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KEYWORDS Abstract In this article, a wavelet collocation method based on linear Legendre multi-wavelets is

proposed for the numerical solution of the first as well as higher orders Fredholm, Volterra and
Volterra—Fredholm integro-differential equations. The presented numerical method has the capabil-
ity to tackle the solutions of both linear and nonlinear problems of these model equations. In order
to endorse accuracy and efficiency of the method, it is tested on various numerical problems from
literature with the aid of maximum absolute errors and rates of convergence. L,, norms are used to
compare the numerical results with other available methods such as Multi-Scale-Galerkin’s method,
Haar wavelet collocation method and Meshless method from literature. The comparability of the
presented method with other existing numerical methods demonstrates superior efficiency and accu-

racy.
© 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

In the recent years, the solutions of integro-differential equa-
tions (IDEs) have gain great significance in various fields of
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science and engineering. The areas concerned are biology,
chemistry, mechanics, physics, electrostatics, astronomy, eco-
nomics, potential theory etc [14]. The IDEs are utilized to
model most of the physical phenomena in simple mathematical
formulations. These equations arise in fluid dynamics, biolog-
ical models, chemical kinetic, ecology, control theory of finan-
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cial mathematics, aerospace systems, industrial mathematics
etc. More specific, the models which describes hereditary prop-
erties can model using IDEs. The analytical solution of the
IDEs difficult and involve tedious calculations. Therefore,
most the authors introduced numerical techniques for the solu-
tion of these types of equations.

In the last decades, the approximation theory regarding
IDEs gained much popularity and many author developed
numerical technique for the solution IDEs. Some the tech-
niques are, Monotone iterative method [3,4], Meshless
method [9], differential transform method [7], Bessel poly-
nomial solution method [20], Tau method [10], finite differ-
ence method [22], rationalized Haar function method
[13,24-26], Taylor collocation method [18], the CAS wavelet
method [6], an improved Haar wavelet collocation method
[16], homotopy perturbation method [19], spline-shooting
method [2], Chebyshev collocation method [8], multiscale
Galerkin method [5] and sine—cosine wavelet methods
[11,12].

In the recent years, wavelets theory has played a signifi-
cant role in signal processing. These wavelets are mainly sca-
lar, where there is only one scaling function [32-34].
However, Linear Legendre multi-wavelets are based on more
than one scaling function. Such growing interests in multi-
wavelets mainly stem from the following facts: linear Legen-
dre multi-wavelets can simultaneously possess orthogonality,
symmetry and a high order of approximation for a given sup-
port of the scaling functions (this is not possible for any real
valued scaler wavelets) and secondly linear Legendre multi-
wavelets have produced promising results in the areas of
image compression. A Linear Legendre multi-wavelets system
can provide perfect reconstruction while preserving length
(orthogonality), good performance at the boundaries (via
linear-phase symmetry) and a high order of approximation
(vanishing moments). Thus, Linear Legendre multi-wavelets
offer the possibility of superior performance. Poisson equa-
tion is linear partial equation. The standard solution of the
Poisson equation can also be derived in integral equation
form [31].

Recently, many researcher utilized different basis func-
tions i.e. wavelets and orthogonal functions to find out the
approximate solution of IDEs. In various field of science
and engineering wavelet basis are utilized to numerically
approximate the solution of various problems. In literature,
the Fredholm, Volterra and Fredholm—Volterra IDEs (both
linear and nonlinear) are solved by utilizing different wavelets
basis, in connection with different type of collocation tech-
niques[16,21,13,6]. In this work, solution of IDEs is approx-
imated with the help of family of linear Legendre multi-
wavelets.

In this article, three different types of IDEs of first and
higher-order will be considered namely Fredholm IDEs, Vol-
terra IDEs and Volterra—Fredholm IDEs. In the newly devel-
oped numerical technique all the cases comprises linear and
nonlinear will be presented.

The article is designed in the subsequent manner. In Sec-
tion 2, some definitions and a brief discussion on Legendre
multi-wavelet are presented. In Section 3, the newly developed
method is demonstrated. The efficiency and better perfor-
mance of the method are given in Section 4, by testing it to
some benchmark problems. Finally, conclusion of the study
are presented in Section 5.

2. The linear Legendre multi-wavelets

The term wavelet means a small wave or simply an oscillation
that decays decay rapidly is called a wavelet. The wavelets are
piecewise continuous functions obtained from translation and
dilation of main wavelet called the mother wavelet or mother
function. The continuous change in translation parameter a
and dilation parameter b result the formation of following con-
tinuous family of wavelets [27-30]:

v(i(y—b)
V() = (a\/|—a|)7
Alternatively, the family of discrete wavelets is obtained when

discrete values of the translation parameter a = % and dilation
parameter b = 7 are utilized:

a,beR,a##0. (1)

() =29@y—n), Lnez, )

In addition to this, the mother function v will satisfy the equa-
tion [, v(y) =0.

In this work, the focus of the study is the discrete wavelets
family. In particular case, in which an orthonormal basis of
L*(R) are formed by the family of discrete wavelet, has various
good properties. The multi-resolution analysis (MRA) will be
utilized to get it, which is given below:

The sequence {V;},., which is increasing with scaling func-
tion y € ¥ of closed subspaces of L*(R) is known as MRA if it
satisfied the following conditions:

1. U,V is dense in L*(R) and (,V; = {0},

2. f() e Vi iff f(y/Z) € Vs,
3. {x(y — n)},e, is a Riesz basis for V.

From condition 3, we can say that the sequence
{2'%(2'y = n)},., form an orthonormal basis for V,. The
author constructed linear LMWs in [15]. The scaling functions

denoted by y,(y) and y,(y) are selected as under:
%o(y) = Land 1, (y) = V3(2y — 1),

Then, the mother wavelet for the linear LMWs family is as
follows:

0<y<l. (3)

3@y —1) for0<y <t

W(y) = e (@)
V3(4y—3)  for 1<y <1,

and

) = (6p—1) for0<y<i, 5)
(6y—35) for i<y<1.

By the process of translation and dilation of the mother wave-
let v we can easily obtained the linear LMWs and are given
below:

{h0) =22y —n),
An orthonormal basis obtain from the family {vﬁ;}?n:gzl for
L*(R) and  from the subset {3} for
n=0,1,2,3,4,...,2 = 1,1=0,1,2,3,...and k=0,1 forms

an orthonormal basis for L?[0,1]. Thus, any function

w(y) € L*[0, 1] is actually the linear combination of the family
of linear LMWs as under:

Lnez, k=0,1}. (6)
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00 1
W) =20 1)+ )+ DD D A ), (7)
=0 k=0 n=0
where
)”/l(n = <g(y)7 vfn>7 (8)
and (.,.) is the inner product space. The series given above is

truncated after finite terms to obtain an appropriate approxi-
mation, and it results

M1 2
W(y) ~ ’10 XO( + /Ll 71 + Z Z ’1;; Vln (9)
I=0 k=0 n=0

Eq. (3) through Eq. (5) can be used to obtain the first four
function y,, y,,v" and v'. Furthermore, the next four functions
are given bellow:

—V6(8y — 1) for 0 <y <4,

Vo) = V6(8y —3)  for L<y <, (10)
0 for I<y <1,
0 for 0 <y <14,

() =4¢ —v6(8y—35) for %<y<%7 (11)
V6(8y —7)  for 3<y <1,
V2(12y —1) for0<y <},

Vo) = V2(12y = 5) for 1<y <t (12)
0 for 1<y <1,

and
0 for 0 <y <1,

V() =4 V2(12y =7)  for <y <3, (13)
V2(12y = 11) for 3<y <1

Other family members can be obtained using similar
procedure.

As evident from the expression, the linear LMWs
{vk 1 k=0,1,/,n€ Z}, contains 3 parameters. In order to
simplify the expression, the Linear LMWs
{vk :k=0,1,l,n € Z}, is separated in sub wavelet families,
which reduces the number of parameters to only one.

The notation {o; : j=1,2,...} which is the first family, is
comprised of the first scaling function and mother wavelet gen-
erated wavalets v°(¢). The below given representation is used
for this subfamily:

u(p)=1, 0<y<l, (14)
and

283252y — 4l -
2 V/3(22y —41-3)

1) for ’<y<l+’
for %<y<’+7‘, j=23,...,
(15)

where, /=0,1,...,n—1 and n=2 k=0,1,...,K. In the
aforementioned k denotes the level of wavelet resolution and
the maximum number of resolution is denoted by letter K.
The translation parameter is expressed by letter /. The relation
among the notations j,/ and n can be defined as j=/+n + 1.

The second wavelets are of the form {6, :j=1,2,...} and
the remaining wavelets in the family are calculated from the
mother wavelet v!(y). These can be written in the following
alternate form:

01(y) =V3@2y—1), 0

and

<y<l, (16)

00 B (Bx2y—6l—1) for L<y <t

() =

' B (3x2y—6l—5) for By<tl  j=23..,

(17)

where n, k and / can be defined in the same fashion as above.
Any function w(y) € L*(a,b) in Eq. (7) can be formed from

the linear combination of linear LMWs by utilizing the alter-

nate formulation of these wavelets as under:

w(y) = 1)+ > _dio,(v), (18)
=1 =1

and the approximation for w(y) given in Eq. (9) yield
M

W) &Y 1)
j=1

In the similar manner the truncated expression for first and
higher orders are given as under:

+3do,). (19

M M

wi(y) =Y _er(v) + Y _digi(v), (20)
j=1 =
21\/1

wi(y chyl Zd/@j(}’)» (21)
=1
M M

)" Z‘YX/(Y) + Za}%(J’), (22)
J=1 =1

where M = 2% ¢;, are called the LMWs coefficients and d;
where j=1,2,... ,%M are the unknown coefficients of linear
LMWs.

3. Numerical procedure

In this section, quadrature technique with linear LMWs basis
is applied for numerical integration, followed by the detailed
explanation of the presented method based on linear LMWs
for various kinds of integro-differential equations comprising
Fredholm IDEs and Volterra IDEs of the first and higher
order individually. The following discrete points are used for
linear LM Ws approximations:

ko —
M

The quadrature rule for numerical integration by utilizing lin-
ear LMWs on the close interval [0, 1] is as follows:

| =500, (24)

Generally, for any interval [¢, d] given in [1], we have

1
yo=—2 k=1.2,... M. (23)
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3.1. Fredholm IDEs

In this portion of the section the presented technique will be
considered for linear and nonlinear Fredholm IDEs of the
first- and higher-orders.

3.1.1. First-order Fredholm IDEs
3.1.1.1. linear case. Let us take the subsequent linear Fredholm
IDEs of the first order:

wi(y) +ww)h(y) = /y) + /0 w(t) K(y, t)de, w(0) = wo.  (27)

Integrating Eq. (20) and utilizing the initial condition
w(0) = wy, we obtained the unknown function w(y).

W0) =1+ 3R 0) + D del0) 28)
where
40 = | )bl (7) = / "o, ()dr. (29)

Now utilizing integration rule as defined in Eq. (25), the Eq.
(27) gives:

W) + B 0) = A0) + 37 K. (30)

By substituting the approximate expressions for w/(y), w(y)
given in Eqgs. (20), (28)discretizing we obtained:

M M m
ZC/Y/ )/()+Zd @) +h(ve) (“0+ZC/7/ Yk +Zd @} (i ) =)

k=1 =1

N i
+% ZKl,\,‘(/ <uo+mc//j ‘E/)+Zd(p, 7 ) J=12,....M.
(31)

By simplifying the above equation, we get the following form:

ZC/ (l, Vi) Z Vi T1) /f/ T’)
+ id/ (‘P/(J’k) - ZK(J’/\»’TI) (p}(ﬁ))

=f) —

S

=~

| XM
ZKym wo, j=1,2,...,N
=1

h(yi)wo+

(32)

Eq. (32) produces an M x M system of linear equations with
unknowns ¢;, j=1,2,... i Mandd;,j=1,2,..., M. The sys-

tem can be solved for the unknowns by using any linear tech-
nique. These unknowns are then used in Eq. (19) to
approximate the solution of the Fredholm IDEs at collocation
points y,, k=1,2,...,M

3.1.1.2. Nonlinear case. Consider the following first-order non-
linear Fredholm IDE:

wi(p) + h(y) w(y) f(y)+/0 K(y,t,w(t))dr, w(0) = wy.
(33)

Applying technique of integration we get the following form:

1 M
wi(y) +h(y)w(y) =) + MZK(% 7, w(T))- (34)
=1
Now putting the approximate expressions for w(y) and wr(y)
in terms of truncated linear LMWs and discretizing.

Q/ (C‘ut‘zﬁ-~~7L“{,’«,d|ad27~-»~d#)

M v M M
:Z"/X/ Vi) Zd/(/’, yi) + () "0+Zl//, Yk +Zd/f/’, %)

j=1

M
M ZK<)A 1,,uo+2c’,/,(r, +Z %(T/) So) =0,j=1.2,.
(33)

The above equation represents M x M system of nonlinear
equations  with ¢,j=1,2,....4M and
d,j=12,... ,%M. In order to compute the unknowns, New-
ton’s or Broyden’s techniques can be applied. Finally, the
numerical solution can be obtained utilizing these unknown
coefficients.

The Jacobian for Newton’s or Broyden’s is calculated using
the following partial derivatives.
90, 0K

l )|
J ) h(v.) s 1 ) — — !
9, = I ) + hi) 2w () N;:l oy

unknowns

T/)7 j:1727"'7M7

and

99, | 1 LOK
S W) -~ = 1,2, M.
a = P00 + () 0,000 N; A Ol =12,

(37)

3.1.2. Second-order boundary-value Fredholm IDEs
3.1.2.1. linear case. Consider the subsequent second-order lin-
ear FIDE:

wi(y) + h () wi(y) + h(y) w(y)
1
=fy) +/ w(t) K(y, t)dz, w(0) = wo, w(l) = wy. (38)
0
By using technique of integration for Eq. (21) and using the

boundary conditions, we will get the approximate expressions
for w/(y) and w(y) in the subsequent forms:

M M M
wi(y) = wy — wy — Zc,-cl - Zd,-dl + Zc;x} »)
j=1 j=1 j=1

M
+Y dio} (), (39)
Jj=1
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and wi(y) + h(y) wi(y) + h(y) w(y)
v M 1 &
w(y) =uo + x| wi —wo— Z‘}'cl - Zdidl * M;KU’ o W())- (47)
= =

+ i"iﬁ )+ g:d/cof ), (40)
where | J
% () =/ny}(y)dr7 o () =/Oy ¢! (y)dt, (41)
and
% :/le}(y)dr,ﬁl :/Ol(p}(y)dr. (42)

Now utilizing the integration rule as described in Eq. (25) for
the aforementioned Eq. (38), we have:

wi(y) 4+ hi (y )w( )+ h(y)w(y)
Zw ) K(y, ). (43)

Now replacing w(y), wi/(y) and w(y) by their respective
approximate expressions as derived in Egs. (21), (39) and
(40)then discretizing the domain, we get the subsequent system
of linear equations:

v M M M v
Zc//, Vi +Zd,q), Vi) +hi () nlfwan¢ oy — Zdﬁﬁng/, Vi)

j=1 j=1

=1

v 1 M
Z <P, Vi ) +h(yi) (Wﬂ Ttk (“’1 —Wo *Z‘D“l Z‘éﬂ]) +ZC/‘X,2(}’/<)
j=1 =1

i M M
+Zd,(p/2 (y,\)) S+ ZK Vir Tk (Wo + 1 (wl — Wy — Zc,-oq - Zd,ﬁl>

=1 j=1 =1
+ZCU@ Tx +Zd(p} Tx ) s M.

(44)

The simplified form of the above Eq. (44) is as under:

JZC,' (z,(yk) + ) (o + 7 00) ) (=veon + 717 () —#ZK(M,IA)(—w]

+2)) + Y (0,000 + 1 (03 (B + 0 030) + () (=3B + 03 (7)

=1

M
—LN KO w) (—up, +w?(u))> =/Wi) + () (wo = wi) + () (v (wo — wi) = wo)
=1
M
+%2K(y,”n)(w0 + 1 (Wi —wp), j=1,2,....M.
=1

(45)

The approximate solution of the above equation is obtained by
the procedure adopted for first-order linear Fredholm IDEs in
the previous section.

3.1.2.2. Nonlinear case. Consider the subsequent 1*-order non-
linear Fredholm IDE:

wiht(y) + h (¥) w(y) + h(y) w(y)
=) / K(y,t,w(t))dr, w(0) = wy, w(1l) = wy. (46)

Integration and utilizing the boundary conditions we get:

Replacing w(y),w/(y) and wr(y) by its approximate linear
Legendre wavelets values and discretizing, it follows

0, (11,('7 Iyers Bi.da,..., du)

M M M
*ZQJ’, Yk +Zd,q), Vi) (v (“l *“0*20/9‘1 del +Z(’1// Vi)
k=
v M M
+Zd o} () | +hi) | wo+yi | wi—wo 72:( o — Zdﬁ +ZC/X/2<J’A»>
m N v
Z (p/ ) 7%\2K Vs TesWo + Tk | Wi 7ugfzc,oq Zdﬁ

k=1

+20xf(n) +Zd/w?(n)> —f)=0k=12,....N.
=1 =1
(48)

The above system will be solved by the same procedure as
explained in case of 1" order nonlinear Fredholm IDEs

The Jacobian of the system of equations provided in Eq.
(48) can be computed using their subsequent derivatives.

T2 = L)+ ) (o1 (m) + 61, (70)) + A (=30 (m) + 22(70))
MZ;;Q o (m) + 724(w)), k=1,2,...,N,
(49)
and
o= 0u () + M) (=B (m) + 0}, (00)) + h() (=B (m) + 02, ()
7%42”:% (tBi(m) + @2 (10)), k=1,2,..., M.
o (50)

3.2. Volterra IDEs

In this portion the newly established numerical technique will
be utilized for linear and nonlinear Volterra IDEs with 1*" and
higher-orders.

3.2.1. 1"-order Volterra IDEs
3.2.1.1. linear case. Consider the following 1*-order linear Vol-
terra IDE:

ww+wmm:mwzwmmwww@:w.m)

To obtained w(y), integrate Eq. (20) and using the initial con-
dition w(0) = wy, we get:

" W
w:w+zmmniy¢m, (52)
2 2
where
A0 = [ 1o (53)
and
0)0)= [ o (54)
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Applying the numerical integration formula in Eq. (25)
through Eq. (51), we get:

wi(y) + h(y)w(y) Zw ) Ky, ). (55)
Now first substitute the approximate values of w/(y), w(y)
given in Egs. (20), (52) then the collocation points defined in
Eq. (23) into the Eq. (55), we get

M
)+ h(y) (”0 *Z‘ Fan;

i=1

M M

v
Zc L) + Zdas )+ > di) <y,-)) = 1)
i=1
1573 M

M b3 2
+4 ;K Vs T <Wﬂ + _Z:c,z,!(fk) +Z:d,-¢,! (TA')) k=1,2,...,M

After simplification Eq. (56) becomes:

ch< V) - ZjK(y,-,mz} (n)) 34 (mm % ZK(.\f,,roff::(ro)

=1
M
=fy;) — h(y;) wo TJIZ ypu)wo, k=1,2,....M
=
(57)

The same procedure, as discussed above in the linear cases of
first-order Fredholm and Volterra IDEs, can be used to obtain
the numerical solution.

3.2.1.2. Nonlinear case. The following first-order nonlinear
Volterra integro-differential equation is considered:

MW+WW@F%M+[kWanmw®:%-

(58)
Numerical integration yields the following equation:
Vi
W)+ w() A(y) = 0) + 57 D KO w(w))- (59)
=1
Approximating w(y) and w/(y) by its linear Legendre wavelets
expression, the following equation is obtained after
discretization
9; (1,0, ..Ac%d,,dg,.,.,d%)

M M M M
—Zam(} +Zd¢ ) +h(y (w-%z:cm, (y,)+zdd> ),)

v M

ZK(y, ™, no+zc,(, u)+2d¢ U)) y)=0j=12,... .M.

The remaining procedure is same as the one discussed in the
nonlinear cases of Fredholm and Volterra IDEs.

The Jaccobian of the system given in Eq. (60) is computed
with the help of the following partial derivatives.

99, Y IK
O t= 2y )+h(yj)/’”(yf M 8” Tk

(), J=1,2,..., M,

(61)

and

00,

ab”1:¢)ﬂ(y/')+h(y/ m y 772 ,171(7.'/‘-), ]:l>2.7M

(62)

3.2.2. Second-order initial-value Volterra IDEs
3.2.2.1. linear case. In this subsection we take the bellow given
second-order linear Volterra IDEs:

wi(y) + i () wi(y) + h(y) u(y)
=)+ /0} w(t) K(y, 7)dz, w(0) = wq, w/(0) = wi,. (63)

To obtained wr/(y) and w(y), integrate Eq. (21) and using the
boundary conditions w(0) = wy, w(0) = wr,, we get:

W) = wo + 3 e 0) + 3 did (), (64)
= i=1
and
M M
w(y) = wo+3wio + S at0) + S A0, (65)
i=1 i=1
where
2 _
nmfl L(y)de, (v /¢ )dr, (66)
1
mzﬁﬁmm, (67)
1
m:l@ww (68)

Applying the formula of numerical integration on Egs. (25)-
(63), we get:

wi(y) + h () wi(y) + h(y) w(y)
| M
+ NZK(y, ) w(Th). (69)
=1
Now first using the approximations of w/(y), wi(y) and w(y)

given in Egs. (21), (64) and (65)then the collocation points
given in Eq. (23) into the equation given above, it follows:

(WOJrZa, 7 +Zb¢ )
ZM
+h(y;) ”0+J’,W/0+ZC:/, Vi +Zd¢ )

M M

Zc,-x, +ZM¢> Vi) +hi(
=1
M
T}Z y/ Tk
k=1
M M
wo—i-fkwlo—&-Zcfxf(rk)+Zd[(/)?(1:k) J=1,2,....M
i=1 i=1

(70)

Simplifying Eq. (70), we get:
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Zv (1, )+ ()7t ) + )2 ) =3 ZK(y,mk)x?(u))
=1 k=1
()53 K0 )

v
+)d (dn(y,) +h
i=1
M

=1(y;) = (y)wio = h(y;) (wo +y;wlo +MZK Vi i) (Wo +Twlo),j=1,2,..., M.
k=
(7

Eq. (71) represents a linear system of M equations with M
unknowns, c,i=1,2,...AM and d,i=1,2,... I M.
The system is solved for the unknowns, by making use of
any linear algebra method. The approximate solution of the
Volterra IDEs at collocation points y;, j = 1,2,..., M is then
easily computed with the help of these coefficients and Eq.
(65).

1)1 () +h(,

ie.

3.2.2.2. Nonlinear case. The first-order nonlinear Volterra
IDEs is given bellow:

wi(y) +h(p)wi(y) +h(y) w(y)

y
=f») +/ K(y,7,w(t))dr, w(0) = wo, w(l) = wy. (72)
0
Numerical integration yields the following equation:
wi(y) + () wi(y) + h(y) w(y)
y
_f ]ZK y,'fk7”(‘fk)) (73)

k

In places of w(y), w/(y) and w//(y), using their approximate lin-
ear Legendre wavelets expression and then discretizing the
expression gives us:

Q/- (C],Cz, Cw d1 dz,....dﬁ)

M Z M M
,Zd,x, +Zd¢ )+, (u/oJch,(, V; +Zd¢) }1)

) —f(y/') =0,

(74)

M M
+h(y;) <t10+y,n/0+Zc 70, +Zd¢ )

i=1 i=1

M M M
—%ZK<J//7TA1W0+‘C/”’0+ZC/, Tk +Zd¢ Tk

Eq. (74) is an M x M nonlinear system with M unknowns
¢,i=1,2,....4M and d;,i=1,2,...,4M. Newton’s, Broy-
den’s or any other nonlinear technique can be utilized to
obtain the solution. The unknown linear Legendre multi-
wavelets coefficients can be obtained by solving the aforemen-
tioned nonlinear system. Ultilizing these unknown coefficients
of LMWs we can easily get the approximate solution at given
collocation points.

The Jaccobian of the system given in Eq. (74) can be com-
puted with the help of the following partial derivatives.

0
0D 0) + IO + )

(75)

and

0 2
ol = Bu0) ) ) + K ()
0K

_ OR P
V2 g $l) J (76)

1,2,..., M.

3.2.3. Fourth-order nonlinear Volterra IDEs
The fourth-order nonlinear Volterra IDEs is given by:

W (¥) +hs (V) win(y) + hy () wir(y)

¥ . 77
:/0 K(y,t,w(z),w(z),wn(z),win(c),w” (z))de+A»), )

with boundary conditions
w(0) = vo, w(1) = vy, w/(0) = vig, wr(1) = vry. (78)
Numerical integration yields the following equation:
wh(y)+hs()win(y) +h(y )W( )+ m()wi(y) +h()w(y) =f1)
+2 ZK) ,w(z), wi(t), wir(z), win (t), w" (z)).
(79)

To obtained wr(y), wr(y), w/(y) and w(y) integrate Eq. (22)
and using the boundary conditions, we get:

v
win(y) = 3 (v/] + v — Zc,cz Zd dy + Zc ¢+ Zd d)

M M
+Y et () + > _dipl(»)
i=1 i=1

(80)
i M
wi(y) = —3(v1 +vp) +1 (Zc c2+chd> (Z‘ ¢ +Zd(1)
M M i i v
+3y (v/] +vy— Z( = Zd d, +Z( (1+Zd(1) +Za 7 (v +Zd1¢,2<}’)
=1
(81)

M M
wi(y )VIO+Y( (vh +vo) +3 <Zc c2+2da'> (Zz c +Zd¢l>)
M v
(w +V0*Z( - ZL[{/Jch [ +Zdﬂ')

v

3 )+ id@? )
=1 =1

and
M
w(y)=vo+yvlo+5 [ =31 +vo) +1 ZC,LZ +Zd d,
v v v v v
3
(S e Yo ) ) o2 (mon- Yoo Yoads Yoo Y
i=1 i=1 i=1 i=1

v im

+_ert)+ Zd,-di' )
(83)

The rest of the procedure is similar as discussed in the previous
cases.

3
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4. Examples and discussion

This section is mainly concerned with the accuracy, efficiency
and applications of the presented technique. Both linear and
nonlinear types of model equations are used here to test the
performace of the proposed method, i.e. first-order linear
Fredholm IDEs, second-order linear Fredholm IDEs, first-
order nonlinear Fredholm IDEs, first-order linear Volterra
IDEs, second-order linear Volterra IDEs, nonlinear Volterra
IDEs of the first-order, nonlinear first-order Fredholm—Vol-
terra IDEs and second-order Volterra—Fredholm IDEs with
singularity in the derivative are used for the testing. The nota-
tions R.(M) and E.(M) are used for computational conver-
gence rates and maximum absolute errors at M collocation
points (CPs). The following formula is used to calculate the
experimental convergence rate

E.(3M)
Log )]

0= Tog(2) 9

Broyden’s technique is a useful option for the nonlinear case
[23]. The initial value is set to zero and the computation is
stopped when the convergence of 107> is reached.

The comparison of the results of the novel technique and
HWCM have also been done [16] at Gauss Points (GPs) [17]
defined by:

3-V3 i-1 343 i-1 .
Gi—< 6 +T>h:Gi+l—( 3 + ) )}hl

=1,3,...,N—1. (85)

Test Problem 1. The first-order linear Fredholm IDEs[9] given
by:

11
1(y) = w — oy -1 1
wi(y) ww+y+12y og(y+1)

1 by i
+m/0 T+]n(1:)dr7 (86)

w(0) = 0.
The exact answer of the problem is

w(y) = log(1 + ).

The Fig. 1 depicts the comparison of approximate solution
with the exact solution for M = 16 number of collocation
points. The figure clearly shows that the approximate solutions
at the CPs are in close proximity to the exact solutions at the
corresponding collocation points for a mere number of
M =16 of CPs.

Test Problem 2. Consider the second-order linear Fredholm
IDEs [5]:

wi(y) - / ew(e) de = M), (87)

with boundary conditions w(0) = 0, w(1) = 0, and

S)

0.7 T T T T T
exact solution ]

O  aproximate solution o

0.6] o .
[}
(o)
0.5} o J
o
[}
0.4 o 4
> o
0.3f o J
o}
0.2f o 4
[}
0.1 o ]
o

0 s . s ‘ . s . . s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X
Fig. 1  Results of exact and approximate solution (M = 16) for

Test Problem 1.

2+ (= Qe
WO D

Whereas, the exact solution is:

w(y)=y"—y

This is a second-order linear Fredholm IDE. The novel numer-
ical technique is applied to this model equation. The E.(M)
and R.(M) for distinct number of CPs are listed in Table 1.
We did the comparison of the obtained approximate results
with the Multi-scale Galerkin technique [5] and are shown in
the aforementioned table. The comparison shows that the
newly proposed numerical technique has more better approxi-
mation to the exact solution than the Multi-scale Galerkin
method [5]. The exact and approximate results are also com-
pared graphically and are demonstrated in the Fig. 2, for
M = 16 number of CPs. On the whole, the approximate solu-
tion catch the exact solution very well.

Test Problem 3. Let us take the subsequent the first-order non-
linear Fredholm IDEs [16]:

1

wi(y)=1- %f +/ Vi w(t)*dr, w(0) =0, (88)
0

with exact solution:

w(y) =y (89)

This is a first order nonlinear Fredholm IDEs. The E.(M) for
different number of CPs are compared with the Haar wavelets
collocation method [16] and the comparability is demonstrated
in Fig. 3. The resulted approximate soltuion of the novel tech-
nique is compared with the Haar wavelets collocation method
[16] is clearly seen from this figure. From the comparability of
solutions it can be seen that the novel technique has much bet-
ter accuracy than Haar wavelet method. Further, The decrease
in E.(M) to order 10~® shows that the novel technique demon-
strates equally good performance for nonlinear Fredholm
problems too.
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Table 1
technique for Test Problem 2.

The Comparison of E.(M) of the newly proposed technique with Multi-scale Galerkin method [5] and R.(M) of the proposed

Newly proposed technique

Multi-scale Galerkin method [5].

M E.(M) R.(M) M E.(M)
4 7.5214 x10~* - - -
8 1.9596 x10~* 1.9404 15 6.5606 x10~*
16 4.9321 x107° 1.9903 31 1.6398 x10~*
32 1.2330 x107° 2.0000 63 4.0991 %1073
64 3.0843 x107° 1.9991 127 1.0248 x107°
128 7.7111 x1077 1.9999 255 2.5620 x10~°
256 1.9227 x1077 1.9999 511 6.4105 x1077
Test Problem 4. Let us consider the first-order linear Volterra
IDEs [20]:
0 exact solution
O  aproximate solution 4
Q o wi(y) =1 f/ w(t)dr, 0 <y <1, (90)
-0.05- 1 0
% 4 w(0) = 0. (91)
—0.1r ] The exact solution is listed as under:
> ° 3 w(y) = siny. (92)
01y 1 Table 2, shows the E.(M) of the newly developed numerical
Q o technique for both distinct numbers of Collocatin points and
| Gauss points. It can be easily observed in the table that the
03 K 2 accuracy of the newly proposed technique from the decrease
[} o of at gauss points is better than the CPs. Better accuracy of
02 ‘ ‘ ‘ P ‘ ) ‘ the novel technique can be observed from the decrease of
0 o1 02 03 04 gf 06 07 08 08 1 E.(M) to order 107" for just M = 256 numbers of collocatin

Fig. 2 Comparability of the exact and estimated results
(M = 16) for Test Problem 2.

10" T T T T
= Linear Legendre-multi wavelet method
—&— Haar wavelet collocation method
0% 1
€
-6
= 10"} 1
-
107F 1
1 0’8 1 L 1 L 1 L
0 10 20 30 40 50 60 70

Fig. 3 Comparison of the proposed technique and Haar
wavelets collocation method [16] for Test Problem 3 interms of
maximum absolute errors.

points. Moreover, the technique performs better as we increase
the number of CPs and GPs.

Test Problem 5. The subsequent is second-order linear Vol-
terra IDEs:

wi(y) =y + / (v — 1) w(t)dr. (93)
0
with the following initial conditions and exact solution
w(0) = 0,
w(0) = 1,
and

Table 2 The E (M) and R.(M) of the proposed technique for
Test Problem 4.

M E.(M) at CPs E.(M) at GPs R.(M)
4 2.1000 x1073 1.0000 x 1073 =

8 4.7295 x107* 1.2878 <1074 2.1506
16 1.0913 x107* 3.6102 x107° 2.1156
32 2.6248 x107° 9.5001x10~° 2.0557
64 6.4188 x107° 2.4329 x107° 2.0318
128 1.5861 x107° 6.1533 x1077 2.0168
256 3.9422 x1077 1.5471 x 1077 2.0084
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Table 3 Numerical results and comparabilty of E.(M) of newly proposed method with HWC method [16] for Problem 5.

Newly proposed technique

Haar wavelets collocation method [16]

M E.(M) at Cps E.(M) at GPs E.(M) at CPs E.(M) at GPs
4 2.3000 x10~* 3.6100 x107° 5.0000 x1073 2.5000 x1073
8 4.9000 x10~° 1.3200 x107° 1.4200 x 1073 6.4400 x10~*
16 1.1589 x10° 3.4353 x1077 3.5255 x107* 1.6221 x107*
32 2.9855 x107° 9.4874 x107% 9.1980 x107° 4.1021 x1073
64 7.2161 x1077 2.4149 x10°% 23121 x107° 1.0021 x107°
128 1.8791 %107’ 6.2354 x107° 5.8132 x107¢ 2.6111 x107°
256 4.5560 x10~® 1.5634 x10~° 1.4866 x10~° 6.5877 x1077

w(y) = sinh(y).

In this problem, the novel method is used to solve a linear Vol-
terra IDE of second-order. The comparison of the numerical
results of this problem with Haar wavelets collocation method
[16] and the comparability of E (M) for CPs as well as GPs are
listed in the Table 3. The comparabilty demonstrates the accu-
racy of the novel technique is superior than the Haar wavelets
collocation method [16] as we increase the numbers of CPs.
The incredible performnce of the novel method is witnessed
by observing fall of E.(M) to order 107 for just M =256
number of GPs.

= Linear Legendre-multi wavelet method
—4— Haar wavelet collocation method

Inf

1 1 . .
0 50 100 150 200 250 300

N

Fig. 4 Comparison of the maximum absolute error of proposed
method with HWCM (at GPs) for Test Problem 5.

Also, the graphical comparability the newly proposed
technique with Haar wavelets collocation method [16] for
M = 16 number of Gauss points is demonstared in Fig. 4.

Test Problem 6. Consider the following nonlinear first-order
Volterra IDE [9]:

y

1 i 2
wi(y) =2y — 3 sin(y*) +/ y*1 cos y*w(t)dr,
0
w(0)=0, 0<y<I, (94)

with the following exact solution:
w(y) = ¥,

The results of the novel technique and Meshless method [9] are
compared for E.(M). The E.(M),R.(M) and the total itera-
tions of the novel technique are listed in Table 4. Clearly,
the aforementioned table shows that the newly proposed tech-
nique has much better accuracy than Meshless method [9]. The
number of iterations taken by the Broyden’s method for this
test problem for distinct numbers of CPs is same and is equal
to 4. This establishes that the novel technique is quite efficient
for nonlinear problems as well. Moreover, the comparability
between exact and estimated results for M = 16 number of
CPs is shown in Fig. 5.

Test Problem 7. Consider the following fourth-order nonlinear
Volterra IDEs [16]:

Y
W) =1+ /0 W (R)dr, 0<y <1, ©3)

with boundary conditions:

Table 4 Comparability of E.(M) of the novel technique with Meshless method [9] and R.(M) of the novel technique for Test Problem

6.

Newly proposed technique Meshless method [9]

M E (M) E (M) No of iterations M E.(M)

4 1.2094 x10~* = 4 5 5.8400 x 1073
8 52711 x107° 1.1981 4 9 1.7500 x10~3
16 1.9107 x1073 1.4640 4 17 4.8800 x107*
32 5.8377 x107° 1.7106 4 33 1.3000 x10~*
64 1.6122 x107° 1.8563 4 65 3.2100 x107°
128 4.2328 x 1077 1.9293 4 129 8.1900 x107°
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Fig. 5 Comparability of exact and estimated solutions (M = 16)

for Test Problem 6.

w(0)=1, w(0)=1, w(l)=e, w/(l)=e. (96)
The exact solution for this problem is given by:
w(y) =) (97)

Table 5 Comparability of E.(M) of newly proposed tech-
nique with Haar wavelets collocation method [16] and R.(M)
of newly presented technique for Test Problem 7.

Newly proposed technique Haar wavelets

collocation

method [16]
M E.(M) R.(M) E.(M)
4 1.0533 x107° = 3.8300 x107°
8 3.2148 x10°° 1.7121 1.0100 x107°
16 8.1875 x1077 1.9732 2.5600 x10~°
32 2.0487 x1077 1.9987 6.4100 x10~7
64 5.1208 x10~% 2.0002 1.6000 x10~7

Table 5, lists the E.(M) of the novel technique for different
numbers of CPs. The table demonstrates the comparability of
E.(M) of the newly proposed technique with Haar wavelets
collocation method [16] for various number of CPs. Table 5
also lists the R.(M) of the novel technique which approach
to 2. The much better accuracy of the newly proposed tech-
nique is noticeable from this table.

Test Problem 8. Consider the subsequent nonlinear first-order
Fredholm—Volterra IDE [16]:

1 y
wH(y) + w(y) =) +% /0 tw(t)dt f% /0 yw(z)dr,

w(0) =0, (98)

where

e, 1
f(y)—ﬁy TV -, (99)

with exact solution:
w(y) =% (100)

This is nonlinear first order Fredholm—Volterra IDE. The per-
formance of the novel technique is also assessed on this model
equation. The point wise comparability of E.(M) of the novel
technique with the Haar wavelets collocation method [16] are
reported in Table 6. Here we presented the point wise E.(M)
of the newly proposed technique for (M = 16) and (M = 32)
numbers of CPs. Clearly, we can see that the novel technique
performs better to some extent than Haar wavelets collocation
technique [16] in terms of accuracy. (See Table 7)

Test Problem 9. Consider the second-order Volterra—Fred-
holm IDE with singularity in the derivative [16] given bellow:

W)+ () 41 (0) = 80) w0 400 e
— [ +n)w(r)dr— fol tyw(t)dr,0<x <1,
(101)

taken the boundary constraints w(0) = 0, w(1) = 0. The g(y) is
as follows:

Table 6 Point wise comparability of E.(M) of the novel method with Haar wavelets collocation method [16] for Problem 8.

v Newly proposed Haar wavelets collocation method

Newly proposed Haar wavelets collocation method

technique [16] technique [16]

M = 16) M = 16) M = 32) M = 32)
0 0 0 0 0
0.1 288 x10~° 8.20 x10~* 7.19 x107° 1.20 x107*
0.2 548 x107° 4.00 x107* 1.37 x1073 1.70 x107*
0.3 7.83 x107° 3.00 x10~* 1.95 x107° 1.50 x107*
0.4 995 x10~° 530 x107* 248 x107° 5.40 x10~*
0.5 1.18 x107* 490 x107* 2.96 x107° 1.20 x107*
0.6 1.34 x107* 3.70 x10~* 3.36 x107° 1.40 x1073
0.7 1.47 x10~* 2.20 x107° 3.69 x107° 7.30 x10~*
0.8 1.55 x107* 1.00 x10~* 3.88 x107° 5.20 x107*
09 1.55x107* 1.20 x107* 3.88 x107° 4.80 x10~*
1.0 1.42 x107* 9.10 x10~* 3.35 x107° 2.20 x10~*
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Table 7 The E.(M) of the novel method for Problem 9.

M E (M) w(y) E (M) wi(y)
4 2.3000 x10~3 1.0900 x 10>
8 7.3699 x10~* 3.3000 x1073
16 1.9351 x10~* 9.2241 x10~*
32 4.1454 x1073 2.1440 x107*
64 2.3227 x107° 2.3449 x107°
0.14 T T T T r
exact solution o © Q
O  aproximate solution <]
0.12F Q B
o
0.1 & o i
0.081 d R
> 1)
0.06 d B
0.041 d ]
o
0.02 o] i
o
0 oY I I I | ! | I I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Fig. 6 Comparability of exact and estimated solution (M = 16)
for Test Problem 9.

J0) =52y —4p\/F =y +y)cosy+ (1 4+ /=2y — /T = 2y,/F)siny)
NG
+2(p* =132 —4y+1)cosy+2(y — 1)+ (64 3y —53?)siny — (4cos | —5sin1 +2)y
2_)sing)?) YN
_sin(((y—)’zl)smy)z)+l_6(((} y)siny)”) +(((y—)*)siny)’) .

(102)
Whereas, the exact solution is:
w(y) = (y —»?)siny.

Fig. 6, demonstrated the comparability of exact and esti-
mated results for distinct numbers of CPs. The singularity of
the aforementioned model equation occur at y = 0. The esti-
mated results of the newly proposed technique are quite good
for both w and w'. The novel technique dealt with the singular-
ity at y = 0 without special treatment in the algorithm by uti-
lizing the property of linear Legendre multi-wavelets. When
the CPs are constructed, the Legendre multi-wavelets not uti-
lize the ends points of the interval into account.

5. Conclusion

A collocation method based on linear Legendre multi-wavelets
is introduced for the numerical solution of both linear and
nonlinear Fredholm, Volterra and Volterra—Fredholm IDEs.
The performance of the novel numerical technique is examined
with the help of several model equations and the estimated
results show that efficiency and accuracy of the presented tech-
nique is better than Multi-scale Galerkin method, Haar wave-
lets collocation method and Meshless method. The significant

quality of the novel technique is its applicability to three differ-
ent types of linear and also nonlinear integro-differential equa-
tions with very small modification.
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