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Abstract: A powerful algorithm is proposed to get the so-
lutions of the time fractional Advection-Diffusion equa-
tion(TFADE): ABCDβ

0+ ,tu(x, t) = ζuxx(x, t) − κux(x, t) +
F(x, t), 0 < β ≤ 1. The time-fractional derivative
ABCDβ

0+ ,tu(x, t) is described in the Atangana-Baleanu Ca-
puto concept. The basis of our approach is transforming
the original equation into a new equation by imposing a
transformation involving a fictitious coordinate. Then, a
geometric scheme namely the group preserving scheme
(GPS) is implemented to solve the new equation by taking
an initial guess. Moreover, in order to present the power
of the presented approach some examples are solved, suc-
cessfully.

Keywords: Fictitious time integration method; Group pre-
serving scheme; Time fractional Advection-Diffusion equa-
tion; Atangana-Baleanu Caputo derivative

PACS: 06.30.Ft; 68.43.Jk

1 Introduction
Non-integer calculus is one of the most practical concepts.
This issue has constructed since 1695. In fact, in the last
few decade many researchers have been done important
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works in this field. The significant topic commenced re-
cently to become very valuable in different areas such as
science and engineering [1–6]. The development and gain-
ing numerical and exact solutions of the partial and frac-
tional equations, involving non-integer derivatives and in-
tegral, have obtained considerable importance. So, vari-
ous approaches have been worked for such goal, see, [7–
33]. In this studywe attempt to solve the TFADE containing
the Atangana-Baleanu Caputo derivative. Some methods
are implemented to solve of such type of problems [34–43].
The TFADE arises inmodeling the problems of biology and
chemistry which contain diffusion process [44–46].

The structure of this work is based as follows. Pre-
liminaries are supplied in section 2. Section 3 is dedi-
cated to display the roles of the fictitious time integration
method(FTIM) and group preserving scheme(GPS). Also,
two examples are provided to show the capability of our
scheme in section 4. Indeed, conclusion is provided in sec-
tions 5.

In this workwe consider the following TFADEwith the
Atangana-Baleanu Caputo derivative of order β.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABCDβ
0+ ,tu(x, t) = ζuxx(x, t) − κux(x, t)

+F(x, t), (x, t) ∈ Ω ⊂ R2,
u(x, 0) = h1(x), x ∈ Ωx,
u(x, tf ) = h2(x), x ∈ Ωx,
u(a, t) = p1(t), t ∈ Ωt ,
u(b, t) = p2(t), t ∈ Ωt ,

(1)

where Ωt and Ωx are boundaries of Ω := {(x, t) : a ≤ x ≤
b, 0 ≤ t ≤ tf } in t and x, respectively. Also, ζ is a real
parameter and κ is the average velocity.

2 Preliminaries
The the Atangana-Baleanu fractional(ABC) derivative in
Caputo sense of order β and for f ∈ H1(0, 1) is defined
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as :

ABCDβ
t f (t) =

N(β)
1 − β

t∫︁
0

f n(c)Eβ
(︂
−β
n − β (t − c)

β
)︂
dc, (2)

n − 1 < β ≤ n,

where Eβ(z) is Mittag-Le�er function described as

Eβ(z) =
∞∑︁
k=0

zk
Γ(βk + 1) .

and N(β) is a standardization function defined as

N(β) = 1 − β + β
Γ(β) .

With regard to the definition (2) for 0 < β ≤ 1 we have:

ABCDβ
t f (t) =

N(β)
1 − β

t∫︁
0

f ′(c)Eβ
(︂
−β
1 − β (t − c)

β
)︂
dc. (3)

3 The fictitious time integration
method(FTIM)

Now, we provide FTIM to convert the original time frac-
tional Advection-Diffusion equation into a firsthand equa-
tion with one more dimension by introducing a fictitious
damping coefficient µ. The structure of this method is as
follows:

Using the definition (3) and 0 < β ≤ 1 for Eqs. (1) we
have:

N(β)
Γ(1 − β)

t∫︁
0

uc(x, c)Eβ
(︂
−β
1 − β (t − c)

β
)︂
dc (4)

− ζuxx(x, t) + κux(x, t) − F(x, t) = 0.

We can increase the stablity of the method by proposing a
fictitious damping coefficient µ in Eq. (4) as follows:

µN(β)
Γ(1 − β)

t∫︁
0

uc(x, c)Eβ
(︂
−β
1 − β (t − c)

β
)︂
dc (5)

− µζuxx(x, t) + µκux(x, t) − µF(x, t) = 0.

Placing the following transformation in Eq. (5)

Ξ(x, t, η) = (1 + η)λu(x, t), 0 < λ ≤ 1, (6)

Results a new form of the original equation:

µ
(1 + η)λ

[︂
N(β)

Γ(1 − β)

t∫︁
0

Ξc(x, c, η)Eβ
(︂
−β
1 − β (t − c)

β
)︂
dc (7)

− ζΞxx(x, t, η) + κΞx(x, t, η)
]︂
− µF(x, t) = 0.

Considering
∂Ξ
∂η = λ(1 + η)λ−1u(x, t), (8)

Eq. (7), can be written as:

∂Ξ
∂η = µ

(1 + η)λ

[︂
N(β)

Γ(1 − β)

t∫︁
0

Ξc(x, c, η)Eβ
(︂
−β
1 − β (t (9)

− c)β
)︂
dc − ζΞxx(x, t, η) + κΞx(x, t, η)

]︂
− µF(x, t) + λ(1 + η)λ−1u.

Eq. (9) can be transformed to a new kind of functional PDE
for Ξ, by setting u = Ξ

(1+η)λ :

∂Ξ
∂η = µ

(1 + η)λ

[︂
N(β)

Γ(1 − β)

t∫︁
0

Ξc(x, c, η)Eβ
(︂
−β
1 − β (t (10)

− c)β
)︂
dc − ζΞxx(x, t, η) + κΞx(x, t, η)

]︂
− µF(x, t) + λΞ(x, t, η)1 + η .

Using
∂
∂η

(︂
Ξ

(1 + η)λ

)︂
= Ξη
(1 + η)λ

− λΞ
(1 + η)λ+1

, (11)

andmultiplying the factor 1/(1+ η)λ in Eq. (10), we obtain
∂
∂η

(︂
Ξ

(1 + η)λ

)︂
(12)

= µ
(1 + η)λ

[︂
N(β)

Γ(1 − β)

t∫︁
0

Ξc(x, c, η)Eβ
(︂
−β
1 − β (t − c)

β
)︂
dc

− ζΞxx(x, t, η) + κΞx(x, t, η)
]︂
− µF(x, t).

Using again the transformation u = Ξ
(1+η)λ , we get:

uη =
µ

(1 + η)λ

[︂
N(β)

Γ(1 − β)

t∫︁
0

uc(x, c, η)Eβ
(︂
−β
1 − β (t (13)

− c)β
)︂
dc − ζuxx(x, t, η) + κux(x, t, η)

]︂
− µF(x, t).

Suppose uji(η) := u(xi , tj , η) as the values of u at a point
(xi , tj), Eq.(12) converts to the following form:
d
dη u

j
i(η) (14)

= µ
(1 + η)λ

[︂
N(β)

Γ(1 − β)

tj∫︁
0

uc(xi , c, η)Eβ
(︂
−β
1 − β (tj − c)

β
)︂
dc

− ζ
uji+1(η) − 2u

j
i(η) + u

j
i−1(η)

∆x2 + κ
uji+1(η) − u

j
i(η)

∆x

]︂
− µF(xi , tj).
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Figure 1: Plots of the exact solution and the numerical solution under β = 0.5 for example 1.

Discretization of the above equation needs to calculate the
approximation of the following integral:

tj∫︁
0

uc(xi , c, η)Eβ
(︂
−β
1 − β (tj − c)

β
)︂
dc

≈ N(β)
Γ(1 − β)

j∑︁
k=1

uj+1i − uji
∆t

×
k∆t∫︁

(k−1)∆t

Eβ
(︂
−β
1 − β (tk − c)

β
)︂
dc.

where

k∆t∫︁
(k−1)∆t

Eβ
(︂
−β
1 − β (tk − c)

β
)︂
dc

≈ (tj − tk+1)Eβ
(︂
−β
1 − β (tj − tk+1)

β
)︂

− (tj − tk)Eβ
(︂
−β
1 − β (tj − tk)

β
)︂

where ∆t = T
n , xi = a + i∆x and tj = j∆t.

Considering u = (u11, u21, ..., unm)T , Eq. (13) can be written
as:

u′ = Z(u, η), u ∈ Rm×n , η ∈ R, M = m × n, (15)

where u is M-dimensional vector and Z ∈ RM is a vector
function ofu and η. Now,we are ready to use the grouppre-

serving scheme(GPS) introduced in [47] to solve Eq. (14):

us+1 = us+ (16)[︂
cosh

(︂
∆η‖Zs‖
‖us‖

)︂
− 1

]︂
Zs .us + sinh

(︂
∆η‖Zs‖
‖us‖

)︂
‖us‖‖Zs‖

‖Zs‖2
Zs .

by taking the initial value of uji(0) fromfictitious time η = 0
to a chosen fictitious time ηf . Also, stopping criterion for
this numerical integration is:⎯⎸⎸⎷m,n∑︁

i,j=1
[uji(s + 1) − u

j
i(s)]2 ≤ ε, (17)

where ε is a selected convergence criterion.

4 Numerical examples
Now, we some two examples to demonstrate the power of
FTIM for solving the TFADE.

Example 1: Take the following problem [47] by order β =
0.5, ζ = 1 and κ = 1

ABCDβ
0+ ,tu(x, t) = ζuxx(x, t) − κux(x, t) + F(x, t),

where

F(x, t) = 2
(︂
N(β)
1 − β

)︂
x(x−1)t2Eβ,3

[︂
−β
1 − β t

β
]︂
−2t2+(2x−1)t2,

Weapply ourmethod to solve this example for parame-
ters µ = 111 and λ = 0.1. Also, we use the number of grids
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Figure 2: Plots of the absolute errors and contour plot under β = 0.5 for example 1.
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Figure 3: Plots of the exact-solutions by β = 0.4 for example 2.

m = 25 and n = 25 in each coordinates of space and time,
respectively The initial guess and step size for η are con-
sidered as uji(0) = 10−5 and ∆η = 10−6. Indeed, supposed
domainfor this problem is Ω = [0, 1] × [0, 1]. Figure 1 is as-
signed to depict the exact solution u(x, t) = x(x − 1)t2 and
the approximate solutions derived by the cuurent scheme.
One can see the capability of thepresentedmethod for solv-
ing this problem in Figure 2. This figure depicts that the er-
ror gained by our algorithm is about 2.5×10−16. This error

ismuchnicer than the error of the describedmethod in [43]
which is about 1 × 10−7.

Example 2: Suppose the belowequation [43] by ζ = 1 and
κ = 1

ABCDβ
0+ ,tu(x, t) = ζuxx(x, t) − κux(x, t) + F(x, t),
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Figure 4: Plots of the absolute errors and contour plot under β = 0.4 for example 2.

where

F(x, t) = 120
(︂
N(β)
1 − β

)︂
t5sin(πx)Eβ,6

[︂
−β
1 − β t

β
]︂

+ πt5(πsin(πx) + cos(πx)),

With the time fractional order β = 0.4. By selecting the
important parameters µ = 18 and λ = 1weare able toman-
age the stableness and convergency rate of the scheme,
respectively. To implement the GPS we choose the initial
guess uji(0) = 0.0001. The approximate solutions and the
exact solution u(x, t) = t5sin(πx) for m = n = 35 and
∆η = 10−3 are shown in Figure 3. Figure 4 is dedicated
to reveal the gained low error by our method under the
mentionad parameters. This figure illustrates that the er-
ror gained by the presented scheme is about 1×10−15. This
error is much reliable than the error of the utilized scheme
in [43] which is about 1 × 10−6.

5 Conclusion
In this study the fractional Advection-Diffusion equation
is transformed into a new type of functional partial dif-
ferential equations in a new space with one additional
dimension by introducing a fictitious coordinate which
has an important role in the presented method. After that,
a semi-discretization is implemented on the new equa-
tion. Then the group preserving scheme as a numerical
approach was applied to integrate a system of the first or-
der of ordinary differential equations(ODEs) by selecting

an initial guess. Some numerical examples were solved,
which show that the current scheme is applicable andpow-
erful for solving the TFADE involving Atangana-Baleanu-
Caputo Derivative.
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