
mathematics

Article

On Hybrid Contractions in the Context of
Quasi-Metric Spaces

Andreea Fulga 1,*,† , Erdal Karapınar 2,3,*,† and Gabriela Petruşel 4,†
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Abstract: In this manuscript, we will investigate the existence of fixed points for mappings that satisfy
some hybrid type contraction conditions in the setting of quasi-metric spaces. We provide examples to
assure the validity of the given results. The results of this paper generalize several known theorems in
the recent literature.

Keywords: contractions; hybrid contractions; quasi-metric spaces; metric spaces

1. Introduction and Preliminaries

Roughly speaking, a quasi-metric is a distance function that is not symmetry but satisfies both the
triangle inequality and self-distance property. The notion of quasi-metric was first introduced by Wilson
in 1930s [1]. This is a subject of intensive research not only in the setting of topology [2–4] and functional
analysis, but also several qualitative sciences, such as theoretical computer science [5–8], biology [9],
and many other qualitative disciplines. In particular, as it is mentioned in [10], the notion of quasi-metric
plays crucial roles in several distinct branches of mathematics, such as in the existence and uniqueness of
iterated function systems’ attractor (fractal), in the existence and uniqueness of Hamilton-Jacobi equations,
and so on.

Another crucial notion that has no metric counterpart is that of an engaged partial order. Each partial
order can be associated with a quasi-metric, and vice versa. Consequently, quasi-metric not only generalizes
the concept of the metric, but also partial orders. This is a crucial fact for both the theoretical computer
science applications and also has significance in the framework of biology [9].

For the sake of the completeness, we shall give the formal definition of quasi-metric. Throughout the
paper, X is a nonempty set A distance function q : X × X → [0, ∞) is called a quasi-metric on X if

(q1) q(u, v) = 0⇔ u = v ;
(q2) q(u, w) ≤ q(u, v) + q(v , w), for all u, v , w ∈ X .

In addition, the pair (X , q) is called a quasi-metric space.
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In what follows, we indicate the close relation between a standard metric and a quasi-metric. Given q
be a quasi-metric on X , it is clear that the function q∗ : X × X → [0, ∞) defined by q∗(u, v) = q(v , u) forms
also a quasi-metric and it is also called the dual (conjugate) of q. The functions d1, d2 : X × X → [0, ∞), where

d1(v , u) = q(u, v) + q∗(u, v),
d2(v , u) = max {q(u, v), q∗(u, v)}

form standard metrics on X .
We will provide an overview of quasi-metric spaces, presenting the notions of convergence,

completeness, and continuity.
Let {un} be a sequence in X , and u ∈ X , where (X , q) a quasi-metric space. We say that:

1. {un} converges to u if and only if

lim
n→∞

q(un, u) = lim
n→∞

q(u, un) = 0. (1)

2. {un} is left-Cauchy if and only if for every ε > 0 there exists a positive integer k = k(ε) such that
q(un, um) < ε for all n ≥ m > k.

3. {un} is right-Cauchy if and only if for every ε > 0 there exists a positive integer k = k(ε) such that
q(un, um) < ε for all m ≥ n > k.

4. {un} is Cauchy if and only if it is left-Cauchy and right-Cauchy.

We would remark here that, in a quasi-metric space (X , q), the limit for a convergent sequence is
unique. Indeed, if un → u, for all v ∈ X , we have

lim
n→∞

q(un, v) = q(u, v) and lim
n→∞

q(v , un) = q(v , u).

A quasi-metric space (X , q) is said to be: complete (respectively, left-complete or right-complete) if
and only if each Cauchy sequence (respectively, left-Cauchy sequence or right-Cauchy sequence) in X is
convergent. Notice, in this context, that “right completeness” is equivalent to “Smyth completeness” [11].
See also [12].

A mapping T : X → X is continuous provided that, for any sequence {un} in X such that un → u ∈ X ,
the sequence {Tun} converges to Tu, that is,

lim
n→∞

q(Tun, Tu) = lim
n→∞

q(Tu, Tun) = 0 (2)

If T : X → X , then the fixed point set of T is FT(X ) := {x ∈ X : Tx = x }.
A mapping ζ : [0, ∞)× [0, ∞)→ R is called an extended simulation function if the following axioms

are fulfilled:

(zd) ζ(t , s) < s − t for all t , s > 0;
(z0) ζ(t , 0) ≤ 0 for every t ≥ 0 and ζ(t , 0) = 0⇔ t = 0.

Notice that the axiom (zd) implies that ζ(t , t) < 0 for all t > 0. Let us denote by Z the family of all
extended simulation functions ζ : [0, ∞)× [0, ∞)→ R.

A function ϕ : [0, ∞)→ [0, ∞) is called a comparison function [13] if:

(c1) ϕ is increasing;
(c2) lim

n→∞
ϕn(t) = 0, for t ∈ [0, ∞).
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Proposition 1. If ϕ is a comparison function, then:

(i) each ϕk is also a comparison function, for all k ∈ N;
(ii) ϕ is continuous at 0;
(iii) ϕ(0) = 0 and ϕ(t) < t for all t > 0.

A function ψ : [0, ∞)→ [0, ∞) is called a c-comparison function [13,14] if:

(cc1) ψ is increasing;

(cc2)
∞

∑
n=0

ψn(t) < ∞, for all t ∈ (0, ∞).

We denote by Ψ the family of c-comparison functions. In some papers, instead of a c-comparison
function, the term of strong comparison function is used. See [13].

Remark 1. Any c-comparison function is a comparison function.

Let α : X × X → [0, ∞) be a function. We say that a mapping T : X → X is α-orbital admissible [15] if
for each u ∈ X we have

α(u, Tu) ≥ 1⇒ α(Tu, T2u) ≥ 1.

Lemma 1. Let T : X → X be an α-orbital admissible function. If there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and
α(Tu0, u0) ≥ 1, then the sequence (un)n∈N, defined by un = Tun−1, n ∈ N satisfies the following relations:

α(un, un+1) ≥ 1 and α(un+1, un) ≥ 1, for all n ∈ N0.

We say that the set X is regular with respect to mapping α : X × X → [0, ∞) if the following condition
is satisfied: if {un} is a sequence in X such that α(un+1, un) ≥ 1 and α(un, un+1) ≥ 1 for any n ∈ N and
un → u ∈ X as n→ ∞, then there exists a subsequence

{
un(i)

}
of {un} such that

α(un(i), u) ≥ 1 and α(u, un(i)) ≥ 1,

for each i.
In this manuscript, we will investigate the existence of fixed points for mappings that satisfy some

hybrid type contraction conditions in the setting of quasi-metric spaces. We provide examples to assure
the validity of the given results. The results of this paper generalize several known theorems in the recent
literature, see [13,14,16–25].

2. Main Results

We start with the formal definition of hybrid almost contraction of type I.

Definition 1. Let (X , q) be a quasi-metric space. We say that the mapping T : X → X is a hybrid almost
contraction of type I, if there exist ζ ∈ Z , ψ ∈ Ψ, p ≥ 0, L ≥ 0 and a1, a2, a3 ∈ [0, 1] with a1 + a2 > 0,
a1 + a2 + a3 = 1, such that, for all distinct u, v ∈ X , we have

1
2 min {q(u, Tu), q(v , Tv)q(Tv , v)} ≤ q(u, v) implies

ζ(α(u, v)q(Tu, Tv), ψ(Ip(u, v) + LN (u, v))) ≥ 0,
(3)
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where

Ip(u, v) =


[a1(q(u, v))p + a2(q(u, Tu))p + a3(q(v , Tv))p]1/p, for p > 0,

(q(u, v))a1 · (q(u, Tu))a2 · (q(v , Tv))a3 for p = 0

and
N (u, v) = min {q(u, Tv), q(v , Tu)} .

Theorem 1. Let (X , q) be a complete quasi-metric space and α : X × X → [0, ∞) be a mapping such that:

(i) u = Tu implies α(u, v) > 0 for every v ∈ X ;
(ii) v = Tv implies α(u, v) > 0 for every u ∈ X .

Suppose that T : X → X is an hybrid almost contraction of type I and

(C1) T is α-orbital admissible;
(C2) there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1;
(C3) T is continuous.

Then, T has a fixed point.

Proof. Let the sequence {un} in X be defined by

u1 = Tu0, u2 = Tu1, ..., un = Tun−1 = Tn−1u0

where u0 ∈ X is the point such that, from (C2), α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1. Indubitably, for all
n ∈ N, we have un+1 6= un. As a matter of fact, if we suppose that there is N0 ∈ N such that uN0 = uN0+1,
from the manner in which the sequence {un} was defined, we get

uN0 = TuN0 = uN0+1

so that the fixed point of T is uN0 and the proof is completed. Thus, choosing u = un−1 respectively
v = un and since 1

2 min {q(un−1, Tun−1), q(un, Tun), q(Tun, un)} ≤ 1
2 q(un−1, Tun−1) < q(un−1, un) holds for

any n ∈ N, by (3), we get

ζ(α(un−1, un)q(Tun−1, Tun), ψ(Ip(un−1, un) + LN (un−1, un))) ≥ 0. (4)

In other words, taking into account (zd),

0 ≤ ψ(Ip(un−1, un) + LN (un−1, un))− α(un−1, un)q(Tun−1, Tun). (5)

However, T is an α-orbital admissible and, on the strength of Lemma 1, the above inequality yields

q(Tun−1, Tun) ≤ α(un−1, un)q(Tun−1, Tun) ≤ ψ(Ip(un−1, un) + LN (un−1, un)). (6)

Since
N (un−1, un) = min {q(un−1, Tun), q(un, Tun−1)}

= min {q(un−1, un), q(un, un)} = 0,
(7)

the inequality (6) becomes
q(Tun−1, Tun) ≤ ψ(Ip(un−1, un)). (8)
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In addition, by taking u = un, respectively, v = un−1, we have

1
2 min {q(un, Tun), q(un−1, Tun−1), q(Tun−1, un−1)} ≤ 1

2 min {q(un, un+1), q(un−1, un), q(un, un−1)}
< q(un, un−1).

As a consequence, (3) becomes

ζ(α(un, un−1)q(Tun, Tun−1), ψ(Ip(un, un−1) + LN (un, un−1))) ≥ 0, (9)

or, taking into account (zd),

0 ≤ ψ(Ip(un, un−1) + LN (un, un−1))− α(un, un−1)q(Tun, Tun−1).

By Lemma 1, the above inequality yields

q(un+1, un) = q(Tun, Tun−1) ≤ α(un, un−1)q(Tun, Tun−1)

≤ ψ(Ip(un, un−1) + LN (un, un−1)).
(10)

However,
N (un, un−1) = min {q(un, Tun−1), q(un−1, Tun)}

= min {q(un, un), q(un−1, un+1)} = 0,
(11)

and then we get
q(Tun, Tun−1) ≤ ψ(Ip(un, un−1)). (12)

From this point of the proof, we will consider the two cases separately: p > 0 and p = 0.
Case 1. For the case p > 0,

Ip(un−1, un) = [a1(q(un−1, un))p + a2(q(un−1, Tun−1))
p + a3(q(un, Tun))p]1/p

= [a1(q(un−1, un))p + a2(q(un−1, un))p + a3(q(un, un+1))
p]1/p

= [(a1 + a2)(q(un−1, un))p + a3(q(un, un+1))
p]1/p

and the inequality (6) becomes

q(un, un+1) = q(Tun−1, Tun) ≤ ψ([(a1 + a2)(q(un−1, un))
p + a3(q(un, un+1))

p]1/p). (13)

Onward, being a c-comparison function, ψ satisfies (iii) by Proposition 1 that is ψ(t) < t for any
t > 0, we obtain

q(un, un+1) ≤ ψ([(a1 + a2)(q(un−1, un))p + a3(q(un, un+1))
p]1/p)

< [(a1 + a2)(q(un−1, un))p + (1− a1 − a2)(q(un, un+1))
p]1/p,

which is equivalent with

(a1 + a2)[q(un, un+1)]
p < (a1 + a2)[q(un−1, un)]

p,

or (since a1 + a2 > 0)
q(un, un+1) < q(un−1, un). (14)
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Using the fact that ψ ∈ Ψ is increasing, by (13), we have

q(un, un+1) < ψ(q(un−1, un)) < ψ2(q(un−2, un−1)) < ... < ψn(q(u0, u1)) (15)

Let now l ≥ 1. By using (15) and the triangle inequality, we get

q(un, un+l) ≤ q(un, un+1) + ... + q(un+l−1, un+l)

≤
n+l−1

∑
j=n

ψj(q(u0, u1))

≤
∞

∑
j=n

ψj(q(u0, u1)).

(16)

Letting n→ ∞ in the above inequality, we derive that ∑∞
j=n ψj(q(u0, u1))→ 0. Hence, q(un, un+l)→ 0

as n→ ∞. Thus, {un} is a right-Cauchy sequence in (X , q).
Similarly, since

Ip(un, un−1) = [a1(q(un, un−1))
p + a2(q(un, Tun))p + a3(q(un−1, Tun−1))

p]1/p

= [a1(q(un, un−1))
p + a2(q(un, un+1))

p + a3(q(un−1, un))p]1/p,

the inequality (12) becomes

q(un+1, un) ≤ ψ(Ip(un, un−1)) < Ip(un, un−1)

= [a1(q(un, un−1))
p + a2(q(un, un+1))

p + a3(q(un−1, un))p]1/p.
(17)

Taking into account (14), we get

(q(un+1, un))p < a1(q(un, un−1))
p + a2(q(un, un+1))

p + a3(q(un−1, un))p

= a1(q(un, un−1))
p + a2(q(un, un+1))

p + (1− a1 − a2)(q(un−1, un))p

< a1(q(un, un−1))
p + (1− a1)(q(un−1, un))p, for any n ∈ N.

We are able to examine it with the following cases.

a. If q(un, un−1) < q(un−1, un) for any n ∈ N, the above inequality becomes

(q(un+1, un))
p < (q(un−1, un))

p,

and then, together with (15),

q(un+1, un) < q(un−1, un) < ψn−1(u0, u1), ∀n ≥ 1. (18)

From the triangle inequality and (18), for all l ≥ 1, we get that

q(un+l , un) ≤ q(un+l , un+l−1) + ... + q(un+1, un)

≤
n+l−1

∑
j=n

ψj(q(u0, u1))

≤
∞

∑
j=n

ψj(q(u0, u1))→ 0 as n→ ∞.
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b. If, for any n ∈ N, q(un, un−1) ≤ q(un−1, un), we have

q(un+1, un) < q(un, un−1)

and, from (17), regarding ψ ∈ Ψ, we get that

q(un+1, un) < ψ(q(un, un−1)) < ... < ψn(q(u1, u0)). (19)

Again, by triangle inequality,

q(un+l , un) ≤ q(un+l , un+l−1) + ... + q(un+1, un)

≤
n+l−1

∑
j=n

ψj(q(u1, u0))

≤
∞

∑
j=n

ψj(q(u1, u0))→ 0 as n→ ∞.

c. If q(ui, ui−1) ≤ q(ui−1, ui) for some i ∈ N and q(uk, uk−1) > q(uk−1, uk) for some k ∈ N, then we have
for l ∈ N

q(un+l , un) ≤ q(un+l , un+l−1) + ... + q(un+1, un)

≤
∞

∑
j=n

ψj(q(u1, u0)) +
∞

∑
j=n

ψj(q(u0, u1))→ 0 as n→ ∞.

Therefore, we proved that {un} is a left-Cauchy in (X , q).

Thus, being left and right Cauchy, the sequence {un} is a Cauchy in complete quasi-metric space
(X , q), which implies that there is u∗ ∈ X such that

lim
n→∞

q(un, u∗) = lim
n→∞

q(u∗, un) = 0. (20)

Using the continuity of T and (q1), we have

lim
n→∞

q(un, Tu∗) = lim
n→∞

q(Tun−1, Tu∗) = 0,

lim
n→∞

q(Tu∗, un) = lim
n→∞

q(Tu∗, Tun−1) = 0

and so

lim
n→∞

q(un, Tu∗) = lim
n→∞

q(Tu∗, un) = 0. (21)

It follows from (20) and (21) that Tu∗ = u∗, that is, u∗ is a fixed point of T.
Case 2. In the case p = 0, we have

Ip(un−1, un) = (q(un−1, un))a1 · (q(un−1, Tun−1))
a2 · (q(un, Tun))a3

= (q(un−1, un))a1 · (q(un−1, un))a2 · (q(un, un+1))
a3 .

Replacing in (6) and taking into account (7), we get
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q(un, un+1) = q(Tun−1, Tun) ≤ α(un−1, un)q(Tun−1, Tun) ≤ ψ(Ip(un−1, un))

< Ip(un−1, un) = (q(un−1, un))a1+a2 · (q(un, un+1))
a3

(22)

and we deduce that
(q(un, un+1))

a1+a2 < (q(un−1, un))
a1+a2 .

Thus, taking into account a1 + a2 > 0, we have

q(un, un+1) < q(un−1, un) (23)

and, from (22), since ψ ∈ Ψ we are able to say that, for any n ∈ N,

q(un, un+1) ≤ ψ(q(un−1, un)) < ... < ψn(q(u0, u1)). (24)

Following the above lines and using the triangle inequality, we obtain that the sequence un is right
Cauchy. Likewise, because

Ip(un, un−1) = (q(un, un−1))
a1 · (q(un, Tun))a2 · (q(un−1, Tun−1))

a3 ]

= (q(un, un−1))
a1 · (q(un, un+1))

a2 · (q(un−1, un))a3 ,

taking into account (11) and (23), we have

q(un+1, un) = q(Tun, Tun−1) ≤ α(un, un−1)q(Tun, Tun−1) ≤ ψ(Ip(un, un−1))

< Ip(un, un−1) = (q(un, un−1))
a1 · (q(un, un+1))

a2 · (q(un−1, un))a3

< (q(un, un−1))
a1 · (q(un−1, un))a2+a3

≤ (max {q(un, un−1), q(un−1, un)})a1+a2+a3

= max {q(un, un−1), q(un−1, un)} .

We must examine two cases.
If max {q(un, un−1), q(un−1, un)} = q(un−1, un), then since q(un−1, un) > 0, we get that

q(un+1, un) ≤ ψ(q(un−1, un)),

and recursively
q(un+1, un) ≤ ψn(q(u0, u1)). (25)

If max {q(un, un−1), q(un−1, un)} = q(un, un−1), we have

q(un+1, un) ≤ ψ(q(un, un−1)) < ... < ψn(q(u1, u0)). (26)

Therefore, by combining (25) with (26), we derive (due to (c2)) that

lim
n→∞

q(un+1, un) = lim
n→∞

max {ψn(q(u0, u1)), ψn(q(u1, u0))} = 0.

Again, using the triangle inequality, and the above inequalities for all l ≥ 1, we get

q(un+l , un) ≤ q(un+l , un+l−1) + ... + q(un+1, un)

≤
∞

∑
j=n

ψj(q(u1, u0)) +
∞

∑
j=n

ψj(q(u0, u1))→ 0 as n→ ∞,
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that is, the sequence {un} is left Cauchy, so that is a Cauchy sequence in a complete quasi-metric space
(X , q). Thus, there is u∗ ∈ X such that

lim
n→∞

q(u∗, un) = 0 = lim
n→∞

q(u∗, un). (27)

Of course, using (q1) and the continuity of T, we have Tu∗ = u∗.

Corollary 1. Let (X , q) be a complete quasi-metric space, a function α : X×X → [0, ∞) and a mapping T : X → X
such that there exist ζ ∈ Z and ψ ∈ Ψ such that, for p ≥ 0, L ≥ 0 and a1, a2, a3 ∈ [0, 1) with a1 + a2 > 0 and
a1 + a2 + a3 = 1, we have

ζ(α(u, v)q(Tu, Tv), ψ(Ip(u, v) + LN (u, v))) ≥ 0, for all distinct u, v ∈ X . (28)

Suppose also that the following assumptions hold:

(i) u = Tu implies α(u, v) > 0 for every v ∈ X ;
(ii) v = Tv implies α(u, v) > 0 for every u ∈ X ;
(i) T is α-orbital admissible;
(ii) there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1;
(iv) T is continuous.

Then, T has a fixed point.

Remark 2. Of course, in particular letting L = 0 in the above Corollary, we find Theorem 2.1. in [16].

Corollary 2. Let (X , q) be a complete quasi-metric space and a mapping T : X → X such that there exist ζ ∈ Z
and ψ ∈ Ψ such that, for p ≥ 0, L ≥ 0 and a1, a2, a3 ∈ [0, 1) with a1 + a2 > 0 and a1 + a2 + a3 = 1, we have

ζ(q(Tu, Tv), ψ(Ip(u, v) + LN (u, v))) ≥ 0, for all distinct u, v ∈ X . (29)

Then, T has a fixed point.

Proof. Let α(u, v) = 1 in Corollary 1.

Corollary 3. Let (X , q) be a complete quasi-metric space, a function α : X × X → [0, ∞) and a continuous
mapping T : X → X such that there exist ψ ∈ Ψ such that, for p ≥ 0 and a1, a2, a3 ∈ [0, 1) with a1 + a2 > 0 and
a1 + a2 + a3 = 1, we have

α(u, v)q(Tu, Tv) ≤ ψ(Ip(u, v)), for all distinct u, v ∈ X . (30)

Suppose that there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1. Then, T has a fixed point.

Proof. Let ζ(t, s) = ψ(s)− t in Corollary 1.

Moreover, it easy to see that Theorem 1 is a generalization of Theorem 2.1 in [18] in the context of
quasi-metric space. Indeed, if we take L = 0 and p = 0 in Corollary 3, we find:
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Corollary 4. Let (X , q) be a complete quasi-metric space, a function α : X ×X → [0, ∞), and a continuous mapping
T : X → X such that there exists ψ ∈ Ψ such that, for a1, a2, a3 ∈ [0, 1) with a1 + a2 > 0 and a1 + a2 + a3 = 1,
we have

α(u, v)q(Tu, Tv) ≤ ψ((q(u, v))a1 · (q(u, Tu))a2 · (q(v , Tv))a3), for all distinct u, v ∈ X . (31)

Suppose that there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1. Then, T has a fixed point.

Inspired by the example of [10], we consider the following:

Example 1. Let the set X = [1, ∞) and the quasi-metric q : X × X → [0, ∞) given by

q(u, v) =

{
ln v − ln u, if u ≤ v

1
3 (ln u − ln v), if u > v

.

(see Example 4.1 in [10].) Let the mapping T : X → X , be defined by

Tu =

{
1, if u ∈ [1, 2]

eu−2, if u ∈ (2, ∞)

and the function α : X × X → [0, ∞) be defined by

α(u, v) =


2, if u, v ∈ [1, 2)
3, if u = 1, v = 2 or u = 2, v = 1
6, if u = 3, v = 2
0, otherwise

.

Since the mapping T is continuous and for u = 2, α(2, T2) = α(2, 1) = 3 and α(T2, 2) = α(1, 2) = 3,
we have that the assumptions (C2), (C3) are satisfied. Moreover, for any u ∈ [1, 2), we have

α(u, Tu) = α(u, 1) = 2⇒ α(T1, T21) = α(1, 1) = 2

and
α(2, T2) = α(2, 1) = 3⇒ α(T2, T22) = α(1, 1) = 2,

so that T is α-orbital admissible.
Choosing ψ(t) = 1

3 t, p = 2, a1 = a2 = a3 = 1
3 and L = 24, we have the following cases:

Case 1. If u, v ∈ [1, 2], then q(u, v) = q(1, 1) = 0 and (3) holds for every ζ ∈ Z .
Case 2. If u = 3, v = 2, then we have

q(3, T3) = q(3, e) = 1
3 ln 3

e , q(2, T2) = q(2, 1) = 1
3 ln 2, q(T2, 2) = q(1, 2) = ln 2,

q(3, 2) = 1
3 ln 3

2 , q(T3, T2) = q(e, 1) = 1
3 ,

q(3, T2) = q(3, 1) = 1
3 ln 3, q(2, T3) = q(2, e) = ln e

2 .

Thus, we have

1
2

min {q(3, T3), q(2, T2), q(T2, 2)} = 1
6

ln
3
e
<

1
3

ln
3
2
= q(3, 2)
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and

α(3, 2)q(T3, T2) =
6
3
<

1
3

[√
1
3

(
(

1
3

ln
3
2
)2 + (

1
3

ln
3
e
)2 + (

1
3

ln 2)2
)1/2

+ 24 ln
e
2

]
= ψ(Ip(3, 2) + LN (3, 2)),

so that T is a hybrid almost contraction for any ζ ∈ Z .
The other cases are not interesting, while α(u, v) = 0. (Consequently, the mapping T has two fixed points,

u1 = 1 and u2 ∈ (3, 4).)
On the other hand, since

α(3, 2)q(T3, T2) = 2 > ( 1
3 ln 3

2 )
γ( 1

3 ln 3
e )

β( 1
3 ln 2)1−γ−β

> ψ
(
(q(3, 2))γ(q(3, T3))β, (q(2, T2))1−γ−β

)
for every γ, β ∈ (0, 1) and ψ ∈ Ψ, Theorem 2.1 in [18] can not be applied.

In particular, for the case p = 0, the continuity condition of T can be replaced with the regularity
condition of the space X.

Theorem 2. Let (X , q) be a complete quasi-metric space, a function α : X × X → [0, ∞) and a mapping T : X → X
such that there exist ζ ∈ Z , ψ ∈ Ψ, L ≥ 0 and a1, a2, a3 ∈ [0, 1] with a1 + a2 + a3 = 1, such that, for all distinct
u, v ∈ X , we have

1
2 min {q(u, Tu), q(v , Tv), q(Tv , v)} ≤ q(u, v) implies

ζ(α(u, v)q(Tu, Tv), ψ((q(u, v))a1 · (q(u, Tu))a2 · (q(v , Tv))a3 + LN (u, v))) ≥ 0.
(32)

Suppose also that

(i) u = Tu implies α(u, v) > 0 for every v ∈ X ;
(ii) v = Tv implies α(u, v) > 0 for every u ∈ X ;
(C1) T is α-orbital admissible;
(C2) there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1;
(C3) X is regular with respect to the mapping α.

Then, T has a fixed point.

Proof. From the above theorem, there exists u∗ ∈ X such that (27) hold. In what follows, we claim that

1
2 min

{
q(u∗, Tu∗), q(un(i), Tun(i)), q(Tun(i), un(i))

}
≤ q(u∗, un(i)) or

1
2 min

{
q(un(i)−1, Tun(i)−1), q(u∗, Tu∗), q(Tu∗, u∗)

}
≤ q(un(i)−1, u∗).

(33)

Indeed, using the method of Reductio ad Absurdum, we assume that that there exists k ∈ N such that

1
2 min {q(u∗, Tu∗), q(uk, Tuk), q(Tuk, uk)} > q(u∗, uk) and
1
2 min {q(uk−1, Tuk−1), q(u∗, Tu∗), q(Tu∗, u∗)} > q(uk−1, u∗)

Therefore, we have
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q(uk−1, uk) ≤ q(uk−1, u∗) + q(u∗, uk)

< 1
2 min{q(uk−1, Tuk−1), q(u∗, Tu∗), q(Tu∗, u∗)}+ 1

2 min{q(u∗, Tu∗), q(uk−1, Tuk−1), q(Tuk−1, uk−1)}
< 1

2 [min {q(uk−1, uk), q(u∗, Tu∗), q(Tu∗, u∗)}+ min {q(u∗, Tu∗), q(uk−1, uk), q(uk, uk−1)}]
≤ 1

2 [q(uk−1, uk) + q(uk−1, uk)]

= q(uk−1, uk),

which is a contradiction.
In the alternative hypothesis, if the space X is regular with respect to mapping α, we have

α(u∗, un(i)) ≥ 1, where{un(i)} is a sub-sequence of {un}, for i ∈ N. We will suppose by reductio ad absurdum
that u∗ 6= Tu∗. Then, for u = u∗ and v = un(i) in (3), we get

ζ(α(u∗, un(i))q(Tu∗, Tuni)), ψ(Ap(u∗, un(i)))) ≥ 0.

Taking into account the properties of function ζ, ψ, and α, the above relation becomes

q(Tu∗, u∗) ≤ q(Tu∗, Tun) + q(Tun, u∗) ≤ α(u∗, un)q(Tu∗, Tun(i)) + q(un(i)+1, u∗)

≤ ψ((q(u∗, un(i)))
a1 · (q(u∗, Tu∗))a2 · (q(un(i), Tun(i)))

a3 + N (u∗, un(i))) + q(un(i)+1, u∗),

Letting i→ ∞, we have

0 < q(Tu∗, u∗) < lim
i→∞

ψ((q(u∗, un(i)))
a1 · (q(u∗, Tu∗))a2 · (q(un(i), Tun(i)))

a3 + N (u∗, un(i))) + q(un(i)+1, u∗)

and, since ψ is continuous in 0, ψ(0) = 0, we get q(Tu∗, u∗) = 0.

Corollary 5. Let (X , q) be a complete quasi-metric space and T : X → X be a given mapping. Assume that there
exist L ≥ 0, ζ ∈ Z and ψ ∈ Ψ such that, for all distinct u, v ∈ X , we have

1
2 min {q(u, Tu), q(v , Tv)q(Tv , v)} ≤ q(u, v) implies

ζ(q(Tu, Tv), ψ(Ip(u, v) + LN (u, v))) ≥ 0,

for all distinct u, v ∈ X . Then, T has a fixed point.

Proof. It is sufficient to take α(u, v) = 1 for u, v ∈ X in Theorem 5.

Corollary 6. Let (X , q) be a complete quasi-metric space and T : X → X be a given mapping. Assume that there
exist L ≥ 0, ζ ∈ Z and ψ ∈ Ψ such that, for all distinct u, v ∈ X , we have

1
2 min {q(u, Tu), q(v , Tv)q(Tv , v)} ≤ q(u, v) implies q(Tu, Tv) ≤ kIp(u, v)

for all distinct u, v ∈ X . Then, T has a fixed point.

Proof. It is sufficient to take L = 0, ζ(t, s) = k1s − t, ψ(u) = k2u with k1, k2 ∈ (0, 1) and k = k1k2 in
Corollary 5.
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Corollary 7. Let (X , q) be a complete quasi-metric space and T : X → X a continuous mapping such that

1
2 min {q(u, Tu), q(v , Tv)q(Tv , v)} ≤ q(u, v) implies

q(Tu, Tv) ≤ k√
3
·
√
(q(u, v))2 + (q(u, Tu))2 + (q(v , Tv))2

(34)

for all distinct u, v ∈ X and some k ∈ (0, 1). Then, T has a fixed point in X .

Proof. Let p = 2 and a1 = a2 = a3 = 1
3 in Corollary 6.

In the next theorem, we involve a Jaggi type expression with the hybrid contractions.

Definition 2. Let (X , q) be a quasi-metric space. A mapping T : X → X is called a hybrid almost contraction of
type J, if there exist ζ ∈ Z and ψ ∈ Ψ such that, for p ≥ 0, L ≥ 0 and a1, a2 > 0 with a1 + a2 < 1, we have

1
2 min {q(u, Tu), q(v , Tv)q(Tv , v)} ≤ q(u, v) implies

ζ(α(u, v)q(Tu, Tv), ψ(Jp(u, v) + LN (u, v))) ≥ 0,
(35)

for all distinct u, v ∈ X , where

Jp(u, v) =


[a1(q(u, v))p + a2(

q(u,Tu))·(q(v ,Tv)
q(u,v) )p]1/p, for p > 0

(q(u, v))a1 · (q(u, Tu))a1 · (q(v , Tv))1−a1−a2 , for p = 0

and
N (u, v) = min {q(u, Tv), q(v , Tu)} .

Theorem 3. Let (X , q) be a complete quasi-metric space and α : X× X → [0, ∞) be a mapping such that:

(i) u = Tu implies α(u, v) > 0 for every v ∈ X ;
(ii) v = Tv implies α(u, v) > 0 for every u ∈ X .

Suppose that T : X → X is a hybrid almost contraction of type J such that the following assumptions hold:

(i) T is α-orbital admissible;
(ii) there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1;
(iii) there exists ∆ > 0 such that, (a1 + a2∆2p)1/p ≤ 1 (where p > 0) and

1
∆

q(u, v) ≤ q(v , u) ≤ ∆q(u, v), for all u, v ∈ X ;

(iv) T is continuous.

Then, T has a fixed point.

Proof. We will consider only the case p > 0 because, for p = 0, the expression is similar to the one in
Theorem 1. By verbatim of the first lines in the proof of Theorem 1, starting from a point u0, we are able
to build a sequence {un} ⊂ X . Onward, as in the proof of Theorem 1, we suppose that un+1 6= un for all
n ∈ N and from (35), we have 1

2 min {q(un−1, Tun−1), q(un, Tun), q(Tun, un)} ≤ q(un−1, un), which implies

ζ(α(un−1, un)q(Tun−1, Tun), ψ(Jp(un−1, un) + LN (un−1, un))) ≥ 0.
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By the axiom (zd), Lemma 1 and taking into account (7), this inequality becomes

q(un, un+1) ≤ α(un−1, un)q(Tun−1, Tun) ≤ ψ(Jp(un−1, un) + LN (un−1, un)) < Jp(un−1, un)

= [a1(q(un−1, un))p + a2(
q(un−1,Tun−1)·q(un ,Tun)

q(un−1,un)
)p]1/p

= [a1(q(un−1, un))p + a2(
q(un−1,un)·(qun ,un+1)

q(un−1,un)
)p]1/p

= [a1(q(un−1, un))p + a2(q(un, un+1))
p]1/p.

(36)

Thereupon,

q(un, un+1) <

(
a1

1− a2

)1/p
q(un−1, un) < q(un−1, un)

and then, from (36), we have q(un, un+1) < ψ(q(un−1, un)). Since ψ ∈ Ψ, recursively, we get

q(un, un+1) < ψ(q(un−1, un)) < ... < ψn(q(u0, u1)). (37)

In order to prove that {un} is a right-Cauchy sequence, let l ∈ N. From (37) and the triangle inequality,
we get that

q(un, un+l) ≤ q(un, un+1) + ... + q(un+l−1, un+l)

≤
n+l−1

∑
j=n

ψj(q(u0, u1))

≤
∞

∑
j=n

ψj(q(u0, u1))→ 0, as n→ ∞.

We conclude that {qn} is a right-Cauchy sequence in (X , q).
Substituting in (35) u = un and v = un−1 and since 1

2 min {q(un, Tun, q(un−1, Tun−1), q(Tun−1, un−1))} ≤
q(un, un−1), we have (taking into account (11))

q(un+1, un) ≤ α(un, un−1)q(Tun, Tun−1) ≤ ψ(Jp(un, un−1) + LN (un, un−1)) < Jp(un, un−1)

= [a1(q(un, un−1))
p + a2(

q(un ,un+1))·(q(un−1,un)
q(un ,un−1

)p]1/p

i.e.,

(q(un+1, un))
p < a1(q(un, un−1))

p + a2(
q(un, un+1)) · (q(un−1, un)

q(un, un−1
)p.

On one hand, we have already proved that q(un, un+1) < q(un−1, un). On the other hand, by (iii),
there exists a positive constant ∆ such that q(un−1, un) ≤ ∆q(un, un−1) for n ∈ N. Thus, we have

(q(un+1, un))p < a1(q(un, un−1))
p + a2(

(q(un−1,un))2

q(un ,un−1
))p

< a1(q(un, un−1))
p + a2(

(∆·q(un ,un−1))
2

q(un ,un−1)
)p

= (a1 + a2∆2p) · (q(un, un−1))
p,

which is equivalent to the next inequality

q(un+1, un) < (a1 + a2∆2p)1/pq(un, un−1) ≤ q(un, un−1).
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Thus,
q(un+1, un) < ψ(q(un, un−1)) < ... < ψn(q(u1, u0)) (38)

Again, considering triangle inequality, together with (38), for l ∈ N, we have

q(un+l , un) ≤ q(un+l , un+l−1) + ... + q(un−1, un)

≤
∞

∑
j=n

ψj(q(u0, u1))→ 0, as n→ ∞.

Analogously, we deduce that {un} is left-Cauchy, so that it is a Cauchy sequence in complete
quasi-metric space.

Thus, there exists u∗ ∈ X such that

lim
n→∞

q(un, u∗) = lim
n→∞

q(u∗, un) = 0. (39)

Under the assumption (iv), from the continuity of T and (q1), we have

lim
n→∞

q(un, Tu∗) = lim
n→∞

q(Tun−1, Tu∗) = 0,

lim
n→∞

q(Tu∗, un) = lim
n→∞

q(Tu∗, Tun−1) = 0

so that
lim

n→∞
q(un, Tu∗) = lim

n→∞
q(Tu∗, un) = 0. (40)

Hence, Tu∗ = u∗ that is, u∗ is a fixed point of T.

The following is a special case for p = 0.

Corollary 8. Let (X , q) be a complete quasi-metric space, a function α : X×X → [0, ∞) and a mapping T : X → X
such that there exist ζ ∈ Z and ψ ∈ Ψ such that, for p ≥ 0, L ≥ 0 and a1, a2,∈ [0, 1) with a1 + a2 < 1, we have

ζ(α(u, v)q(Tu, Tv), ψ(Jp(u, v) + LN (u, v))) ≥ 0, for all distinct u, v ∈ X . (41)

Suppose also that the following assumptions hold:

(i) u = Tu implies α(u, v) > 0 for every v ∈ X ;
(ii) v = Tv implies α(u, v) > 0 for every u ∈ X ;
(i) T is α-orbital admissible;
(ii) there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1;
(iii) there exists ∆ > 0 such that, (a1 + a2∆2p)1/p ≤ 1 (where p > 0) and

1
∆

q(u, v) ≤ q(v , u) ≤ ∆q(u, v), for all u, v ∈ X ;

(iv) T is continuous.

Then, T has a fixed point.
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Example 2. Let X = [0, 1] and the function

q(u, v) =

{
u − v , for u ≥ v

2(v − u), for u < v

It is easy to see that the pair (X , q) forms a quasi-metric space.
Let the map T : X → X defined by

Tu =

{ 1
8 , for u ∈ [0, 1

2 ]

u
4 , for u ∈ [ 1

2 , 1]

and choose ζ(u, v) = 1
2 v − u and ψ(t) = 1

2 t. For p = 2, L = 0, ∆ = 2, a1 = 1
4 and a2 = 1

32 because
(a1 + a2 · ∆2p)1/p = 1

4 + 1
32 · 24 = 3

4 ≤ 1, the assumption (iii) is satisfied. In this case, (41) becomes

α(u, v)q(u, v) ≤ Jp(u, v) =
1
4

√
1
4
(q(u, v))2 +

1
32

(
q(u, Tu)q(v , Tv)

q(u, v)
)2. (42)

Define α : X × X → [0, ∞) such that

α(u, v) =


3, for u, v ∈ [0, 1

2 )

1, for u = 1, v = 0

0, otherwise

It is easy to see that T is α-admissible. Indeed, we have

α(u, v) = 3⇒ α(Tu, Tv) = α(1/8, 1/8) = 3, for u, v ∈ [0,
1
2
)

and
α(1, 0) = 1⇒ α(T1, T0) = α(1/4, 1/8) = 3.

On the other hand, for q0 = 0,

α(0, T0) = α(T0, 0) = α(0, 0) = 3,

so that the presumptions (i), (ii), and (iv) are satisfied. Of course, if u, v ∈ [0, 1
2 ), we have q(Tu, Tv) = q( 1

8 , 1
8 ) = 0

and (41) is verified. For u = 1 and v = 0 , we have q(T1, T0) = 1
4 −

1
8 = 1

8 , q(0, T0) = q(0 , 1/8) = 2(1/8− 0) =
1/4, q(1, T1) = q(1, 1/4) = 3/4 and

α(1, 0)q(T1, T0) = 1
8 ≤

1
4

√
1
4 + 1

32 (
3
16 )

2

= 1
4

√
1
4 (q(1, 0))2 + 1

32 (
q(0,T0)q(1,T1)

q(1,0) )2
(43)

The other cases are not interesting since α(u, v) = 0 and the condition (42) is fulfilled trivially. Thus,
the presumptions of Theorem 8 are provided and u = 1

8 is the fixed point of T.

Corollary 9. Let (X , q) be a complete quasi-metric space and T be a continuous self-mapping on X . Suppose that
there exist ζ ∈ Z , ψ ∈ Ψ such that

ζ(q(Tu, Tv), ψ(Jp(u, v))) ≥ 0,
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for each distinct u, v ∈ X . If there exists ∆ > 0 such that (a1 + a2 · ∆2p)1/p ≤ 1 for p > 0, and 1
∆ q(u, v) ≤

q(v , u) ≤ ∆q(u, v) for all u, v ∈ X , then T has a fixed point.

Proof. It is sufficient to take L = 0 and α(u, v) = 1 for u, v ∈ X in Corollary 8.

Corollary 10. Let (X , q) be a complete quasi-metric space and T be a self-mapping on X . Suppose that there exists
∆ > 0 such that (a1 + a2 · ∆2p)1/p ≤ 1 for p > 0, and 1

∆ q(u, v) ≤ q(v , u) ≤ ∆q(u, v) for all u, v ∈ X . The
mapping T has a fixed point provided that

q(Tu, Tv) ≤ c · Jp(u, v)

for each distinct u, v ∈ X and some c ∈ (0, 1).

Proof. We set ζ(t, s) = c1s− t, ψ(u) = c2u with c1, c2 ∈ [0, 1) and c = c1 + c2 in Corollary 9.

Remark 3. Letting p = 0 in Corollary 10, we find Theorem 2.2. in [20].

Example 3. Let (X , q) be the quasi-metric space, where X = [1, ∞) and

q(u, v) =

{
u − v , for u ≥ v

2(v − u), for u < v

Let

Tu =

{
u3 − 8u2 + 19u − 9, for u ∈ [1, 5]

ln(u2 − 24) + u + 6, for u ∈ (5, ∞).

Consider the function ζ be arbitrary in Z , ψ ∈ Ψ with ψ(t) = t√
3

and α : X × X → [0, ∞) such that

α(u, v) =


u2 + 1, for (u, v) ∈ {(3, 3), (3, 4), (4, 3), (3, 1), (1, 3)}

1, for (u, v) = (2, 1)

0, otherwise .

It is easily verified that T is α-orbital admissible. Whereas T1 = T3 = T4 = 3, taking into account the
definition of function α, we have that the inequality (41) holds for every pair (u, v) ∈ X 2 \ {(2, 1)}. For the case
u = 2 and v = 1, choosing a1 = 1

2 , a2 = 1
48 and p = 2, we find that axiom (iii) holds. On the other hand,

Jp(2, 1) =

[
1
2 (q(2, 1))2 + 1

48

(
q(2,T2)·q(1,T1)

q(2,1)

)2
]1/2

=

√
1
2 + 1

48 ·
(

q(2,5)·q(1,3)
q(2,1)

)2
=
√

25
2

and

α(2, 1)q(T2, T1) = q(5, 3) = 2 <

√
25
6

= ψ(Jp(2, 1)).

Consequently, by Theorem 8, we have that the mapping T has a fixed point in X .
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On the other hand, we can observed that, for u = 1 and v = 5,

q(T1, T(4.5)) = q(2, 5.625) = 7.25, q(1, T1) = q(1, 2) = 2, q(4.5, T(4.5)) = q(4.5, 5.625) = 1.125,

so that, since
q(T1, T(4.5)) > λ(q(1, T1))α(q(4.5, T(4.5)))1−α

for any λ ∈ [0, 1) and α ∈ (0, 1), Theorem 2.2 in [20] can not be applied.

Corollary 11. Let (X , q) be a complete quasi-metric space and T : X → X a continuous mapping. Then, T has a
fixed point provided that

q(Tu, Tv) ≤ k1 · q(u, v) + k2 ·
q(u, Tu)q(v , Tv)

q(u, v)
(44)

for each u, v ∈ X and k1, k2 ∈ (0, 1) with k1 + k2 < 1

Proof. Let p = 1 and ki = c · ai, for i ∈ {1, 2} in Corollary 10.
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