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Abstract

In this paper, we aim to analyze the complicated dynamical motion of a quarter-car
suspension system with a sinusoidal road excitation force. First, we consider a new
mathematical model in the form of fractional-order differential equations. In the
proposed model, we apply the Caputo—Fabrizio fractional operator with exponential
kernel. Then to solve the related equations, we suggest a quadratic numerical
method and prove its stability and convergence. A deep investigation in the
framework of time-domain response and phase-portrait shows that both the chaotic
and nonchaotic behaviors of the considered system can be identified by the
fractional-order mathematical model. Finally, we present a state-feedback controller
and a chaos optimal control to overcome the system chaotic oscillations. Simulation
results demonstrate the effectiveness of the proposed modeling and control
strategies.
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1 Introduction

In the last decade a remarkable amount of researchers have concentrated on the analysis
of nonlinear quarter-car suspension systems. These complicated physical systems include
various distinguished components and are influenced by some external road excitation
forces. A magnetorheological (MR) damper constructs the main structure of a suspen-
sion system, and the principle of MR-fluid expands its basic physical behaviors. In fact, an
MR-fluid fills up the MR-damper and is controlled by an electromagnetic field. In [1] the
dynamical behavior of a vehicle with an MR-damper was studied. In [2] the chaotic be-
havior of a half-vehicle model with semiactive suspension system was investigated, and a
discrete optimal controller was designed for chaotic oscillations. In [3] a sensitivity control
was proposed for an MR-damper semiactive suspension system, which was modeled by a
sixth-order polynomial. In all these studies the considered chaotic systems were modeled
in the framework of ordinary differential equations (ODEs). However, ODEs may not be
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able to specify the complicated dynamical behaviors and many hidden physical features
of nonlinear chaotic oscillators.

Fractional calculus (FC), as an extension of integer-order domain, is an efficient tool for
the modeling of real-world phenomena with complex physical dynamics [4—8]. Nowadays,
a considerable number of researches illustrated that fractional-order differential equations
(FDEs) can reveal complex dynamical features more accurately than ODEs [9-11]. This is
due to the fact that fractional-order derivatives and integrals are capable to characterize
the properties of memory effects as an essential aspect in many real-world phenomena
[12-16]. Latterly, FC has been distinguished as an interesting field of modeling and anal-
ysis of nonlinear dynamical systems with chaotic features [17—19]. In many researches, it
was shown that FC is efficient to illustrate hereditary characteristics and memory effects
[20-22]; however, due to the existence of singular kernel in the classic framework of frac-
tional operators, some nonlinear complicated dynamics may not be identified correctly
by the classical descriptions. Therefore, to analyze nonlocal dynamics more accurately,
new kinds of fractional derivatives including nonsingular kernels were introduced; two
of the most efficient and practicable ones are known as Caputo—Fabrizio (CF) [23] and
Atangana—Baleanu—Caputo (ABC) [24] derivatives with exponential and Mittag-Leffler
(ML) kernels, respectively. These new fractional-order differential operators demonstrate
different asymptotic behaviors, and sometimes they are more accurate than their clas-
sic counterparts [25, 26]. Moreover, they play an outstanding role in clarifying the hid-
den characteristics of real-world nonlocal dynamical processes [27, 28]. Nonetheless, the
properties of these operators are needed to be carefully analyzed, and efficacious analyt-
ical/numerical methods should be developed to make these operators more practical in
real-world systems [29, 30]. Motivated by the above argumentation, the main aim of this
paper is to apply the CF fractional operator to model and investigate a chaotic suspension
system with a sine function as its road excitation force. Considering various orders of the
CF differential operator, we recognize the chaotic behavior of this suspension system in the
phase-portrait and time-domain states. Comparing the system behavior in both integer-
and fractional-order forms, we realize significant differences between the integer-order
model and its fractional-order counterpart. Moreover, some hidden features of the con-
sidered system are drawn out from the proposed fractional-order model, whereas these
characteristics are indistinguishable when ODEs are used. Also, we develop an efficient
quadratic numerical method to solve the suspension system-related FDEs. More to the
point, we design a state-feedback chaos controller and a chaos optimal control to suppress
the negative effect of chaotic oscillations. In the case of designing the optimal controller,
we combine the proposed numerical method with an iterative forward-backward algo-
rithm to solve the related fractional optimal control problem (FOCP). To the best of our
knowledge, this is the first study that analyzes and controls the chaotic behavior of a non-
linear suspension system in a nonsingular fractional-order framework. Simulation results
also verify the effectiveness of our proposed strategy.

In the rest of this paper, we first present some mathematical definitions and preliminar-
ies in Sect. 2. Then a new fractional-order mathematical model for the suspension system
and its principal features are introduced in Sect. 3. A quadratic numerical approach for
solving the system of FDEs is suggested in Sect. 4. Next, some numerical simulations are

given in Sect. 5. Afterward, a chaos state-feedback controller is suggested in Sect. 6. Then
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an optimal controller and an iterative algorithm for solving the related FOCP are designed

in Sect. 7, and lastly, the paper is concluded in Sect. 8.

2 Mathematical preliminaries
In this section, we briefly introduce preliminaries considering the CF fractional operator

and investigate its significant features [31].

Definition 2.1 For f € HY(0,T) and 0 < q < 1, the CF fractional derivative and its related

fractional integral operator are, respectively, presented by

EDIF(D) = é [ e l-p-0)] PO e, W
(1) = (1- q)f (1) + q fo f@)dr, @
where B = %1.

Note that Eq. (2) yields the integer-order integral when ¢ = 1, and it leads to f(¢) for
q = 0. In the following, we explain some beneficial formulas of the CF fractional operators
[31, 32]:

« For fi,f» e HY(0, T) and ¢1, ¢; € R, the CF derivative and integral are linear operators:

%Fﬂth (chl(t) + szg(t)) = Cf@fﬁ(t) +¢y %Fﬂfﬁ(t), (3)
QIO (cfi®) + cafs(®) = c1 TUIAE) + 02 TH(). (4)

« For a constant function f(¢t) =f,, the CF differential operator is zero, that is,
F,
Eolf. =o0. 5)

« Since the CF fractional derivative (1) is the convolution integral of % and

exp(—ﬁt), applying the convolution theorem for the Laplace transform, we get

CFnq ~ sF(s) — £(0)
c[goifo] - 5L, ©)

where F(s) = L[f(2)].
+ The antiderivative property among the CF derivative (1) and its corresponding

integral (2) is
U [TDIF ()] =£ ) £ (0). )

« Consider ||f(£)|| = maxo.sr |f(2)| for f € H'(0, T); then the CF differential operator (1)

satisfies the inequality

I§tr0] < =l ®
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« Forany fi,f, € H'(0, T), there exists a constant L > 0 such that the Lipschitz condition

is satisfied for the CF differential operator as follows:

| D0 - i) <L|A® -£O). ©)

3 New model
In this section, we investigate a quarter-car model of a nonlinear suspension system and its
dynamical equation of motion. Based on the principle of D’Alembert [33], the suspension

system dynamical equation is described by the integer-order ODE

my(t) + c1 (y(6) — yo(2))

+e(y(®) - y0(0))’ + a1 () - Yo (1)) + az (5(®) - yo(0))’ = 0, (10)

Yy, (8)

where y(¢) is the displacement of the mass m in the vertical direction, c; is the stiffness
coefficient of suspension, Y},(¢) is the hysteretic nonlinear effective damping force, and o,
¢y, g are positive constants. Also, yy = A sin(€2t) is the road kinematical excitation with
frequency 2. Supposing a new coordinate f(£) = ¥(£) — yo(¢), we get the following equation

of motion:
F(0) + kif (8) + kof 2 (2) + kaf (£) + kaf>(£) = AQ? sin(Q28), (11)

where k; = a1/m, ky = aa/m, ks = ¢1/m, and k4 = ¢;/m. Now introducing the new states
fi(8) =f(¢) and f5(t) =f(t), we rewrite Eq. (11) in the form [34]

he) =f0), 12

Folt) = —kyfo(£) — kof 3 (£) — kafi (£) — kaf 3 (£) + A2 sin(S21).
As mentioned in [35], many principles of real-world phenomena cannot be described and
analyzed by the theory of calculus of variations. For example, the presented dynamical
model (12) does not include memory effects as the substantial aspects of many physical
systems with complex dynamics. Nevertheless, FC has prevailed this restriction as it can
specify the complicated behavior of many physical phenomena involving the effects of
memory and other hereditary features. Thus, in the following, we give a new dynamical
model in fractional sense for the considered suspension system, in which the integer-order
derivatives in (12) are substituted by the CF fractional operator (1). In other words, by

fractionalizing (12), we have the following new model:

QDfi(t) = fo(8),

13
GDIi(8) = —kifo(t) — kaf (1) — kafi (8) — kaf i (£) + AQ? sin(Q). )

It is worth noting that this fractional dynamical system is reduced to its integer-order

counterpart (12) as g — 1.
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4 Quadratic numerical method

In this section, we suggest a quadratic numerical method to efficiently solve the fractional-
order model (13). To this end, we first convert the FDEs (13) into their corresponding in-
tegral equations. Afterward, based on the trapezoidal approach, we introduce a quadratic
numerical scheme to approximately solve the related fractional-order integral equations.
To introduce the proposed method in the sense of CF, Eq. (13) is first compacted in a

well-set form:

UDIF(t) = d(F(t), 0<t<T<oo,
F(O) = FO)

(14)

where F(t) = (f1(2),f2(¢)), @ is the real-valued continuous vector function

) A®)
O (F(1) = |:_k1f2(t) — kof 3 (0) = kafy (1) = kaf? (1) + AR sin@f)} ’ (15)

satisfying the Lipschitz condition

|®(F1(0) = ®(F(0) | < L|Fi(®) - F2(0)

, L>0, (16)

and Fj = (f1(0),£2(0)) includes the initial points. Applying the CF integral operator (2) to
Eq. (14) yields

F)=Fo+ Ul®(F@), 0<t<T<oc. (17)

Now we define a uniform mesh 0 =y < ¢ <--- <ty = T on [0, T'] with the time step i =

% = tys1 — tm, where M > 0 is an arbitrary integer, and ¢,, = mh, m =0,1,2,...,M — 1.

Moreover, we show the approximation of F(¢,,) by F,,. Then we approximate ®(F(t)) on

every subinterval [#, £.1] by a piecewise linear interpolation as follows:

15 -7 T — I
ML B(F) + ———®(Fry), 0<k<m. (18)
tres1 — tk Lre1 — Lk

% (F(T)) lttta1]

To have a numerical solution for Eq. (17), we consider the following discretization of CF

integral operator (2):

HID(E(tyrn)) = (1 - )@ (F(bn)) + 4 /0 " o (k) dr. (19)

Substituting the approximation of ®(F (7)) from (18) into (19), we provide the approxima-

tion

m+1
Fpia =Fo+ (1= @) ®(Fpi1) + qh Y apj®(F), m=0,1,...M~1, (20)
k=0
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where the coefficient 4,1« is as follows:

Am1,0 = 1/2,
amnr=1, k=1,2,...,m, (21)

Am+l,m+l = 1/2.

We analyze the stability and convergence of the numerical approach (20) in the following

theorems.
Theorem 4.1 The numerical scheme (20) is conditionally stable.

Proof Let the perturbation of Fy and F,, (m =0,1,...,M — 1) be denoted by Fy and E,,

respectively. Then for the numerical scheme (20), we have

m+1
Fm+1 + ?m+l = FO + ?0 + (1 - 4)¢(Fm+1 + ?m+1) + qhzﬂnﬁl,kq)(ljk + ?k) (22)
k=0
Substituting Eq. (20) into Eq. (22) results in
?m+l = 2EI'() + (1 - q)(q)(Fm+l + 2;m-*—l) - (D(Fm+1))
m+1
+qh Y am i (O(Fi + Fe) - ©(Fy)). (23)
k=0

Using the triangle inequality and Lipschitz condition, from Eq. (23) we get

”?m+l|| = ?0 + (1 - q)(qD(Fm+l + ?m+l) - (D(Fm+1))

m+1

+qh Y ami((Fi + Fe) - O(Fr))
k=0

< Foll + A = @) | @(Fps1 + Eis1) = @(Fps) |

m+1
+qhy_ amk| ®(Fc+ F) - O(F) |
k=0
m+1
< 1Foll + (1 = @)LIEall + ghL > dmer il el
k=0
m
< Foll + qhL Y " apmar i\ Fell + L((1 = q) + qhaysrmer) | Eaa . (24)

k=0

Considering the coefficients from Eq. (21), we have

~ ~ " B\ ~
IE ol < I Foll +qhL > | Eell +L<1 —q+ %)uFmHn. (25)
k=0
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For all parameters L, /i, g such that L(1 — g + %) <1, we have

IE il < d(g WIFoll + ¢lq, WghL Y | Eell, (26)
k=0
where
P [ — 27)
vh= 1-L(1-g+ %)

Furthermore, there exists a constant Cy such that for a sufficiently small 2, we have

1< ¢(g,h) < Cy. (28)
Then
IEmarll < CollBoll + CoqhL Y " 1 Eell. (29)
k=0

Eventually, from Lemma 3.3 in [36] and applying the Gronwall inequality, we get ||lt"m+1 | <

Ci ||f0||, in where C; is a general constant. a
Theorem 4.2 The numerical scheme (20) is conditionally convergent.

Proof The difference between the exact solution F(¢,,1) and the approximate solution
Fu1 (Eq. (20)) is computed by

F(tpe1) —Fpr = (1 - q)(q)(F(thrl)) - CD(FWHI))

[t m+1
+q / CD(F(.()) d'E - hzﬂm+1,kq}(Fk):|
/0 k=0

=(1- Q)((D(F(tmﬂ)) - cI)(Fm+1))

B bl m+1
+q/0 Cb(F(t))dt—hZam+1,k¢(F(tk)):|

k=0
m+1
+qhy " amai(O(F()) - DFY)). (30)
k=0

Applying the triangle inequality and Lipschitz condition, together with Lemma 3.1 in [36],

we obtain

1
”F(tmﬂ) _Fm+1 ” = L(l - q) ||F(tm+1) _Fm+1 “ + EqCThz

m+1

+qhlL Z A | F(tx) = Fr |
k=0
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h 1
= L<1 -q+ %) ”F(thrl) _Fm+1“ + EqCThZ

+qﬁLZﬂm+1,kHF(tk) - Fel|, (31)

k=0

where C is a general constant. Considering the coefficients in Eq. (21) and all admissible
parameters L, £, g satisfying the inequality L(1 — g + %) <1, we have

1 m
”F(tmﬂ) _Fm+1 ” = ¢>(61, h)EqCThz + ¢(II» h)th Z“F(tk) _Fk ) (32)

k=0

where ¢(g, h) is taken into account from Eq. (27) and satisfies inequality (28). Finally, from
Lemma 3.3 in [36] and implementing the Gronwall inequality, we derive

||F(tm+1) - Fm+1 ” = Clhzr (33)

where C; is a generic constant. g

5 Numerical simulations

In this section, we apply the proposed numerical method to solve the fractional suspen-
sion system (13) by considering various values of g. In these simulations, we investigate
the related chaotic and nonchaotic motions with the road excitation force considered
as a sinusoidal function with A = 0.05 and Q = 8. Figures 1-3 represent the dynami-
cal states and the phase-portraits for g = 0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998,
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ocs 008
< < <
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0.1 0.1 o1
02
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0. 0.1
o
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t(s) t(s) t(s)
04 —q-099%9
03 04 04
o2
o
o
o
o
t(s) t(s) t(s)
Figure 1 The state variable () of the fractional suspension system (13) for g = 0.992,0.993,0.994,0.995,
0.996,0.997,0.998,0.999, 1
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Figure 2 The state variable f,(t) of the fractional suspension system (13) for g = 0.992,0.993,0.994,0.995,0.996,
0.997,0.998,0.999, 1

2
425 0z 015 01 o5 0 005 01 o1 0z 02
(0 (0

.
"5 04 03 02 o1 0 o1 02 03 04 05
1,0

Figure 3 The phase-portraits of the fractional suspension system (13) for g = 0.992,0.993,0.994,0.995,0.996,
0.997,0.998,0.999, 1
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0.999, 1. From these figures we can observe that the system displays periodic solutions
for smaller values of q. However, the noninteger-order model presents chaotic oscilla-
tions by increasing the value of g, a fact that is distinguished from the periodic manner
appeared in the previous plots. Considering greater values of fractional order, we see dis-
orderly behaviors in fractional sense; indeed, the state variables in the phase plane are
extended randomly and never converge to a specific region. Accordingly, the dynamical
system in the form of fractional model depicts a chaotic behavior in this case. Finally, we
see that the simulation results in fractional mode come close to those of integer-order
case when the fractional order goes to 1. In this case the system states are irregular, and
the phase-portraits establish numerous loops. By these properties we can conclude that
the considered dynamical system modeled in terms of integer-order calculus presents
only chaotic oscillations. Concerning the fractional model (13), if the order of the frac-
tional operator goes to 1, the system model (13) behaves chaotically like the integer-order
one. However, as the fractional order g diverges from 1, the dynamical behavior is com-
pletely changed. Furthermore, some dynamical features achieved by the integer-order
model present a greater divergence from the real system behavior than the fractional-order
model [20]. These results confirm that the fractional-order models can describe nonlin-
ear systems with complicated dynamics more accurately than the integer-order counter-
parts.

6 State-feedback chaos control

In this section, we design a state-feedback controller to suppress the disorderly undesirable
behaviors of the nonlinear suspension system (13). To this aim, we apply the state-feedback
inputs u;, u; to the fractional-order model (13) as follows:

D) = /o) - mifi (®),
FTDIfO) = ~kifo0) = Ko (8) = Kafi () = Kaf P (0) (34)
+ AQ?sin(Q1) — usfo(2),

where u3,u; > 0 are the state-feedback gain constants. We apply the numerical method
suggested in Sect. 4 to solve the FDEs (34) in the presence of the state-feedback con-
troller with u; = uy = 5. Figures 4—6 show the state trajectories and the phase-portraits.
These figures indicate that the controlled suspension system (34) displays nonchaotic
behaviors for all values of ¢g. Indeed, the phase-portraits in Fig. 6 converge to a spe-
cific region, and the state variables fi(t) and f»(¢) in the time domain (Figs. 4-5) de-
pict a stable periodic solution. These results confirm that the state-feedback controller
overcomes the irregular behavior of the chaotic suspension system under investiga-

tion.

7 Optimal chaos control

In this section, we design an optimal chaos controller to suppress the chaotic behavior of
the considered suspension system. To do this, we take into account the following general-
ized model of Eq. (13) including the control inputs u;(£), ua(t):

DI () =) + wi (),

35
D) = —kifo(t) — kaf3 (1) — kafi(8) — kaf2(2) + AQ2 sin(Q8) + uy(£). %)
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Figure 4 The state variable f(t) of the controlled system (34) for g = 0.992,0.993,0.994,0.995, 0.996,
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Figure 6 The phase-portraits of the controlled system (34) for g = 0.992,0.993,0.994,0.995,0.996,0.997,
0.998,0.999, 1

The aim is designing the optimal control inputs u](t), #j(t) along with minimizing the
quadratic objective index

1 T

1= | e @ @@ o s i dr, (36)
0

where g; > and r; > 0 are constant weights. To solve the suspension system-related

FOCP (35)—(36), we should derive the corresponding optimality necessary conditions. To

do so, considering the optimal control theory, we express the scalar Hamiltonian func-

tion

2

() = Lo(t) + Y g(0L(0), (37)
1

where £, is the integrand function in (36), £; is the right-hand side of the ith equation
in (35), and g; is the Lagrange multiplier, also known as the costate variable. Based on
the results available in [37, 38], we write the necessary optimality conditions of the FOCP
(35)—(36) as follows:

SEDIA(0) = B(6) = folt) + (1)

GDIAWD = 5, ©) (38)

= —kifo(t) = ko5 (£) = kafi (£) — kaf 3 (2) + AQ? sin(Qt) + i (2),

TDI@ () = B(1) = 1fi (0) — ksgal8) - Baga (Df2(2),

, (39)
DL (0) = FE(8) = 4a5(8) + 210) — krga(0) - Bhoga ()7 (0),
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%(t)zflu1(t)+gl(t)=0 = Mf(t):—%gl(t% (40)
O =ru®)+o®=0 = w)=-ru),

with initial conditions f1(0) and f3(0) and final conditions g1(T) = g2(T) = 0. To solve the
optimality conditions (38)—(40), several methods have been introduced into the literature
[39-41]; here we employ the quadratic numerical method proposed in Sect. 4 in combi-
nation with the forward—backward sweep iterative algorithm suggested in [42]. The con-
vergence and stability of this scheme were proved in [43]. Considering F(£) = (f1(¢),f2(£)),
G(2) = (g1(2),£2(2)), and Fi(¢), G(¢) as the approximations of F(£), G(£) at the ith iteration,
respectively, we summarize the algorithm as follows.

Algorithm

« Step 1. Initiate the costate variable Gy(f) by making an initial guess and set Jy = co.

« Step 2. Take into account a positive integer M and set i = 1.

+ Step 3. Employ the value of G;_;(¢) and calculate F,,1, 0 < m <M — 1, forward in time
by the numerical procedure designed in Sect. 4.

« Step 4. Apply a linear interpolation and compute F;(¢) from Fo, Fy, ..., Fy.

« Step 5. From Step 4 utilize the value of F;(¢) and obtain Gy, 1 < m < M, backward
in time from the numerical procedure proposed in Sect. 4.

« Step 6. Apply a linear interpolation and compute G;(¢) from Gy, Gi,...,Gu.
Ji-Jiz1
Ji

«» Step 7. Stop the algorithm if the error e; = | | satisfies e; < € in which € >0 isa

predefined error bound; otherwise, replace i by i + 1 and go to Step 3.

To illustrate the efficacy of the above iterative algorithm, we consider T'= 20, q; = g2 = 1,
r1 = rp = 1, and solve the FOCP (36)—(37) along with the state and costate optimality equa-
tions (38)—(40). Figures 7-9 display the simulation results, which verify that the chaotic
behaviors of the fractional dynamical system (13) are compensated by the proposed frac-
tional optimal controller, and the controlled system now exhibits stable periodic solu-
tions.

8 Conclusions

In this paper, the complicated behaviors of a nonlinear suspension system were ana-
lyzed in the framework of fractional-order calculus. First, we considered the fractional-
order derivative operator in the sense of CF with exponential kernel. Then we pro-
posed a quadratic numerical method to solve the related FDEs. The system states and
the phase-portraits shown in Figs. 1-3 demonstrated that both chaotic and nonchaotic
behaviors can be drawn out by a fractional-order mathematical model. Indeed, if the
fractional order g tends to 1, the fractional-order model reveals chaotic behaviors;
however, as g becomes smaller, a twice-periodic behavior is emerged. In addition, a
state-feedback controller and also a chaos optimal compensator were suggested, which
suppressed the system chaotic motion. To solve the related FOCP, we used the pro-
posed numerical method and designed an iterative forward—backward algorithm. Sim-
ulation results confirmed the effectiveness of the proposed FC approach in the modeling
and control of nonlinear dynamical systems with both chaotic and nonchaotic oscilla-

tions.
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