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(e goal of this work is to introduce the concept of p-hybrid Wardowski contractions. We also prove related fixed-point results.
Moreover, some illustrated examples are given.

1. Introduction

LetG represent the collection of functions G: (0,∞)⟶ R

so that

(i) (G1) G is strictly increasing
(ii) (G2) for each sequence ηn  in (0,∞), limn⟶∞ηn �

0 iff limn⟶∞G(ηn) � −∞
(iii) (G3) there is k ∈ (0, 1) so that limn⟶∞ηkG(η) � 0

Definition 1 (see [1]). A mapping T: (M,d)⟶ (M,d)

is called a Wardowski contraction if there exist τ > 0 and
G ∈ G such that for all ],ω ∈M,

d(T],Tω)> 0⟹ τ + G(d(T],Tω))≤G(d(],ω)).

(1)

Example 1 (see [1]). (e functions G: (0,∞)⟶ R defined
by

(1) G(x) � lnx

(2) G(x) � lnx + x

(3) G(x) � −1/
��
x

√

(4) G(x) � ln(x2 + x)

belong to G.
Wardowski [1] introduced a new proper generalization of

Banach contraction. For other related papers in the literature,
see [2–10]. (e main result of Wardowski is as follows.

Theorem 1 (see [1]). Let (M,d) be a complete metric space,
and let T: M⟶M be an G-contraction. �en, Υ has a
unique fixed point, say z, inM and for any point σ ∈M, the
sequence Υjσ  converges to z.

Theorem 2 (see [11]). Let (M,d) be a complete metric space
and T: M⟶M be a given mapping such that

d(T],Tω)≤ σ1d(],ω) + σ2d(],T]) + σ3d(ω,Tω)

+ σ4
d(],Tω) + d(ω,T])

2
 ,

(2)

for all ],ω ∈M, where σi, i � 1, 2, 3, 4, are nonnegative real
numbers such that 

4
i�1 σi < 1. �en,T admits a unique fixed

point in M.

In the paper [12], the concept of interpolative Har-
dy–Rogers-type contractions was introduced.
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Definition 2 (see [12]). On a metric space (M,d), a self-
mapping T: M⟶M is an interpolative Hardy–Rogers-
type contraction if there exist λ ∈ [0, 1) and
σ1, σ2, σ3 ∈ (0, 1) with σ1 + σ2 + σ3 < 1, such that

d(T],Tω)≤ λ(d(],ω))
σ1(d(],T]))

σ2(d(ω,Tω))
σ3

·
d(],Tω) + d(ω,T])

2
 

1−σ1−σ2−σ3
,

(3)

for all ],ω ∈M/5T(M), where T (M) � ζ ∈M: Tζ � ζ{ }.

Theorem 3 (see [12]). Let (M,d) be a complete metric space
and T be an interpolative Hardy–Rogers-type contraction.
�en, T has a fixed point in M.

�e interpolation concept was used in other new papers
related to fixed-point theory. For example, see [13–17]. In this
paper, we consider new contractive type self-mappings, named
as p-hybrid Wardowski contractions. Our fixed-point results
will be supported by concrete examples.

2. Main Results

Let (M,d) be a metric space and T be a self-mapping on
this space. For p≥ 0 and κi ≥ 0, i � 1, 2, 3, 4, such that


4
i�1 κi � 1, we define the following expression:

A
p

T(],ω) �

κ1(d(],ω))
p

+ κ2(d(],T]))
p

+ κ3(d(ω,Tω))
p

+ κ4
d(ω,T]) + d(],Tω)

2
 

p

 

1/p

,

forp> 0, ],ω ∈M

[d(],ω)]
κ1[d(],T])]

κ2[d(ω,Tω)]
κ3 d(],Tω) + d(ω,T])

2
 

κ4
,

forp � 0, ],ω ∈M/T (M).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

On the other hand, let B represent the set of functions
G: (0,∞)⟶ R such that

(i) (Ga) G is strictly increasing
(ii) (Gb) there exists τ > 0 such that τ + limt⟶t0

inf G(t)> limt⟶t0
supG(t), for every t0 > 0

Definition 3. AmappingT: (M,d)⟶ (M,d) is called a
p-hybridWardowski contraction, if there is G ∈B such that

d(T],Tω)> 0 implies τ + G(d(T],Tω))

≤G A
p

T(],ω) , for every p> 0.
(5)

In particular, if inequality (5) holds for p � 0, we say the
mapping T is a 0-hybrid Wardowski contraction.

Theorem 4. A p-hybrid Wardowski contraction self-map-
ping on a complete metric space admits exactly one fixed point
in M.

Proof. Taking an arbitrary point ]0 ∈M, we consider the
sequence ]n  defined by the relation ]n � T]n−1, n≥ 1.
According to this construction, it is easy to see that if there is
n0 so that ]n0

� ]n0+1 � T]n0
, ]n0

turns into a fixed point of T.
We shall presume that for all n ∈ N0,

]n+1 ≠ ]n⟺d ]n+1, ]n(  � d T]n,T]n−1( > 0. (6)

On account of (4), for ] � ]n and ω � ]n−1, we have that

A
p

T ]n, ]n−1(  � κ1 d ]n, ]n− 1( ( 
p

+ κ2 d ]n,T]n( ( 
p

+ κ3 d ]n− 1,T]n− 1( ( 
p

 +κ4
d ]n,T]n− 1(  + d ]n− 1,T]n( 

2
 

p



1/p

� κ1 d ]n, ]n− 1( ( 
p

+ κ2 d ]n, ]n+1( ( 
p

+ κ3 d ]n− 1, ]n( ( 
p

 +κ4
d ]n, ]n(  + d ]n− 1, ]n+1( 

2
 

p



1/p

,

≤ κ1 d ]n, ]n− 1( ( 
p

+ κ2 d ]n, ]n+1( ( 
p

+ κ3 d ]n− 1, ]n( ( 
p
+ κ4

d ]n− 1, ]n(  + d ]n, ]n+1( 

2
 

p

.

(7)
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Denoting by χn � d(]n−1, ]n), we have

A
p

T ]n, ]n−1(  � κ1 + κ3( χp
n + κ2χ

p
n+1 + κ4

χn+χn+1
2 

p
 

1/p
,

(8)

and from (5), it follows that

τ + G d T]n−1,T]n( ( ≤G A
p

T ]n−1, ]n(  

≤G κ1 d ]n, ]n− 1( ( 
p

+ κ2 d ]n, ]n+1( ( 
p

 +κ3 d ]n− 1, ]n( ( 
p

+ κ4
d ]n− 1, ]n(  + d ]n, ]n+1( 

2
 

1/p
⎤⎦⎛⎝ ⎞⎠,

(9)

which gives us

G χn+1(  � Gd ]n, ]n+1(  � G d T]n−1,T]n( ( 

≤G κ1 + κ3( χp
n + κ2χ

p
n+1 + κ4

χn + χn+1
2

 
p

 
1/p

  − τ.

(10)

If max χn, χn+1  � χn+1, then the above inequality
becomes

G χn+1( ≤G κ1 + κ2 + κ3 + κ4( χp
n+1 

1/p
  − τ <G χn+1( ,

(11)

which is a contradiction. Consequently, max χn, χn+1  � χn

and then there exists χ ≥ 0 such that

lim
n⟶∞

χn � χ. (12)

Supposing that χ > 0, we have limn⟶∞A
p

T(]n−1, ]n) � χ
and by (Gb), we obtain

τ + G(χ + 0)≤G(χ + 0), (13)

which is a contradiction. (erefore,

lim
n⟶∞

d ]n−1, ]n(  � 0. (14)

In order to prove that ]n  is a Cauchy sequence in
(M,d), we suppose that there exist ϵ> 0 and the sequences
n∗(k) , m∗(k)  of positive integers, with n∗(k)>

m∗(k)> k such that

d ]n∗(k), ]m∗(k) ≥ ε,

d ]n∗(k)−1, ]m∗(k) < ε,
(15)

for any k ∈ N.
(us, we have

ε≤d ]n∗(k), ]m∗(k) ≤d ]n∗(k), ]n∗(k)−1  + d ]n∗(k)−1, ]m∗(k) 

<d ]n∗(k), ]n∗(k)−1  + ε.

(16)

When k⟶∞, using (14) and (15), it follows

lim
k⟶∞

d ]n∗(k), ]m∗(k)  � ε. (17)

By using the triangle inequality, we have

0≤ d ]n∗(k)+1, ]m∗(k)+1  − d ]n∗(k), ]m∗(k) 


,

≤d ]n∗(k)+1, ]n∗(k)  + d ]m∗(k), ]m∗(k)+1 ,
(18)

lim
k⟶∞

d ]n∗(k)+1, ]m∗(k)+1  − d ]n∗(k), ]m∗(k) 




≤ lim
k⟶∞

d ]n∗(k)+1, ]n∗(k)  + d ]m∗(k), ]m∗(k)+1   � 0.

(19)

So,

lim
k⟶∞

d ]n∗(k)+1, ]m∗(k)+1  � lim
k⟶∞

d ]n∗(k), ]m∗(k)  � ϵ > 0.

(20)

Moreover, since

ϵ � d ]n∗(k), ]m∗(k) ≤d ]n∗(k), ]m∗(k)+1  + d ]m∗(k)+1, ]m∗(k) ,

ϵ � d ]n∗(k), ]m∗(k) ≤d ]n∗(k), ]n∗(k)+1  + d ]m∗(k), ]n∗(k)+1 ,

(21)

we have

lim
n⟶∞

d ]n∗(k), ]m∗(k)+1  � lim
n⟶∞

d ]m∗(k), ]n∗(k)+1  � ε.

(22)

So, the inequality

d T]n∗(k),T]m∗(k)  � d ]n∗(k)+1, ]m∗(k)+1 > 0 (23)

occurs for all k≥N, and using (5), there exists τ > 0 such that

τ + G d ]n∗(k)+1, ]m∗(k)+1  ≤G A
p

T ]n∗(k), ]m∗(k)  ,

(24)

where
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A
p

T ]n∗(k), ]m∗(k)  � κ1 d ]n∗(k), ]m∗(k)  
p

+ κ2 d ]n∗(k), ]n∗(k)+1  
p

+ κ3 d ]m∗(k), ]m∗(k)+1  
p



+κ4
d ]n∗(k), ]m∗(k)+1  + d ]m∗(k), ]n∗(k)+1 

2
⎛⎝ ⎞⎠

p

⎤⎥⎥⎦

1/p

.

(25)

Moreover, since the function G is increasing, we have

τ + lim inf
k⟶∞

G κ3 + κ4( 
1/p

d ]n∗(k)+1, ]m∗(k)+1  

≤ τ + lim inf
k⟶∞

G d T]n∗(k),T]m∗(k)  

≤ lim inf
k⟶∞

G A
p

T ]n∗(k), ]m∗(k)  

≤ lim sup
n⟶∞

G A
p

T ]n∗(k), ]m∗(k)  .

(26)

And letting k⟶∞,

τ + G(ε+)≤G(ε+). (27)

(at is a contradiction, so ε � 0 and then, ε � 0. Con-
sequently, the sequence ]n  is Cauchy and by completeness
of M, it converges to some point ζ ∈M.

(ere exists a subsequence ]ni
  such thatT]ni

� Tζ for
all i ∈ N; then,

d(ζ ,Tζ) � lim
i⟶∞

d ]ni+1,Tζ  � lim
i⟶∞

d T]ni
,Tζ  � 0.

(28)

On the contrary, if there is a natural number N such that
T]n ≠Tζ for all n≥N, applying (5), for ] � ]n andω � ζ, we
have

τ + G κ3 + κ4( 
1/p

d ]n+1,Tζ(  ≤ τ + G d ]n+1,Tζ( ( 

� τ + G d T]n,Tζ( ( ≤G A ]n, ζ( ( ,

(29)

where

A
p

T ]n, ζ(  � κ1 d ]n, ζ( ( 
p

+ κ2 d ]n,T]n( ( 
p

+ κ3(d(ζ,Tζ))
p

+ κ4
d ]n,Tζ(  + d ζ,T]n( 

2
 

p

 

1/p

,

� G κ1 d ]n, ζ( ( 
p

+ κ2 d ]n, ]n+1( ( 
p

+ κ3(d(ζ ,Tζ))
p

+ +κ4
d ]n,Tζ(  + d ζ,T]n( 

2
 

p

  

1/p

.

(30)

We suppose that ζ ≠Tζ. Inasmuch as

lim
n⟶∞

d ]n, Tζ(  � d(ζ , Tζ),

d lim
n⟶∞

A ]n, ζ( 

� lim
n⟶∞

κ1 d ]n, ζ( ( 
p

+ κ2 d ]n, ]n+1( ( 
p

+ κ3(d(ζ,Tζ))
p



+ κ4
d ]n,Tζ(  + d ζ,T]n( 

2
 

p



1/p

� κ3 + κ4( 
1/p

d(ζ ,Tζ).

(31)

Letting n⟶∞ in inequality (29), we find that
τ + lim inf

t⟶d(ζ ,Tζ)
G κ3 + κ4( 

1/p
t ≤ τ + lim inf

t⟶d(ζ ,Tζ)
G(t)

< lim inf
t⟶d(ζ ,Tζ)

G κ3 + κ4( 
1/p

t < lim sup
t⟶d(ζ,Tζ)

G κ3 + κ4( 
1/p

t ,

(32)
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which contradicts Gb. (erefore, Tζ � ζ. We claim now thatT admits only one fixed point. If there
exists another point ξ ∈M, ξ ≠ ζ, such that ξ � Tξ, then
d(ξ, ζ) � d(Tξ,Tζ)> 0 and we have

τ + G(d(ξ, ζ)) � τ + G(d(Tξ,Tζ))≤G A
p

T(ξ, ζ) 

� G κ1(d(ξ, ζ))
p

+ κ2(d(ξ,Tξ))
p

+ κ3(d(ζ,Tζ))
p

+ κ4
d(ξ,Tζ) + d(ζ,Tξ)

2
 

p

 

1/p
⎛⎝ ⎞⎠,

� G κ1(d(ξ, ζ))
p

+ κ2(d(ξ, ξ))
p

+ κ3(d(ζ, ζ))
p

+ κ4
d(ξ, ζ) + d(ζ , ξ)

2
 

p

 

1/p
⎛⎝ ⎞⎠,

� G κ1 + κ4( 
1/p

d(ξ, ζ) ,

≤G(d(ξ, ζ)),

(33)

which is a contradiction. □

Example 2. Let M � [0, 1] be endowed with the standard
metricd(],ω) � |] − ω|. Let the mappingT: M⟶M be

defined byT �
x/8 forx ∈ [0, 1)

1/4 forx � 1 . Take p � 2, τ � ln 4/3,

κ1 � 1/9, κ2 � κ4 � 6/81, κ3 � 60/81, and G(t) � ln t. (en,
we have the following:

For x, y ∈[0, 1),

ln
4
3

+ lnG(d(x, y))ln
4|x − y|

24
< ln

|x − y|

3
� ln

|x − y|2

9
 

1/2

� ln κ1d(x, y)
2

 
1/2
< lnA2

T(x, y). (34)

For x ∈ [0, 1) and y � 1,

ln
4
3

+ lnG(d(x, 1)) � ln
4|x − 2|

24
< ln

7
9

·
3
4

  � ln
49
81

d 1,
1
4

 
2

 

1/2

< lnA2
T(x, 1). (35)

(us, all assumptions of (eorem 4 hold, and T has a
unique fixed point. On the other hand, for x � 7/8 and y � 1,
we have

d T
7
8
,T1  � d

7
64

,
1
4

  �
9
64
>
1
8

� d
7
8
, 1 . (36)

(us, it is not a Wardowski contraction, since for every
function G ∈B and τ > 0

τ + G d T
7
8
,T1  >G d

7
8
, 1  . (37)

Theorem 5. A 0-hybrid Wardowski contraction self-map-
ping on a complete metric space admits a fixed point in M

provided that for each sequence ηn  in (0,∞), limn⟶∞ηn �

0 iff limn⟶∞G(ηn) � −∞.

Proof. Following the same reasoning from the proof of the
previous theorem, we can assume that for all n ∈ N0,

]n+1 ≠ ]n⟺d ]n+1, ]n( > 0. (38)

On account of (4), for ] � ]n and ω � ]n−1, we have that
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A
0
T ]n, ]n−1(  � d ]n, ]n− 1(  

κ1 d ]n,T]n(  
κ2 d ]n− 1,T]n− 1(  

κ3 d ]n,T]n− 1(  + d ]n− 1,T]n( 

2
 

κ4

� d ]n, ]n− 1(  
κ1 d ]n, ]n+1(  

κ2 d ]n− 1, ]n(  
κ3 d ]n, ]n(  + d ]n− 1, ]n+1( 

2
 

κ4
,

≤ d ]n, ]n− 1(  
κ1 d ]n, ]n+1(  

κ2 d ]n− 1, ]n(  
κ3 d ]n− 1, ]n(  + d ]n, ]n+1( 

2
 

κ4
.

(39)

Using the same notation, χn � d(]n−1, ]n), and taking
into account (Ga), by (5), we have

τ + G χn+1( ≤G χκ1+κ3
n χκ2n+1

χn + χn+1
2

 
κ4

  − τ. (40)

We can remark that the case max χn, χn+1  � χn+1, is not
possible since the above inequality becomes

G χn+1( ≤G χκ1+κ2+κ3+κ4
n+1(  − τ <G χn+1( , (41)

a contradiction. (erefore, χn > χn+1 for all n ∈ N, and then,
there exists χ ≥ 0 such that

lim
n⟶∞

χn � lim
n⟶∞

d ]n−1, ]n(  � χ. (42)

We claim that χ � 0. Indeed, if we suppose that χ > 0,
taking the limit as n⟶∞ in (40), we have

τ + G(χ + 0)≤G(χ + 0), (43)

which contradicts (G2.) We conclude that

χ � lim
n∞

d ]n−1, ]n(  � 0. (44)

Let n ∈ N and j≥ 1 now; we have

A
0
T ]n, ]n+j  � d ]n, ]n+j  

κ1
d ]n,T]n(  

κ2 d ]n+j,T]n+j  
κ3 d ]n,T]n+j  + d ]n+j,T]n 

2
⎡⎣ ⎤⎦

κ4

� d ]n, ]n+j  
κ1

d ]n, ]n+1(  
κ2 d ]n+j, ]n+j+1  

κ3 d ]n, ]n+j+1  + d ]n+j, ]n+1 

2
⎡⎣ ⎤⎦

κ4

� 0.

(45)

And taking into account (44),

lim
n⟶∞

A
0
T ]n, ]n+j  � 0. (46)

(erefore, lim
n⟶∞

G(A0
T(]n, ]n+j)) � −∞ and since

τ + lim
n⟶∞

G d ]n+1, ]n+j+1  ≤ lim
n⟶∞

G A
0
T ]n, ]n+j  ,

(47)

we obtain that lim
n⟶∞

G(d(]n, ]n+j)) � −∞ and so

limn⟶∞d(]n, ]n+j) � 0. (us, ]n  is a Cauchy sequence on
a complete metric space (M,d) and there exists ζ such that

limn⟶∞]n � ζ. Of course, it easy to see that, for ] � ]n and
ω � ζ, we have

lim
n⟶∞

A
0
T ]n, ζ(  � 0. (48)

If we suppose that there is a subsequence ]ns
  such that

T]ns
� Tζ, then we have

0 � lim
n⟶∞

d T]ns
,Tζ  � lim

n⟶∞
d ]ns+1,Tζ 

� d(ζ ,Tζ),
(49)

Table 1: Definition of metric d.

d(],ω) x y z t

x 0 3 3 2
y 3 0 3 1
z 3 3 0 2
t 2 1 2 0
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which means that ζ is a fixed point of T. (erefore, we can
assume thatd(T]n,Tζ)> 0 for every n ∈ N, and by (5), we
obtain

τ + G d T]n,Tζ( ( ≤G A0
T ]n, ζ( ( . (50)

Letting n⟶∞ and taking into account the previous
considerations, we have limn⟶∞Gd(T]n,Tζ) � −∞ and
then d(ζ,Tζ) � limn⟶∞d(T]n,Tζ) � 0. Consequently,
ζ is a fixed point of T. □

Example 3. Let M � x, y, z, t  be a set endowed with the
metric d: M × M⟶ [0,∞) (Table 1).

And the mapping T: M⟶M is defined as

T:
x y z t

x x t t
 .

First, we remark that(eorem 1 is not satisfied, since for
] � y and ω � t,

d(Ty,Tt) � d(x, t) � 2> 1 � d(y, t). (51)

Hence, for any τ > 0 and G ∈B, we can write

τ + G(d(Ty,Tt))>G(d(y, t)). (52)

Choosing τ � ln4/3, κ1 � κ2 � 7/16, κ3 � κ4 � 1/16, and
G(t) � ln t, for ] � y and ω � z, we have

ln
4
3

+ lnd(Ty,Tz) � ln
4
3
d(x, t)  � ln

8
3

� 0, 980829253< 1, 04792915 � ln 37/1637/1621/1621/16 ,

< ln d(y, z)
5/16

d(y, x)
5/16

d(z, t)
5/16 d(y, t) + d(z, x)

2
 

1/16
⎛⎝ ⎞⎠,

� ln d(y, z)
5/16

d(y,Ty)
5/16

d(z,Tz)
5/16 d(y,Tz) + d(z,Ty)

2
 

1/16
⎛⎝ ⎞⎠,

� lnA0
T(y, z).

(53)

3. Consequences

(C1) Considering G(t) � ln t in (eorem 5 and
σi � e−τκi, we obtain (eorem 2.
(C2) ConsideringG(t) � ln t in(eorem 5 and λ � e−τ ,
we obtain (eorem 3.
(C3) Considering G(t) � ln t in (eorem 4, λ � e−τ ,
and p � 1, we obtain (eorem 3.
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