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1 Introduction
The fractional calculus, which is engaged in integral and di�erential operators of arbitrary orders, is as old
as the conceptional calculus that deals with integrals and derivatives of non-negative integer orders. Since
not all of the real phenomena can be modeled using the operators in the traditional calculus, researchers
searched for generalizations of these operators. It turnedout that the fractional operators are excellent tools to
use in modeling long-memory processes andmany phenomena that appear in physics, chemistry, electricity,
mechanics and many other disciplines. Here, we invite the readers to read [1–10] and the reference cited
in these books. However, targeting the best understanding more accurate modeling real world problems,
researchers were in need of other types of fractional operators that were con�ned to Riemann-Liouville
fractional operators. In the literature, one can �nd many works that propose new fractional operators. We
mention [11–16]. Nonetheless, the fractional integrals and derivatives which were proposed in these works
were just particular cases of what so called fractional integrals/derivatives withe dependence on a kernel
function [2, 5, 17]. There are other types of fractional operators which were suggested in the literature.

On the other hand, due to the singularities found in the traditional fractional operatorswhich are thought
to make some di�culties in the modeling process, some researches recently proposed new types of non-
singular fractional operators. Some of these operators contain exponential kernels and some of them involve
the Mittag-Le�er functions. For such types of fractional operators we refer to [18–27].

All the fractional operators considered in the references in the �rst and the second paragraphs are
non-local. However, there are many local operators found in the literature that allow di�erentiation to a
non-integer order and these are called local fractional operators. In [28], the authors presented what they
called conformable (fractional) derivative. The author in [29] proposed other basic concepts related to the
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conformable derivatives. We would like to mention that the fractional operators proposed in [12, 13] are the
non-local fractional version of the local operators suggested in [28]. In addition, the non-local fractional
version of the ones in [29] can be seen in [16].

It is customary that any derivative of order 0when performed to a function should give the function itself.
This essential property is dispossessed by the conformable derivatives. Notwithstanding, in [30, 31], for skae
of overcoming this obstacle, the authors proposed a new de�nition of the conformal derivative that gives the
function itself when the order of the local derivative approaches 0. In addition to this, the non-local fractional
operators that emerge from iterating the above-mentioned derivative were held forth in [32].

In this article, we extend the work done in [32] to introduce a new fractional operators relying on the
proportional derivatives of a function with respect to another function which can be de�ned in parallel with
the de�nitions discussed in [30]. The kernel obtained in the fractional operators which will be proposed
contains an exponential function and is function dependent. The semi–group properties will be discussed.

The article is organized as follows: Section 2 presents some essential de�nitions for fractional derivatives
and integrals. In Section 3 we present the general forms of the fractional proportional integrals and deriva-
tives. In section 4, we present the general form of Caputo fractional proportional derivatives. In the end, we
conclude our results.

2 Preliminaries
In this section, we present some principal de�nitions of fractional operators. We �rst present the traditional
fractional operators and then the fractional proportional operators.

2.1 The conventional fractional operators and their general forms

For ω ∈ C, Re(ω) > 0, the forward (left) ωth order Riemann–Liouville fractional integral is de�ned by

(a Iω f )(x) =
1

Γ(ω)

x∫
a

(x − u)ω−1f (u)du. (2.1)

The backward (right) ωth Riemann–Liouville fractional integral reads

(Iωb f )(x) =
1

Γ(ω)

b∫
x

(u − x)ω−1f (u)du. (2.2)

The forward ωth order Riemann–Liouville fractional derivative, whre Re(ω) ≥ 0 is given as

(aDω f )(x) =
( d
dx

)n
(a In−ω f )(x), n = [ω] + 1. (2.3)

The backward ωth order Riemann–Liouville fractional derivative, where Re(ω) ≥ 0 reads

(Dωb f )(t) =
(
− d
dt

)n
(In−ωb f )(t). (2.4)

The forward Caputo fractional derivative has the following form

(CaDω f )(x) =
(
a I
n−ω f (n)

)
(x), n = [ω] + 1. (2.5)

The backward Caputo fractional derivative reads

(CDωb f )(x) =
(
In−ωb (−1)n f (n)

)
(x). (2.6)
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The generalized forward and backward fractional integrals Katugampola setings [12] are given respec-
tively as

(a Iω,σ f )(x) =
1

Γ(ω)

x∫
a

( x
σ − uσ
σ )ω−1f (u) duu1−σ (2.7)

and

(Iω,σb f )(x) = 1
Γ(ω)

b∫
t

(u
σ − xσ
σ )ω−1f (u) duu1−σ . (2.8)

The generalized forward and backward fractional derivatives in the sense of Katugampola [13] are de�ned
respectively as

(aDω,σ f )(x) = γn(aIn−ω,σ f )(t) =
γn

Γ(n − ω)

x∫
a

( x
σ − uσ
σ )n−ω−1f (u) duu1−σ (2.9)

and

(Dω,σb f )(x) = (−γ)n(In−ω,σb f )(x) = (−γ)n
Γ(n − ω)

b∫
x

(u
σ − xσ
σ )n−ω−1f (u) duu1−σ , (2.10)

where σ > 0 and γ = x1−σ d
dx . The Caputo modi�cation of the forward and backward generalized fractional

derivatives are proposed in [14] in the following forms respectively

(CaDω,σ f )(x) = (a In−ω,σγn f )(x) =
1

Γ(n − ω)

x∫
a

( x
σ − uσ
σ )n−ω−1γn f (u) duu1−σ , (2.11)

and

(CDω,σb f )(x) = (aIn−ω,σ(−γ)n f )(x) =
1

Γ(n − ω)

b∫
x

(u
σ − xσ
σ )n−ω−1(−γ)n f (u) duu1−σ . (2.12)

Forω ∈ C, Re(ω) > 0 the forwardRiemann-Liouville fractional integral of orderω of a function f with respect
to a continuously di�erentiable and increasing function ν has the following form [2, 5]

a Iω,ν f (x) =
1

Γ(ω)

x∫
a

(
ν(x) − ν(u)

)ω−1
f (u)ν′(u)du. (2.13)

For ω ∈ C, Re(ω) > 0 the backward Riemann-Liouville fractional integral of order ω of f with respect to a
continuously di�erentiable and increasing function ν has the following form [2, 5]

Iω,νb f (x) = 1
Γ(ω)

b∫
x

(
ν(u) − ν(x)

)ω−1
f (u)ν′(u)du. (2.14)

For ω ∈ C, Re(ω) ≥ 0, the generalized forward and backward Riemann-Liouville fractional derivatives of
order ω of f with respect to a continuously di�erentiable and increasing function ν have respectively the
forms [2, 6]

aDω,ν f (x) =
( 1
ν′(x)

d
dx

)n
( a In−ω,ν f )(x) =

(
1

ν′(x)
d
dx

)n
Γ(n − ω)

x∫
a

(
ν(x) − ν(u)

)n−ω−1
f (u)ν′(u)du (2.15)

and

Dω,νb f (x) =
(
− 1
ν′(x)

d
dx

)n
(In−ω,νb f )(x) =

(
− 1
ν′(x)

d
dx

)n
Γ(n − ω)

x∫
a

(
ν(x) − ν(u)

)n−ω−1
f (u)ν′(u)du, (2.16)
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where n = [ω] + 1. It is easy to observe that if we choose ν(x) = x, the integrals in (2.13) and (2.14) becomes
the left and right Riemann-Liouville fractional integrals respectively and (2.15) and (2.16) becomes the left
and right Riemann-Liouville fractional derivatives. When ν(x) = ln x, the Hadamard fractional operators are
obtained [2, 5].While if one considers ν(x) = xσ

σ , the fractional operators in the settings of Katugampola [12, 13]
are derived.

In forward and backward generalized Caputo derivatives of a function with respect to another function
are presented respectively as [17]

C
aDω,ν f (x) =

(
a In−ω,ν f [n]

)
(x) (2.17)

and
CDω,νb f (x) =

(
a In−ω,ν(−1)n f [n]

)
(x), (2.18)

where f [n](x) =
( 1
ν′(x)

d
dx

)n
f (x).

2.2 The proportional derivatives and their fractional integrals and derivatives

In [28], the authors introduced The conformable derivative. More properties and a modi�ed type of this
derivative were explored in [29]. [30], Anderson et al. proposed amodi�ed conformable derivative by utilizing
proportional derivatives. In fact, they proposed the following de�nition.

De�nition 2.1. (Modi�ed conformable derivatives) For σ ∈ [0, 1], let the functions µ0, µ1 : [0, 1]×R → [0,∞)
be continuous such that for all t ∈ R we have

lim
σ→0+

µ1(σ, t) = 1, lim
σ→0+

µ0(σ, t) = 0, lim
σ→1−

µ1(σ, t) = 0, lim
σ→1−

µ0(σ, t) = 1,

and µ1(σ, t) = ̸ 0, σ ∈ [0, 1), µ0(σ, t) = ̸ 0, σ ∈ (0, 1]. Then, the modi�ed conformable di�erential operator of
order σ is de�ned by

Dσ f (t) = µ1(σ, t)f (t) + µ0(σ, t)f ′(t). (2.19)

For details about such derivatives we refer to [30, 31].
As a special case,we shall consider the simplest case and restrict ourwork to the casewhen µ1(σ, t) = 1−σ

and µ0(σ, t) = σ. Therefore, (2.19) becomes

Dσ f (t) = (1 − σ)f (t) + σf ′(t). (2.20)

Notice that limσ→0+ Dσ f (t) = f (t) and limσ→1− Dσ f (t) = f ′(t). It is obvious that the derivative (2.20) is
generalizes the conformable derivative which does not yieldo the original function as σ approaches to 0.
The associated fractional proportional integrals are de�ned as follows.

De�nition 2.2. [32] For σ > 0 and ω ∈ C, Re(ω) > 0, the forward fractional proportional integral of f reads

(a Iω,σ f )(x) =
1

σωΓ(ω)

x∫
a

e
σ−1
σ (x−ξ )(x − ξ )ω−1f (ξ )dξ (2.21)

and the backward one reads

(Iω,σb f )(x) = 1
σωΓ(ω)

b∫
x

e
σ−1
σ (ξ−x)(ξ − x)ω−1f (ξ )dξ . (2.22)
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De�nition 2.3. [32] For σ > 0 and ω ∈ C, Re(ω) ≥ 0, the forward fractional proportional derivative is de�ned
as

(aDω,σ f )(x) = Dn,σ a In−ω,σ f (x) =
Dn,σx

σn−ωΓ(n − ω)

x∫
a

e
σ−1
σ (x−ξ )(x − ξ )n−ω−1f (ξ )dξ . (2.23)

The backward proportional fractional derivative is de�ned by [32]

(Dω,σb f )(x) = 	Dn,σ In−ω,σb f (x) = 	Dn,σ
σn−ωΓ(n − ω)

b∫
x

e
σ−1
σ (ξ−x)(ξ − x)n−ω−1f (ξ )dξ , (2.24)

where n = [Re(ω)] + 1 and (	Dσ f )(t) = (1 − σ)f (t) − σf ′(t).

Lastly, the left and right fractional proportional derivatives in the Caputo settings respectively read [32]

(CaDω,σ f )(x) =
(
a In−ω,σDn,σ f

)
(x) = 1

σn−ωΓ(n − ω)

x∫
a

e
σ−1
σ (x−ξ )(x − ξ )n−ω−1(Dn,σ f )(ξ )dξ (2.25)

and

(CDω,σb f )(x) =
(
In−ω,σb 	Dn,σ f

)
(x) = 1

σn−ωΓ(n − ω)

b∫
x

e
σ−1
σ (ξ−x)(ξ − x)n−ω−1( 	Dn,σ f )(ξ )dξ . (2.26)

3 The fractional proportional derivative of a function with respect
to another function

De�nition 3.1. (The proportional derivative of a function with respect to anothor function)
For σ ∈ [0, 1], let the functions µ0, µ1 : [0, 1] ×R → [0,∞) be continuous such that for all t ∈ R we have

lim
σ→0+

µ1(σ, t) = 1, lim
σ→0+

µ0(σ, t) = 0, lim
σ→1−

µ1(σ, t) = 0, lim
σ→1−

µ0(σ, t) = 1,

and µ1(σ, t) = ̸ 0, σ ∈ [0, 1), µ0(σ, t) = ̸ 0, σ ∈ (0, 1]. Let also ν(t) be a strictly increasing continuous function.
Then, the proportional di�erential operator of order σ of f with respect to g is de�ned by

Dσ,ν f (t) = µ1(σ, t)f (t) + µ0(σ, t)
f ′(t)
ν′(t) . (3.1)

We shall restrict ourselves to the case when µ1(σ, t) = 1 − σ and µ0(σ, t) = σ. Therefore, (3.1) becomes

Dσ,ν f (t) = (1 − σ)f (t) + σ f
′(t)
ν′(t) . (3.2)

The corresponding integral of (3.2)

a I1,σ,ν f (t) =
1
σ

t∫
a

e
σ−1
σ (ν(t)−ν(s))f (s)ν′(s)ds, (3.3)

where we accept that a I0,σ f (t) = f (t).
To generalize a more general class of fractional integral based on the proportional derivative, we use

induction and changing the order of integrals to show that

(a In,σ,ν f )(t) =
1
σ

t∫
a

e
σ−1
σ (ν(t)−ν(ξ1))ν′(ξ1)dξ1

1
σ

ξ1∫
a

e
σ−1
σ (ν(ξ1)−ν(ξ2))ν′(ξ2)dξ2 · · ·

1
σ

ξn−1∫
a

e
σ−1
σ (ν(ξn−1)−ν(ξn))f (ξn)ν′(ξn)dξn
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= 1
σnΓ(n)

t∫
a

e
σ−1
σ (ν(t)−ν(ξ ))(ν(t) − ν(ξ ))n−1f (ξ )ν′(ξ )dξ . (3.4)

Based on (3.4), we can present the following general proportional fractional integral.

De�nition 3.2. For σ ∈ (0, 1], ω ∈ C, Re(ω) > 0, we de�ne the left fractional integral of f with respect to g
by

(a Iω,σ,ν f )(t) =
1

σωΓ(ω)

t∫
a

e
σ−1
σ (ν(t)−ν(ξ ))(ν(t) − ν(ξ ))ω−1f (ξ )ν′(ξ )dξ . (3.5)

The right fractional proportional integral ending at b can be de�ned by

(Iω,σ,νb f )(t) = 1
σωΓ(ω)

b∫
t

e
σ−1
σ (ν(ξ )−ν(t))(ν(ξ ) − ν(t))ω−1f (ξ )ν′(ξ )dξ . (3.6)

Remark 3.1. To deal with the right proportional fractional case we shall use the notation

(	Dσ,ν f )(t) := (1 − σ)f (t) − σ f
′(t)
ν′(t) . (3.7)

We shall also write
(	Dn,σ,ν f )(t) = (	Dσ,ν 	Dσ,ν . . . 	Dσ,ν︸ ︷︷ ︸

n times

f )(t). (3.8)

Remark 3.2. The integrals in (3.5) and (3.6) coincide with the integrals (2) and (3) in [33] and the integrals in
(6) and (7) in [34]. If one sets ν(t) = ln t (3.5) and (3.6) coincide with the integrals (2.5) and (2.6) in [35].

De�nition 3.3. For σ > 0, ω ∈ C, Re(ω) ≥ 0 and ν ∈ C[a, b], where ν′(t) > 0, we de�ne the general left
fractional derivative of f with respect to ν as

(aDω,σ,ν f )(t) = Dn,σ,ν a In−ω,σ,ν f (t) =
Dn,σ,νt

σn−ωΓ(n − ω)

t∫
a

e
σ−1
σ (ν(t)−ν(ξ ))(ν(t) − ν(ξ ))n−ω−1f (ξ )ν′(ξ )dξ (3.9)

and the general right fractional derivative of f with respect to g as

(Dω,σ,νb f )(t) = 	Dn,σ,ν In−ω,σ,νb f (t) = 	Dn,σ,νt
σn−ωΓ(n − ω)

b∫
t

e
σ−1
σ (ν(ξ )−ν(t))(ν(ξ ) − ν(t))n−ω−1f (ξ )ν′(ξ )dξ , (3.10)

where n = [Re(ω)] + 1.

Remark 3.3. Clearly, if we let σ = 1 in De�nition 3.2 and De�nition 3.3, we obtain

– the Riemann-Liouville fractional operators (2.1), (2.2),(2.3) and (2.4) if ν(t) = t;
– the fractional operators in the Katugampola setting(2.7), (2.8), (2.9) and (2.10) if ν(t) = t

µ

µ ;

– the Hadamard fractional operators if ν(t) = ln t [2, 5];
– the fractional operators mentioned in [16] if ν(t) = (t − a)µ

µ .

Proposition 3.1. Let ω, η ∈ C be such that Re(ω) ≥ 0 and Re(η) > 0. Then, for any σ > 0 we have

– (a)
(
a I
ω,σ,νe

σ−1
σ ν(x)(ν(x) − ν(a))η−1

)
(t) = Γ(η)

Γ(η+ω)σω e
σ−1
σ ν(t)(ν(t) − ν(a))ω+η−1, Re(ω) > 0;

– (b)
(
Iω,σ,νb e−

σ−1
σ ν(x)(ν(b) − ν(x))η−1

)
(t) = Γ(η)

Γ(η+ω)σω e
− σ−1σ ν(t)(ν(b) − ν(t))ω+η−1, Re(ω) > 0;

– (c)
(
aD

ω,σe
σ−1
σ ν(x)(ν(x) − ν(a))η−1

)
(t) = σωΓ(η)

Γ(η−ω) e
σ−1
σ ν(t)(ν(t) − ν(a))η−1−ω , Re(ω) ≥ 0;
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– (d)
(
Dω,σ,νb e−

σ−1
σ ν(x)(ν(b) − ν(x))η−1

)
(t) = σωΓ(η)

Γ(η−ω) e
− σ−1σ ν(t)(ν(b) − Gν(t))η−1−ω , Re(ω) ≥ 0.

Proof. The proofs of relations (a) and (b) are very easy to handle. We will prove (c) while the proof of (d) is
analogous.

By the de�nition of the left proportional fractional derivative and relation (a), we have(
a
Dω,σ,νe

σ−1
σ ν(x)(ν(x) − ν(a))η−1

)
(t) = Dn,σ,ν

(
a
In−ω,σ,νe

σ−1
σ ν(x)(ν(x) − ν(a))η−1

)
(t)

= Dn,σ,ν Γ(η)
Γ(η + n − ω)σn−ω e

σ−1
σ ν(t)(ν(t) − ν(a))n−ω+η−1

= σ
nΓ(η)(n − ω + η − 1)(n − ω + η − 1) · · · (η − ω)

σn−ωΓ(n − ω + η) × e
σ−1
σ ν(t)(ν(t) − ν(a))η−1−ω

= σωΓ(η)
Γ(η − ω) e

σ−1
σ ν(t)(ν(t) − ν(a))η−1−ω .

Here, we have used the fact that Dσ,ν
(
h(t)e

σ−1
σ ν(t)

)
= σ h

′(t)
g′(t) e

σ−1
σ ν(t).

Below we present the semi-group property for the general fractional proportional integrals of a function
with respect to another function.

Theorem 3.1. [33] Let σ ∈ (0, 1], Re(ω) > 0 and Re(η) > 0. Then, if f is continuous and de�ned for t ≥ a or
t ≤ b, we have

a Iω,σ,ν(a Iη,σ,ν f )(t) = a Iη,σ,ν(a Iω,σ f )(t) = ( a Iω+η,σ,ν f )(t) (3.11)

and

Iω,σ,νb (Iη,σ,νb f )(t) = Iη,σ,νb (Iω,σb f )(t) = (Iω+η,σ,νb f )(t). (3.12)

Theorem 3.2. Let 0 ≤ m < [Re(ω)] + 1. Then, we have

Dm,σ,ν(a Iω,σ,ν f )(t) = (a Iω−m,σ,ν f )(t) (3.13)

and

	Dm,σ,ν(Iω,σ,νb f )(t) = (Iω−m,σ,νb f )(t) (3.14)

Proof. Here we prove (3.13), while one can prove (3.14) likewise. Using the fact that Dσ,νt e
σ−1
σ (ν(t)−ν(ξ )) = 0), we

have

Dm,σ,ν(a Iω,σ,ν f )(t)Dm−1,σ,ν(Dσ,ν a Iω,σ,ν f )(t) = Dm−1,σ,ν
1

σω−1Γ(ω − 1)

t∫
a

e
σ−1
σ (ν(t)−ν(ξ ))(ν(t) − ν(ξ ))ω−2f (ξ )ν′(ξ )dξ .

Proceeding m−times in the same manner we obtain (3.13).

Corollary 3.1. Let 0 < Re(η) < Re(ω) and m − 1 < Re(η) ≤ m. Then, we have

aDη,σ,ν a Iω,σ,ν f (t) = a Iω−η,σ,ν f (t) (3.15)

and
Dη,σ,νb Iω,σ,νb f (t) = Iω−η,σ,νb f (t). (3.16)

Proof. By the help of Theorem 3.1 and Theorem 3.2, we have

aDη,σ,ν a Iω,σ,ν f (t) =Dm,σ,νa Im−η,σ,νa Iω,σ,ν f (t)
=Dm,σ,ν a Im−η+ω,σ,ν f (t) = a Iω−η,σ,ν f (t).

This was the proof of (3.15). One can prove (3.16) in a similar way.
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Theorem 3.3. Let f be integrable on t ≥ a or t ≤ b and Re[ω] > 0, σ ∈ (0, 1], n = [Re(ω)] + 1. Then, we have

aDω,σ,ν a Iω,σ,ν f (t) = f (t) (3.17)

and
Dω,σ,νb Iω,σ,νb f (t) = f (t). (3.18)

Proof. By the de�nition and Theorem 3.1, we have

aDω,σ,ν a Iω,σ,ν f (t) = Dn,σ,ν a In−ω,σ,ν a Iω,σ,ν f (t) = Dn,σ,ν a In,σ,ν f (t) = f (t).

4 The Caputo fractional proportional derivative of a function with
respect to another function

De�nition 4.1. For σ ∈ (0, 1] and ω ∈ C with Re(ω) ≥ 0 we de�ne the left derivative of Caputo type as

(CaDω,σ,ν f )(t) =a In−ω,σ,ν(Dn,σ,ν f )(t) =
1

σn−ωΓ(n − ω)

t∫
a

e
σ−1
σ (ν(t)−ν(s))(ν(t) − ν(s))n−ω−1(Dn,σ,ν f )(s)ν′(s)ds.

(4.1)
Similarly, the right derivative of Caputo type ending is de�ned by

(CDω,σb f )(t) = In−ω,σ,νb (	Dn,σ,ν f )(t) =
1

σn−ωΓ(n − ω)

b∫
t

e
σ−1
σ (ν(s)−ν(t))(ν(s) − ν(t))n−ω−1( 	Dn,σ,ν f )(s)ν′(s)ds,

(4.2)

where n = [Re(ω)] + 1.

Proposition 4.1. Let ω, η ∈ C be such that Re(ω) > 0 and Re(η) > 0. Then, for any σ ∈ (0, 1] and n =
[Re(ω)] + 1 we have

1.
(C
aD

ω,σ,νe
σ−1
σ ν(x)(ν(x) − ν(a))η−1

)
(t) = σωΓ(η)

Γ(η−ω) e
σ−1
σ ν(t)(ν(t) − ν(a))η−1−ω , Re(η) > n;

2.
(CDω,σ,νb e−

σ−1
σ ν(x)(ν(b) − ν(x))η−1

)
(t) = σωΓ(η)

Γ(η−ω) e
− σ−1σ ν(t)(ν(b) − ν(t))η−1−ω , Re(η) > n.

For k = 0, 1, . . . , n − 1, we have(C
aD

ω,σ,νe
σ−1
σ ν(x)(ν(x) − ν(a)k

)
(t) = 0 and

(CDω,σ,νb e−
σ−1
σ ν(x)(ν(b) − ν(x))k

)
(t) = 0.

In particular, ( CaDω,σe
σ−1
σ ν(x)(t) = 0 and (CDω,σb e−

σ−1
σ ν(x))(t) = 0.

Proof. We only prove the �rst relation. The proof of the second relation is similar. We have

(CaDω,σ,νe
σ−1
σ ν(x)(ν(x) − ν(a))η−1)(t) = a In−ω,σ,νDn,σ,ν

[
e
σ−1
σ ν(t)(ν(t) − ν(a))η−1

]
= a In−ω,σ,ν

[
σn(η − 1)(η − 2) . . . (η − 1 − n)(ν(t) − ν(a))η−n−1e

σ−1
σ ν(t)

]
= σ

n(η − 1)(η − 2) . . . (η − 1 − n)Γ(η − n)
Γ(η − ω)σn−ω (ν(t) − ν(a))η−ω−1e

σ−1
σ ν(t)

= σωΓ(η)
Γ(η − ω) e

σ−1
σ ν(t)(ν(t) − ν(a))η−1−ω .

5 Conclusions
We have used the proportional derivatives of a function with respect to another function to obtain left and
right generalized type fractional integrals and derivatives involving two parameters ω and σ and depending
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on a kernel function. The Riemann-Liouville and Caputo fractional derivatives in the classical fractional
calculus canobtained as σ tends to1 andby choosing ν(t) = t. The integrals have the semi-groupproperty and
together with their corresponding derivatives have exponential functions as part of their kernels. It should be
noted that other properties of these new operators can be obtained by using the Laplace transform proposed
in [17]. Moreover, for a speci�c choice of ν, the proportional fractional operators in the settings of Hadamard
and Katugampola can be obtained.
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