∑

n=2

φnzn, z ∈ U .

Moreover, two analytic functions f and g in U , the function f is majored by g (f 
 g)
if there is an analytic function � , |� | < 1 such that f (z) = � (z)g(z). Note that there is a
connection between majorization and subordination concepts (see [10, 11]). Under some
conditions, we have f 
 g ⇔ f ≺ g .

2.1 Linear operator
We shall use the Hadamard product to define the new linear operator using the Airy func-
tion of a complex variable z ∈ U . Construct the modified Airy function as follows:

Aı(z) :=
(
32/3�(2/3)z

)
Aı(z)

= z –
(

31/3�(2/3)
�(1/3)

)
z2 + · · · + O

(
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(5)

Define a linear operator  : � → � as follows:

f (z) = Aı(z) ∗ f (z)

= z +
∞∑

n=2

δnϕnzn ∈ �,
(6)

where δn indicates the coefficient of Aı(z). The linear operator (6) is called the Airy linear
operator of normalized analytic functions. It is well known that for (z) > 0 the Airy func-
tion is convex with (Aı(z)) > 0. We have the following proposition, which indicates that
the linear operator can be formulated by a set of special functions and other properties,
which are easily proved. Therefore, we omit the proof.

Proposition 1 Consider the linear operator f (z), f ∈ �. Then it can be formulated by the
following special functions:
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(
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)
;

•

(
Aı(z)

) ≈ 0.385116, (z) = 0.88405;

•
∫

U
Aı(z) dz = 32/3�(2/3)Ai′(z),

∣∣∣∣
∫

U
Aı(z) dz

∣∣∣∣ ≈ 0.419648,

where G(ω) is the Barnes G-function, In(ω) is the modified Bessel function of the first kind,
Jn(ω) is the Bessel function of the first kind, and K is the complete elliptic integral of the first
kind.

2.2 The difference formula
We proceed to defining our class of normalized analytic functions based on the Airy equa-
tion. The Airy equation can be reformulated by the structure

zf ′′(z)
f ′(z)

–
z3

zf ′(z)
f (z)

= 0, f ∈ �.

Our structure of the class of analytic functions is given by the Airy difference formula

�(z) :=
zf ′′(z)
f ′(z)

–
z3

zf ′(z)
f (z)

.

By utilizing the linear operator f , we have the following class.
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Definition 1 Let f ∈ �. Define the class of analytic functions �ıs satisfying the following
subordination:
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It is clear that the formula
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And by comparing the coefficients of f (z) and �s(z), we have that the unique real root
of s3 – 3s2 + 4s – 1 = 0 is
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(
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32/3 ≈ 0.31767.

As a conclusion, we have

�s(z) 
 

(
z

(1 – z)s

)
, s ≤ 0.31767, z ∈ U .

Note that the function z
(1–z)s is called the generalized Koebe function, which is an extreme

function in U for some values of s.
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Our investigation is based on the following result which can be located in [9].

Lemma 2 Suppose that ρ1(z) is analytic in U and ρ2(z) is convex univalent in U with
ρ1(0) = ρ2(0). If

ρ1(z) +
1
κ

(
ρ ′

1(z)
) ≺ ρ2(z)

for a nonzero complex constant number κ with (κ) ≥ 0, then ρ1(z) ≺ ρ2(z).

3 Results
In the result section, we present the sufficient condition for functions to be in the class
�ıs.

Theorem 3 Let f ∈ �, and for some constants s ∈R \ {0} define the functional

�s(z) =
1
2s
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zf ′′(z)
f ′(z)

–
z3
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f (z)

)
.
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;

• 1 + s(z � ′
s(z)

�s(z) ) ≺ (1 + z)1/2, s ≥ max{|s2|, |s3|}, where for some m ∈N
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√
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√
2))

2 log(3) + 3 log(�(2/3)) + 3 log(Aı(1))
,
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6(1 – log(2))

|(6m + 3)π – i(log(9) + 3 log(Aı(–1)�(2/3)))| ;

• 1 + s(z � ′
s(z)

�2
s (z) ) ≺ (1 + z)1/2, s ≥ max{|s4|, |s5|}, where

s4 =
113 × 32/3�(2/3)Aı(1)

250(32/3�(2/3)Aı(1) – 1)
, s5 =

3 × 32/3�(2/3)Aı(–1)
5(–1 – 32/3�(2/3)Aı(–1))

.

Proof 1 Case I: 1 + s(z� ′
s(z)) ≺ (1 + z)1/2.

Define a function Fs : U →C formulating by

Fs(z) = 1 +
2
s
(
(1 + z)1/2 – log

(
1 + (1 + z)1/2) + log(2) – 1

)
.

Obviously, the analytic function Fs(z) achieves Fs(0) = 1 and satisfies

1 + s
(
zF ′

s(z)
)

= (1 + z)1/2. (7)

Thus, we obtain F(z) := s(zF ′
s(z)) = (1 + z)1/2 – 1 is starlike in U . Consequently, by Lemma 2,

it yields

1 + s
(
z� ′

s(z)
) ≺ 1 + s

(
zF ′

s(z)
) ⇒ �s(z) ≺ Fs(z).
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To complete this argument, we must prove that Fs(z) ≺ f (z), or equivalently, Fs(z) ≺
Aı(z). Evidently, the function Fs(z) is increasing in the interval (–1, 1), which fulfils the
inequality Fs(–1) ≤ Fs(1). Since

–
J–1/3( 2

3 ) + J1/3( 2
3 )

3
≈ –

(
32/3�

(
2
3

))
Aı(–1) ≤ Fs(–1)

≤ Fs(1) ≤ 32/3�
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3
,
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√
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√
2)))
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;

then we obtain

�s(z) ≺ Fs(z) ≺ f (z) ⇒ �s(z) ≺ f (z).

This indicates that f ∈ �ıs.
Case II: 1 + s( z� ′

s(z)
�s(z) ) ≺ (1 + z)1/2. Construct the function �s : U →C as follows:
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.

The function �s(z) is analytic in U having �s(0) = 1, and it is a solution of the differential
equation
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whenever s ≥ max{|s2|, |s3|}, where

s2 =
6(–1 +

√
2 + log(2) – log(1 +

√
2))

2 log(3) + 3 log(�(2/3)) + 3 log(Aı(1))
,

s3 =
6(1 – log(2))

|(6m + 3)π – i(log(9) + 3 log(Aı(–1)�(2/3)))| .

This indicates that the subordination inequalities

�s(z) ≺ �s(z) ≺ f (z) ⇒ �s(z) ≺ f (z).

Hence, f ∈ �ıs.
Case III: 1 + s( z� ′

s(z)
�2

s (z) ) ≺ (1 + z)1/2. Consider the function ðs : U →C by

ðs(z) =
1

(1 – 2
s ((1 + z)1/2 – log(1 + (1 + z)1/2) log(2) – 1))

.

Clearly, ðs(z) is analytic in U such that ðε(0) = 1, and it satisfies

1 + s
(

zð′
s(z)

ðs(z)

)
= (1 + z)1/2. (9)

By Lemma 2, one can have

1 + s
(

z� ′
s(z)

�2
s (z)

)
≺ 1 + s

(
zð′

s(z)
ð2

s (z)

)
⇒ �s(z) ≺ ðs(z).

This implies

–
J–1/3( 2

3 ) + J1/3( 2
3 )

3
≈ –

(
32/3�

(
2
3

))
Aı(–1) ≤ ðs(–1)

≤ ðs(1) ≤ 32/3�

(
2
3

)
Aı(1) ≈ I–1/3( 2

3 ) – I1/3( 2
3 )

3
,

whenever s ≥ max{|s4|, |s5|}, where

s4 =
113 × 32/3�(2/3)Aı(1)

250(32/3�(2/3)Aı(1) – 1)
, s5 =

3 × 32/3�(2/3)Aı(–1)
5(–1 – 32/3�(2/3)Aı(–1))

.

As a conclusion, we have the consequences

�s(z) ≺ ðs(z) ≺ f (z) ⇒ �s(z) ≺ f (z).

This leads to f ∈ �ıs. �

Other results are given in the next theorem.

Theorem 4 Let f ∈ � and

�s(z) =
1
2s

(
zf ′′(z)
f ′(z)

–
z3

zf ′(z)
f (z)

)
.
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If
• �s(z) 
 f (z) and f ∈ C (the class of convex analytic functions in U), then f ∈ �ıs for

|z| ∈ (0.28,
√

2 – 1];
• �s(z) 
 f (z) and f ∈ S∗ (the class of starlike analytic functions in U), then f ∈ �ıs

for |z| ∈ (0.21, 0.3);
• f ∈ �ıs and f ∈ U℘ , ℘ ≥ 1.65 (the set of all locally univalent functions of order ℘), then

� ′
s(z) 
 (

f (z)
)′, |z| ≤ (℘ + 1) –

√
℘2 + 2℘.

Proof 2 For the first conclusion, since f is convex and Aı is convex in U whenever (z) > 0,
then f ∈ C (see [12]). By [10, Corollary 1], we have �s(z) ≺ f (z), and hence f ∈ �ıs for
|z| ∈ (0.28,

√
2 – 1]. The second part comes from the fact that f ∈ S∗, and hence by [10,

Corollary 2] we get �s(z) ≺ f (z) ⇒ f ∈ �ıs for |z| ∈ (0.21, 0.3). Lastly, in view of [10,
Theorem 3], we have the desired assertion. �

4 Conclusion
From the above study, we formulated a new linear operator utilizing the Airy function.
By using the new operator, we defined a new class of analytic functions and investigated
its properties. We showed that the operator can be approximated by well-known special
functions. Sufficient conditions are studied to be sure that the normalized function f is
recognized in the new class. For future works, one can suggest new classes of analytic
functions involving the linear operator.
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