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Abstract In this manuscript, we investigate epidemic model of dengue fever disease under Caputo

and Fabrizio fractional derivative abbreviated as (CFFD). The respective investigation is devoted to

qualitative theory of existence of solution for the model under consideration by using fixed point

theory. After the establishing the qualitative aspect, we apply Laplace transform coupled with Ado-

mian decomposition method to develop an algorithm for semi analytical solution under CFFD. In

same line, we also develop the semi analytical solution for the considered model under usual Caputo

fractional derivative (CFD). By using Matlab, we present both type of solutions via graphs and

hence give some comparative remarks about the nature of the solutions of both derivatives.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Dengue fever is one of the most serious infectious disease
caused by bacteria and viruses which have been affecting about

2:5 billion people around the globe, especially in the hot coun-
tries in present time [1]. Dengue fever is a strong epidemic dis-
ease in Southeast Asia [2]. This epidemic disease can explain

climate change and there is need much more knowledge about
the awareness of dengue fever. This dangerous disease is also a
big problem of health in recent time in many countries of the
world. So the creation of dengue fever model is needed. Math-
ematical models including Dengue fever have been analyzed

and study in the last few decades increasingly (see [3–7]).
Due to mathematical models, we can be aware about the

rate of change of the disease, how a disease can impact the sus-

ceptible, infected and recovered peoples. The area devoted to
investigate biological model of infectious disease is warm area
of research in recent time. Many studies about the mathemat-

ical models and applied problems are devoted to study stability
theory, existence results and optimization of biological models,
we refer few as ([8–16]). For instance authors [18] have pre-

sented numerical solution of Dengue fever disease by perturba-
tion technique algorithm and compare the result with RK-4
for the system
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Table 1 Description of the parameters involve in the consider

Model (1)

Class/parameter Description

x Represents the susceptible people to catch

infection

y Represents the infected people with Dengue

virus

z Represents the recovered humans from Dengue

virus

N Represents the total papulation

b It represents the infection rate

a It represents the average number of bites per

infected mosquito

l It represents death rate of the susceptible host

c It represents recover rate after infection

d It represents the number of deaths among the

susceptible mosquito
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_x tð Þ ¼ l� lþ az tð Þ½ �x tð Þ;
_y tð Þ ¼ ax tð Þz tð Þ � by tð Þ;
_z tð Þ ¼ cy tð Þ � cy tð Þ þ d½ �z tð Þ;

8><
>:
where x is the human population that may call susceptible, y is
the people which may be infected with Dengue virus and z is
the people who get rid from Dengue virus in time t.

For last few decades the area of fractional calculus has got
enormous attention from researchers. This is because frac-
tional calculus has the ability to explain retention and heritable

properties of various materials and process more accurately
than integer order models. For more applications about frac-
tional calculus, we provide ([19–22]). Therefore the mentioned

area was investigated from different angles like qualitative the-
ory, numerical analysis, etc, (see [23–26]).

Therefore, researchers extended the tools of classical calcu-
lus as used in ([27–34]) to FODEs. For instance, to handle

nonlinear problems analytically, famous decomposition
method was constructed by Adomian in 1980. After that the
said method was increasingly applied as a strong tool to com-

pute analytical or approximate solution to many problems of
applied nature. In this regard, the mathematical models were
greatly studied by using LADM, homotopy and variational

techniques, (see [35–38]) and the references cited there. The
mentioned methods were greatly used to handle linear and
nonlinear FODEs [39–41]. Recently residual power series

method, Fourier transform method, spectral methods and col-
location method as well as some new type computational
methods have been used for treating differential equations of
fractional as well as classical order and their system, see for

detail [42–46].
On the other hand, conventional fractional derivatives con-

tain singular kernel which sometimes cause problem in expla-

nation of some characteristics. To overcome this, Caputo
and Fabrizio introduced a new definition of fractional integral
and derivative which involve exponential kernel instead of sin-

gular, [47]. These operators were also given much attentions
and have been proved to be better in adoption for mathemat-
ical models of many real world problems (see [48–50]).

Thanks to the aforementioned work, we take the given

model to extend of (1) under CFFD as

CF
0 Dr

tx tð Þ ¼ l� lþ az tð Þ½ �x tð Þ;
CF
0 Dr

ty tð Þ ¼ ax tð Þz tð Þ � by tð Þ;
CF
0 Dr

tz tð Þ ¼ cy tð Þ � cy tð Þ þ d½ �z tð Þ

8><
>: ð1Þ

with given initial conditions, x 0ð Þ ¼ N1; y 0ð Þ ¼ N2;
z 0ð Þ ¼ N3, where 0 < r 6 1. Further the involve functions in

the model obey N tð Þ ¼ x tð Þ þ y tð Þ þ z tð Þ, where the total
papulation is N. With the help of LADM, we handle the con-
sidered problem for semi analytical solution. The concerned
techniques has very rarely studied regarding the aforemen-

tioned derivative of fractional order. Here we remark that a
complete nomenclature is provided in Table 1 for the model
(1).

In this work, we establish qualitative theory for the con-
sider model because, by using fixed point theory it is ensured
that wether the consider model has a solution or not. Further

by fixed point results, existence of a physical phenomenon is
ensured. Since each numerical or analytical technique has
some merits and de-merits. For instance discretization of data
is used in collocation methods which required extra memory
and time consuming process. Also these methods are expen-

sive. on other hand perturbation methods of homotopy involv-
ing axillary parameters which often controls the method and
solution is dependent on that. Because for best approximate

solution suitable value of the axillary parameters are required.
Therefore, LADM is good among these method which needs
no discretization of date neither required axillary parameter.

Also it is efficient and produce the same solution as generated
by homotopy analysis, homotopy perturbation and homotopy
transform method [52].

2. Fundamental results

Here,we recall some definition about fractional calculus
([47,48,51]). We denote the exponential kernel as

K t; qð Þ ¼ exp �r t�q
1�r

� �
.

Definition 2.1. If g 2 H1 0;T½ �;T > 0; r 2 0; 1ð Þ, then the CFFD

is defined asU234
10

CF
0 Dr

t g tð Þ½ � ¼ M rð Þ
1� r

Z t

0

g0 qð ÞK t; qð Þdq;

M rð Þ is the normalization function with M 1ð Þ ¼ M 0ð Þ ¼ 1. If

g 2 H1 0;T½ �, then the above derivative is recalled as

CF
0 Dr

t g tð Þ½ � ¼ M rð Þ
1� r

Z t

0

g tð Þ � g qð Þð ÞK t; qð Þdq:

Definition 2.2. The fractional integral due to Caputo -Fabrizio

r 2 0; 1ð Þ is given by

CF
0 Irt g tð Þ½ � ¼ 1� r

M rð Þ g tð Þ þ r

M rð Þ
Z t

0

g qð Þdq; t P 0:

Taking the normalization function M rð Þ ¼ 1, we get the
Laplace transform [49] as given bellow

Definition 2.3. We compute a general relation for Laplace
transform of CFFD as
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L CF
0 DrþM

t g tð Þ½ �� � ¼ 1
1�r

L g mþrð Þ tð Þ� �
L exp �rt

1�r

� �� �
¼ 1

sþr 1�sð Þ smþ1L g tð Þ½ � þ
Xm
k¼1

sm�kg kð Þ 0ð Þ
" #

:

If m ¼ 0; 1, we have the following results respectively:

L CF
0 Dr

t g tð Þ½ �� � ¼ sL g tð Þ½ �
sþr 1�sð Þ

L CF
0 Drþ1

t g tð Þ½ �� � ¼ sL g tð Þ½ �þsg 0ð Þ�g0 0ð Þ
sþr 1�sð Þ :

Definition 2.4. The Laplace transform of CFD is provided by

L C
0D

r
t g tð Þ½ �� � ¼ srL g tð Þ½ � �

Xp�1

k¼0

sp�k�1g kð Þ 0ð Þ:
3. Qualitative analysis of the considered model

This portion deals with the qualitative analysis of model (1)

using fixed point theorem due to Banach. To check, weather
the problem arise after modeling a physical or biological phe-
nomenon exist or not, this is guaranteed by existence theory.

In this regard, fixed point theory is a powerful tool which pro-
vides information that weather the considered problem has a
solution or not. Plenty of fixed point results for existence of

solution have been constructed. One of the most wellknown
result in fixed point theory is the Banach contraction theorem
which provides information about existence and uniqueness of

solution for the consider problem.
In this regard, we first define the following functions

h1 t; x; y; zð Þ ¼ l� lþ az tð Þ½ �x tð Þ;
h2 t; x; y; zð Þ ¼ ax tð Þz tð Þ � by tð Þ;
h3 t; x; y; zð Þ ¼ cy tð Þ � cy tð Þ þ d½ �z tð Þ

ð2Þ

Dk ¼ sup
C d;bk½ �

kh1 t; x; y; zð Þk; for k ¼ 1; 2; 3 ð3Þ

with

C d;bi½ � ¼ t�d; tþd½ �� u� ck;uþ ck½ � ¼D�Dk; for k¼ 1;2;3:

Now using Banach fixed point theorem by defining the
norm on C d; dk½ �, for k ¼ 1; 2; 3 as

kWk1 ¼ sup
t2 t�d;tþb½ �

j/ tð Þj: ð4Þ

We define the Picard’s operator as

A : C D;D1;D2;D3ð Þ ! C D;D1;D2;D3ð Þ: ð5Þ
In this regard, applying CFIr on both sides of all the equations
of Model (1) inview of (2) respectively, we get

x tð Þ � x 0ð Þ ¼ CF
0 Irt h1 t; x; y; zð Þ½ �;

y tð Þ � y 0ð Þ ¼ CF
0 Irt h2 t; x; y; zð Þ½ �;

z tð Þ � z 0ð Þ ¼ CF
0 Irt h3 t; x; y; zð Þ½ �;

8>>><
>>>:

ð6Þ

on evaluation of right hand sides and witting in simple form,

we have
W tð Þ¼W0 tð Þþ H t;W tð Þð Þ�H0 tð Þ½ � 1� rð Þ
M rð Þ þ r

M rð Þ
Z t

0

H q;W qð Þð Þdq;

ð7Þ
where

W tð Þ ¼
x tð Þ
y tð Þ
z tð Þ

8><
>: ; W0 tð Þ ¼

x 0ð Þ
y 0ð Þ
z 0ð Þ

8><
>: ;

H t;W tð Þð Þ ¼
h1 t; x; y; zð Þ
h2 t; x; y; zð Þ
h3 t; x; y; zð Þ:

8><
>:

H0 tð Þ ¼
h1 0; x 0ð Þ; y 0ð Þ; z 0ð Þð Þ
h2 0; x 0ð Þ; y 0ð Þ; z 0ð Þð Þ
h3 0; x 0ð Þ; y 0ð Þ; z 0ð Þð Þ:

8><
>:

ð8Þ

Due to (7) and (8), the operator in (5) is defined as

AW tð Þ ¼ W0 tð Þ þ H t;W tð Þð Þ �H0 tð Þ½ � 1� rð Þ
M rð Þ þ r

M rð Þ

�
Z t

0

H q;W qð Þð Þdq: ð9Þ

Assume that the considered problem obeys the following

results:

kWk1 6 max d1; d2; d3f g: ð10Þ
Then, letting D ¼ max Dif g for i ¼ 1; 2; 3; and t0 ¼
max t 2 Df g, we have

kAW tð Þ�W0 tð Þk¼ H t;W tð Þð Þ 1�rð Þ
M rð Þ þ r

M rð Þ
R t

0
H q;W qð Þð Þdq

��� ���
6 1�rð Þ

M rð Þ kH t;W tð Þð Þkþ r
M rð Þ

R t

0
kH q;W qð Þð Þkdq

6 1�rð Þ
M rð ÞDþ r

M rð ÞDt;

ð11Þ
6Dd6max d1;d2;d3f g¼ �d; where d¼ 1þ rt0

M rð Þ ;

where, d satisfies the relation

d <
�d

D
:

Furthermore to evaluate the equality given by

kAW1 � AW2k1 ¼ sup
t2D

jW1 tð Þ �W2 tð Þj ð12Þ

we proceed as

kAW1�AW2k¼ 1�rð Þ
M rð Þ H q;W1 tð Þð Þ�H q;W2 tð Þð Þð Þ

���
þ r

M rð Þ
R t

0
H q;W1 qð Þð Þ�H q;W2 qð Þð Þð Þdq

���
6 1�rð Þ

M rð Þ kkW1 tð Þ�W2 tð Þkþ rk
M rð Þ

R t

0
kW1 tð Þ

�W2 tð Þk;with k< 1

6 1�rð Þ
M rð Þ kþ rt0

M rð Þk
n o

kW1 tð Þ�W2 tð Þk

6 dkkW1�W2k:

ð13Þ
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For A to be a contraction we should have kd < 1. Thus the
defined operator A is contraction. Therefore, the consider sys-
tem (6) has unique solution. Here, we remark that we can show

that the solutions are stable as proved in [12–14].

4. Solutions of model (1) under new derivative and convergence

of LADM

In this section, we compute general series solution to the con-
sidered model under new fractional order derivatives. Keep in

mind that onward, we use M rð Þ ¼ 1 in this paper. On Applying
Laplace transform on both sides of Model (1), we get

L x tð Þ½ � ¼ x 0ð Þ þ sþr 1�sð Þ
s

L l� lx tð Þ � ax tð Þz tð Þ½ �

L y tð Þ½ � ¼ y 0ð Þ þ sþr 1�sð Þ
s

L ax tð Þz tð Þ � by tð Þ½ �

L z tð Þ½ � ¼ z 0ð Þ þ sþr 1�sð Þ
s

L cy tð Þ � cz tð Þy tð Þ � dz tð Þ½ �:

8>>>>><
>>>>>:

ð14Þ

Now assuming the solution in the series has the form

x tð Þ ¼
X1
p¼0

xp tð Þ; y tð Þ ¼
X1
p¼0

yp tð Þ; z tð Þ ¼
X1
p¼0

zp tð Þ: ð15Þ

Next, we decompose the nonlinear terms x tð Þz tð Þ; y tð Þz tð Þ in
terms of Adomian polynomials as

x tð Þz tð Þ ¼
X1
p¼0

Pp x; zð Þ; y tð Þz tð Þ ¼
X1
p¼0

Qp x; zð Þ; ð16Þ

where the Adomian polynomial Pp x; zð Þ can be defined as

Pp x; zð Þ ¼ 1
p!

dp

dkp

Xp

k¼0

kkxk tð Þ
Xp

k¼0

kkzk tð Þ
" #					

k¼0

Qp x; zð Þ ¼ 1
p!

dp

dkp

Xp

k¼0

kkyk tð Þ
Xp

k¼0

kkzk tð Þ
" #					

k¼0

:

ð17Þ

Hence, in view of (15) and (16), the system (14) becomes

L
P1

p¼0xp tð Þ
h i

¼N1þ sþr 1�sð Þ
s

L l�l
P1

p¼0xp tð Þ�P1
p¼0Pp x;zð Þ

h i

L
P1

p¼0yp tð Þ
h i

¼N2þ sþr 1�sð Þ
s

L a
P1

p¼0Pp x;zð Þ�b
P1

p¼0yp tð Þ
h i

L
P1

p¼0zp tð Þ
h i

¼N3þ sþr 1�sð Þ
s

L c
P1

p¼0yp tð Þ�c
P1

p¼0Qp y;zð Þ�d
P1

p¼0zp tð Þ
h i

:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ
Now equating terms on both sides of (18), we have
L x0 tð Þ½ � ¼ N1; L y0 tð Þ½ � ¼ N2; L z0 tð Þ½ � ¼ N3;

L x1 tð Þ½ � ¼ sþr 1�sð Þ
s

L l� lx0 tð Þ � P0 x; zð Þ½ �;
L y1 tð Þ½ � ¼ sþr 1�sð Þ

s
L aP0 x; zð Þ � by0 tð Þ½ �;

L z1 tð Þ½ � ¼ sþr 1�sð Þ
s

L cy0 tð Þ � cQ0 y; zð Þ � dz0 tð Þ½ �;
L x2 tð Þ½ � ¼ sþr 1�sð Þ

s
L l� lx1 tð Þ � P1 x; zð Þ½ �;

L y2 tð Þ½ � ¼ sþr 1�sð Þ
s

L aP1 x; zð Þ � by1 tð Þ½ �;
L z2 tð Þ½ � ¼ sþr 1�sð Þ

s
L cy1 tð Þ � cQ1 y; zð Þ � dz0 tð Þ½ �;

..

.

L xpþ1 tð Þ� � ¼ sþr 1�sð Þ
s

L l� lxp tð Þ � Pp x; zð Þ� �
;

L ypþ1 tð Þ� � ¼ sþr 1�sð Þ
s

L aPp x; zð Þ � byp tð Þ� �
;

L zpþ1 tð Þ� � ¼ sþr 1�sð Þ
s

L cyp tð Þ � cQp y; zð Þ � dzp tð Þ� �
; p P 0:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð19Þ
Upon computation of Laplace transform in (19), we have

x0 tð Þ ¼ N1; y0 tð Þ ¼ N2; z0 tð Þ ¼ N1;

x1 tð Þ ¼ l� lN1 �N1N2½ � 1þ r t� 1ð Þð Þ;
y1 tð Þ ¼ aN1N3 � bN2½ � 1þ r t� 1ð Þð Þ;
z1 tð Þ ¼ cN2 � cN2N3 � dN3½ � 1þ r t� 1ð Þð Þ;
x2 tð Þ ¼ l 1þ r t� 1ð Þ½ �
� lþN2ð Þ l� lN1 �N1N2ð Þ½
þN1 aN1N3 � bN3ð Þ� 1þ r2 t� 1ð Þy2 tð Þð
¼ aN1 cN2 � cN2N3 � dN3ð Þ½
�b2 N1N3 �N2ð Þ� 1þ r2 t� 1ð Þð Þ; z2 tð Þ ¼ c aN1N3 � bN2ð Þ½
�cN2 cN2 � cN2N3 � dN3ð Þ � cN3 aN1N3 � bN2ð Þ
�d cN2 � cN2N3 � dN3ð Þ� 1þ r2 t� 1ð Þð Þ;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ
and so on. On the same fashion the other terms can be com-

puted. So, we get the series solution as

x tð Þ ¼ x0 tð Þ þ x1 tð Þ þ x2 tð Þ þ x3 tð Þ þ . . . ;

y tð Þ ¼ y0 tð Þ þ y1 tð Þ þ y2 tð Þ þ y3 tð Þ þ . . . ;

z tð Þ ¼ z0 þ z1 tð Þ þ z2 tð Þ þ z3 tð Þ þ . . . :

8><
>: ð21Þ

Hence, in this way we can compute the series solution. To
check the convergence of the series (20), we provide the follow-

ing result.

Theorem 4.1. Let Y ¼ C d; dk½ � is the Banach spaces and
A : Y ! Y be a contractive nonlinear operator such that for

all W;W 2 Y; kA Wð Þ � A W
� �k1 6 jkW�Wk1; 0 < j < 1.

On the use of Banach contraction principle A has a unique fixed

point W, such that AW ¼ W, where W ¼ x; y; zð Þ. The series
given in (20) can be written by applying LADM as

Wp ¼ AWp�1;Wp�1 ¼
Xp�1

j¼0

Wp; p ¼ 1; 2; 3; � � � :

Let W0 ¼ W0 2 Be Wð Þ, where Be Wð Þ ¼ W 2 Y : kW��
WkY < eg. Then one has
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ið Þ Wp 2 Br Wð Þ;
iið Þ lim

p!1
Wp ¼ W:

Proof. The proof can be similarly derived as in [17].
5. Numerical solution under CFFD and usual CFD

For the parameters involved in Model (1), we use the following
numerical values from [18] to compute the series solution of
the considered model in the frameworks of CFFD and conven-

tional CFD. A detail nomenclature of the considered model (1)
is given in Table 1.

If the total papulation N ¼ 5071126, then

N1 ¼ 5070822

5071126
¼ 0:9999400528;

N2 ¼ 304

5071126
¼ 0:0000599472; N3 ¼ 0:1; a ¼ 0:0006;

b ¼ 0:333c ¼ 0:375; d ¼ 0:02941; l ¼ 0:0045: ð22Þ
In view of these values, we have

x0 tð Þ ¼ 0:9999400528; y0 tð Þ ¼ 0:0000599472; z0 tð Þ ¼ 0:1;

x1 tð Þ ¼ �0:185494 1þ r t� 1ð Þð Þ;

y1 tð Þ ¼ 0:00040033 1þ r t� 1ð Þð Þ;

z1 tð Þ ¼ �0:00292076 1þ r t� 1ð Þð Þ;

x2 tð Þ ¼ 0:0045 1þ r t� 1ð Þð Þ þ 0:0223047 1þ r2 t� 1ð Þð Þ;

y2 tð Þ ¼ �0:0001426871 1þ r2 t� 1ð Þð Þ;

z2 tð Þ ¼ 0:000221076 1þ r2 t� 1ð Þð Þ;

x3 tð Þ ¼ 0:0045 1þ r t� 1ð Þð Þ � 0:000452025 1þ r2 t� 1ð Þð Þ

�0:00262613 1� 2rð Þ 1þ r t� 1ð Þð Þ þ 2r2 t2

2
þ r t3

3!
� t2

2!


 �
 �h

þr 2� rð Þ tþ r t2

2
� t


 �
 �i
;

y3 tð Þ ¼ 0:00006 1þ r2 t� 1ð Þ þ rtþ r3 t2

2!
� 2tþ 1


 �


þ0:00000475576 1þ r2 t� 1ð Þð Þ

�0:0000008084 1� 2rð Þ 1þ r t� 1ð Þð Þ þ 2r2 t2

2
þ r t3

3!
� t2

2!


 �
 �h

þr 2� rð Þ tþ r t2

2
� t


 �
 �i
; z3 tð Þ

¼ �0:00005471 1þ r2 t� 1ð Þ þ rtþ r3 t2

2!
� 2tþ 1


 �

þ0:0000008769 1� 2rð Þ 1þ r t� 1ð Þð Þ½

þ2r2 t2

2
þ r t3

3!
� t2

2!


 �
 �
þ r 2� rð Þ tþ r t2

2
� t


 �
 �i
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ
Analogously, we can compute the other terms of the series.

On the other part, if we consider CFD, then the general series
solution of the model (1) with given initial conditions given by
x0 ¼N1; y0 ¼N2; z0 ¼N3

x1 ¼ l tr

C rþ1ð Þ�lN1 1þaN3ð Þ tr

C rþ1ð Þ�l lþaN3ð Þ t2r

C 2rþ1ð Þ

y1 ¼ aN1N3�bN2ð Þ tr

C rþ1ð ÞþalN3
t2r

C 2rþ1ð Þ
z1 ¼ c 1�N3ð ÞN2�dN3ð Þ tr

C rþ1ð Þ

x2 ¼ l2N1 1þaN3ð Þ�aN1 cN2 1�N3ð Þ�dN3ð Þ½ � t2r

C 2rþ1ð Þ

þl2 lþaN3ð Þ t3r

C 3rþ1ð Þ

�al c 1�N3ð ÞN2�dN3ð Þ t3r1
C 3rþ1ð Þ ;

y2 ¼ a N1c 1�N3ð ÞN2�dN3ð Þ t2r

C 2rþ1ð Þþal c 1�N3ð Þ�dN3ð Þ t3rþ1

C 3rþ2ð Þ

�lN1N3 1þaN3ð Þ t2r

C 2rþ1ð Þ�N3l lþaN3ð Þ t3r

C 3rþ1ð Þ

� baN1N3�bN2ð Þ t2r

C 2rþ1ð Þ�balN3
t3r

C 3rþ1ð Þ ;

z2 ¼ c aN1N3�bN2ð Þ tr

C rþ1ð Þ� cN2 c 1�N3ð ÞN2�dN3ð Þ t2r

C 2rþ1ð Þ

�c aN1N3�bN2ð Þ t2r

C 2rþ1ð Þ� calN3
t2r

C 2rþ1ð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð24Þ
and so on. In this fashion, we can generate the series solutions

of the consider model (1). After using the numerical values
given in (22) in (24), we get few terms of the corresponding ser-
ies solution as

x tð Þ ¼ 0:9999400528� 2:21414� 10�10 tr

C rþ1ð Þ

þ9:149431� 10�7 t2r

C 2rþ1ð Þ þ 9:63859� 10�8 t3r

C 3rþ1ð Þ ;

y tð Þ ¼ 5:9999� 10�5 þ 4:001598� 10�5 tr

C rþ1ð Þ � 4:49051

�10�4 t2r

C 2rþ1ð Þ � 1:2098295� 10�6 t3r

C 3rþ1ð Þ ;

z tð Þ ¼ 0:1� 2:905755� 10�3 tr

C rþ1ð Þ þ 7:68156

�10�3 t2r

C 2rþ1ð Þ � 2:2098295� 10�3 t3r

C 3rþ1ð Þ :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð25Þ
6. Numerical interpretation and discussion

In the previous section, we have computed two types of series
solution one for CFFD and the other for CFD. In both cases,
we have obtained two different rational type expression given
in (23) and (25) respectively by using the numerical values

given in (22). In the current section, we provide the numerical
plots of various compartments corresponding to different frac-
tional order derivatives. In Figs. 1–3, we plotted the solutions

up to four terms for different fractional order by using CFFD
while in Figs. 4–6, we have plotted the resultant solutions up to
three terms at various fractional order via CFD. Since frac-

tional differential operators are global operators which pro-
duce greater degree of freedom as compared to classical
derivative which is local in nature. From the figures, we deduce
that CFFD gives more clear interpretation of dynamics instead

of usual CFD. The global behavior of the fractional differen-
tial operator due to Caputo and Fabrizio is more clear than
the usual CFD. In Figs. 1–3, we provide plots at different frac-

tional order for (23) after four term solutions for the consid-
ered model.

From Figs. 1–3s, we see that when the Dengue virus starts

spreading in a healthy community, then the number of suscep-
tible human population is increasing as well as the infection
also goes on increasing and if there is no cure then the recov-

ered population is also decreasing. This increase or decease can
be seen from Figs. 1–3 at different fractional order adopting



Fig. 1 Plot of transmission of Dengue virus in susceptible human population in Model (1) at different values of fractional order r using

CFFD.

Fig. 2 Plot of transmission of Dengue virus of infected human population in proposed model (1) at different values of fractional order r

using CFFD.

Fig. 3 Plot of transmission of Dengue fever in recovered human population in proposed model (1) at different values of fractional order

r using CFFD.
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CFFD. At lower order, the rate of increase and decrease of dif-
ferent compartment is faster, while as the order increases the

process becomes slower and vice versa.
Infact numerical analysis plays a vital role in dealing real

world problem. It is needed to solve engineering problems that
lead to equations that cannot be solved analytically with sim-

ple formulas. Since biological models are nonlinear mostly and
their exact solution is quiet difficult to find. Involving frac-
tional derivative makes it more complicated. Therefore, by

solving on some efficient method, we plot the solutions
through graphs. From these graphical reforestation, we get
information about how a disease transmit in a community
which we assume susceptible about the infection, when virus

attacks, the susceptible is going on decreasing as they are
converting to infected papulation and hence decays of
susceptible will results in growth of infected. If proper cure
or vaccine is applied then some people will get back their

health and hence their papulation is also increasing. Now frac-
tional order derivatives provide all the possible ways of this
increase decrease. Hence this geometry tell us maximum

approaches at which transmission of a disease and its recovery
take place.



Fig. 4 Plot of transmission of Dengue virus in susceptible human population in Model (1) at different values of fractional order r using

CFD.

Fig. 5 Plot of transmission of Dengue virus of infected human population in proposed model (1) at different values of fractional order r

using CFD.

Fig. 6 Plot of transmission of Dengue fever in recovered human population in proposed model (1) at different values of fractional order

r using CFD. Like from Figs. 1–3, in Figs. 4–6, the same phenomenon can be observed but the dynamics is slightly difficult to understand

as compared by adopting usual CFD instead of CFFD. Thus we conclude that both produce same behavior but CFFD produce more

clear physical interpretation as compared to usual CFD.
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7. Conclusion

In this research work, we have developed qualitative and semi
analytical analysis for fractional order model of Dengue fever

disease by using CFFD. We have used fixed point approach
and established some necessary conditions for the existence
of solution to the consider model. Then we have established

a general algorithm to develop series type solution for the con-
sidered model under CFFD. In this regard, we have applied
famous Laplace transform together with Adomian decomposi-
tion method to obtain the required semi analytical solution for

the fractional order model (1) under CFFD. Also, we have
computed the series solution via using the same method under
the usual Caputo derivative for the consider model. Both the

series solutions have different in nature. The numerical plots
indicates that CFFD is more better in using for mathematical
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modeling as compared to CFD. The aforementioned deriva-
tives has the ability to produce excellent results as compared
to usual Caputo derivative. Further, we have used LADM

for nonlinear FODEs under CFFD which has been very rarely
used for the said operator. For the numerical computations
and implementation, we have used Matlab.
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