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Abstract: COVID-19, a new pandemic disease is becoming one of the major threats for surviving.
Many new models are arrived to study the disease mathematically. Here we are introducing a new
model in which instead of studying a day by day changes we are studying the average of 14 day
transmission because its life or the patients incubation period is about an average of 14 days. Also,
since this is pandemic, and being not aware of susceptible population among the world’s population,
we considered the model without S-susceptible population. i.e., IRD- Infectious, Recovered, Death-
model. In this new model, we are also introducing a new method of calculating new number called
N0-average transmission number. This is used to study the average spread of infection instead of
basic reproduction number R0. The motto of this paper is not to predict the daily cases but to control
the current spread of disease and deaths by identifying the threshold number, exceeding which will
increase the spread of infection and number of deaths due to this pandemic. Also if the 14 day average
IRD-populations are maintained under this threshold number, will definitely control this pandemic
disease globally. Stability analysis and test for stiff system of differential equations are studied. Our
main aim is to present the medical world, a threshold population of infected, recovered and death cases
for every average of 14 days to quickly overcome this pandemic disease COVID-19.
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1. Introduction

People always love to live healthy. But it was not expected all the time. Over many years, many
diseases have been evolved. The root of many diseases are not still known. Some of the natural
elements being spoiled by mankind, spoil the mankind in turn. Sometimes, diseases emerge naturally
and in sometimes, it may be by a human error. Whatever it is, once a disease has arrived among the
mankind, it will spread to maximum number of people irrespective of age, gender, country, etc. Today,
mankind is facing one such deadly disease called coronavirus. Coronavirus is not an exception in
causing major loss to the society as well as mankind. Its time to quarantine our self to save our precious
life. Coronaviruses are actually a group of same kind of viruses. They affect birds and mammals highly.
In human beings, these coronaviruses are causing toughness to breath. The respiratory infections
caused by COVID-19 may be light, like common cold, or may be severe, like SARS, MERS, and novel
corona. The medical world is still struggling to find the medicine that can treat these diseases. The
spread of coronaviruses from one human to other is believed to spread among the close communities
by means of sneezing or coughing or even by touching. The first human infecting coronaviruses were
discovered during 1960. The very first one was found in chickens called as infectious-bronchitis-virus.
The other two were found in human beings with common cold. It was named as human coronaviruses
229E and human coronaviruses OC43 later. Also, there are other lists of this coronavirus. They are
SARS-CoV which was found in 2003. In the year 2004, HCoV NL63 was found. In the next year,
2005 HKU1 was found. MERS-CoV found in the year of 2012, and SARS-CoV-2 which was well
known to be 2019-nCoV, found recently in the year 2019. Still new viruses are persisting in the
globe. Most of these viruses have involved very serious problems such as respiratory problems and
inner organ failure. Coronaviruses are classified in to four types and they are Alpha-coronaviruses,
Beta-coronaviruses, Gamma-coronaviruses, and Delta-coronaviruses. From the observations, the bats,
birds and all hot blooded creatures are the only hosts for the alpha and beta coronaviruses, and birds
are common to gamma and delta coronaviruses for the evolution and spreading of these viruses. All
coronaviruses may change in terms of their risk factor. More than 30% of those infected (such as
MERS-CoV) may die and some others such as fever, dry cough and sore throat from swollen adenoids,
occurring mostly in the winter and in spring seasons are less harmful. Coronaviruses are able to cause
pneumonia and bronchitis. The most threaten human coronavirus was discovered in the year 2003,
(SARS-CoV), which causes a severe acute respiratory syndrome called SARS. It has very unique
pathogenesis infecting both upper and lower respiratory tracts. During the years of 2002–2004, it was
found as 774 people had died of SARS-CoV. In 2012, 2015 and 2018 the MERS-CoV respectively
caused over 400, 36 and 41 deaths. Now, during 2019 to 2020, coronavirus pandemic was considered
as a global threat with at least 30,935 deaths till March 29 2020.

1.1. Coronavirus disease 2019 (COVID-19)

During December 2019, It was reported in Wuhan, China , a pneumonia type of disease outbreak.
On 31 September 2019, that was traced and identified as a novel coronavirus. The World Health
Organization (WHO) called it as 2019-nCoV. Later, the International Committee on Taxonomy of
viruses called it as SARS-CoV-2. Since, March 29, 2020, there have been found at least 30,935
confirmed deaths and more than 492,571 confirmed cases in the coronavirus pandemic over 199
countries and territories around the world and two international conveyances, one is the Diamond
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Princess cruise ship of Japan and the other is Holland America’s MS Zaandam Cruise ship. The
Wuhan novel strain has been identified as a new type of Beta coronavirus and it was from group 2B
with approximately 70% genetic similarity with SARS-CoV. As this virus has a 96% of similarity to
bat coronaviruses, it was believed that these viruses start from bats. This pandemic has resulted in
travel restrictions. Also worldwide, we can see lock-downs in several countries. Since modeling of
any pandemic or epidemic disease spread is uncertain, there will be vagueness always. To overcome
this vagueness and to study uncertainty, fuzzy sets was first introduced individually by Lofti A. Zadeh
in 1965 [1]. Today randomness, vagueness and uncertainty problems were mostly studied everywhere
like signal processing, artificial intelligence, population dynamics, optics, oriental medicine, by
Engineers, Doctors and Scientists etc. Fuzzy sets, fuzzy differential equations, fuzzy logic are
considered to be their important tools to study them. The imprecise nature of medical concepts are
always defined with the help of fuzzy logic.

In [1] and [2], L.A. Zadeh, presented fuzzy sets, fuzzy mapping and control. In [3], J.J. Bukley and
T. Feuring, in [4], D. Dubois and H. Prade, in [5], Lupulescu, in [6] and in [7], Kaleva did a great
research on fuzzy differential equations. In [8], Ma, Friedman and Kandel, and in [9], seikkala,
provided a great contribution to fuzzy differential equations, fuzzy differential calculus, fuzzy initial
value problem and seikkala dervative is the predominant work of Seikkala in the fields of fuzzy
differential equations. In [10], Diamond and Kloedan analyzed metric spaces of fuzzy sets in 1984. In
[11], Y. Chalco-Cano and H. Roman-Flores, defined, analyzed and studied new solutions of fuzzy
differential equations. In [12] and [13], S. Abbasbandy and T. Allahviranloo, studied numerical
solution of fuzzy differential equation by Taylor method and by Runge-Kutta method. In [14], C.F.
Curtiss, J.O. Hirschfelder, studied integration of stiff equations. In [15], Gustaff Soderlind, Laurent
Jay and Manual Calvo, published a work on Stiffness. In [16], L. Shampine, provided evaluation of a
test set for stiff ODE solvers. In [17], D.J. Higham and L.N Trefethen studied stiffness of ODEs. In
[18], M.N. Spijker, evaluated stiffness in numerical initial value problems.

In [19], W.O. Kermack and A.G. Mckendrick, gave the first contribution to the mathematical
theory of epidemics. In [20], P. Palese and J.F. Young, studied variation of Influenza A, B, and C. In
[21], Allen LJS gave an introduction to mathematical biology in 2007. In [22], Sha He, Sanyi Tang
and Libinin Rong, framed a discrete stochastic model for COVID-19 outbreak: forecast and control.
In [23], Weike zhou, Aili Wang, Fan Xia, Yanni Xiao and Sanyi Tang reported the effects of media on
mitigating spread of COVID-19 in the early phase of the outbreak. In [24], Fuliyan Yin, Jiahui Lv,
Xiaojian Zhang, Xinyu Xia, and Jianhong Wu, presented COVID-19 information propagation
dynamics in the chinese sina-microblog. In [25], Chenxi Dai, Jing Yang and Kaifa Wang, did
evaluation of control interventions on the epidemic of coronavirus disease 2019 in Chongqing and
Guizhou Provinces. In [26], Xinmiao Rong, Liu Yang, Huidi Chu and Meng Fan, analyzed the effect
of delay in diagnosis on spread of coronavirus. In [27], Jingjing Tian, Jiabing wu, Yunting Bao,
Xiaoyu Weng, Lei Shi, Binbin Liu, Xinya Yu, did modeling analysis of COVID-19 in Anhui, China.
In [28], Chentong Li, Jinhu Xu, Jiawei Liu and Yicang Zhou, particularly studied the within-host viral
kinetics COVID-19. In [29], Vitaly Volpert, Malay Banerjee and Sergei Petrovskii, gave their
tremendous work on a quarantine model of coronavirus infection along with data analysis. In [30],
Biao Tang, Nicola Luigi Bragazzi, Qian Li, Sanyi Tang, Yanni Xiao and Jianhong Wu analysed and
provided an updated estimation of the novel coronavirus transmission. Zifeng Yang et al. analysed
modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health
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interventions in [31]. ShreshthTuli, Shikhar Tuli et al. predicted the growth and trend of COVID-19
pandemic using machine learning and cloud computing in [32]. Chintamani Pai et al. investigated the
dynamics of COVID-19 pandemic in India under lockdown in [33]. Matheus Henrique Dal Molin
Ribeiro et al. focused on short-term forecasting COVID-19 cumulative confirmed cases: perspectives
for Brazil in [34]. Muhammad Altaf Khan and Abdon Atangana, have modeled the dynamics of novel
coronavirus (2019-nCov) with fractional derivative in [35]. In [36], [37], [38] and [39], authors like
Muhammad Altaf Khan regularly studied SEIR, dengue and also presented the numerical solution of
the competition model among bank data in Caputo-Fabrizio derivative. Authors of [40], [41] and [42]
have regularly studied numerical solutions of fuzzy differential equations.

The paper contains preliminaries, which are essential to create some basic knowledge about the
study to the readers, in section 2. The remainder of the paper is structured as follows. The formulation
of models in terms of ordinary differential equations and in terms of fuzzy differential equations are
given in section 3. Stability analysis and test for given system to be stiff differential equations are
performed in section 4. Numerical simulation of infected, recovered and death cases are presented in
terms of both ordinary differential equations and fuzzy differential equations in section 5.

2. Preliminaries

Before proceeding to some of the prerequisites necessary for the study, we are now presenting the
novelty, new contributions and new objectives in this paper which will motivate the readers and
researchers. This is the first paper in which the epidemic modeling without considering the
susceptible population was framed. This is the first paper in which the stiff differential equations and
fuzzy properties are used to frame and study such a model. Many papers are emerging daily to predict
the daily cases but this is the first paper in which a new idea called maintaining the 14 day average-
infectious, recovered and death populations under threshold populations is given to control the spread
and human loss. Also in this paper since susceptible population was not considered, we are
introducing the new number called average transmission number-N0 instead of basic reproduction
number R0. For each country this modeling could be applied as here we are studying globally. In
mathematical biology point of view, the advantage of models framed by stiff fuzzy differential
equations is used to analyze the model in which the stiffness (stiffness is defined below) arise can be
set under fuzzy boundary so that values are predicted at crisp set values and analyzed at the fuzzy set
values. That will help us to set the boundary of our analyze to two extreme (minimum and maximum)
values and also to the in between values (partial member values). All these are explained in detail
below.

2.1. Stiff differential equations

Though stiff differential equations are most important field of research in mathematical modeling,
a rigorous, efficient, meaningful and computationally relevant properties or definition of stiffness is
still not well defined. Since many years, many different numerical methods and software codes have
been designed for the efficient solution of stiff initial value problem. The seminal paper of curtiss and
Hirchfelder [14] first opened this field, stiffness. But it was not yet properly defined. According to
Shampine [16], “A major difficulty is that stiffness is a complex of related phenomena, so that it is not
easy to define what stiffness is”.
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Stiff equations are some of the problems in ordinary differential equations for which explicit type
of numerical methods does not work. The explicit type of numerical methods may struggle a lot when
applied to the IVP’s (initial value problems) ẏ = f (y), y(0) = y0. It is always not possible to solve,
when f ′(y) is very large. Similarly in non linear equations, fixed point iteration ym+1 = f (ym) does
not converge for problems whose f ′(y) is large. Curtiss and Hirchfelder [14] are the two people who
introduced the notation stiffness for which the explicit methods for numerical solutions of ordinary
differential equations failed. There is no unique definition of stiffness is found in the literature. But
one can call the system of ordinary differential equations is called stiff if Lipschits constant L defined
for solution over the interval is L(y0, yn) >> 1.

The following is the definition of stiff system of fuzzy differential equations.

Definition 2.1 (Stiff system of fuzzy differential equations). The linear system of fuzzy differential
equations ỹ′(x) = Aỹ(x), A ∈ Rn×n, is known as fuzzy stiff, if all eigenvalues λi posses a negative real
part and if

q =
max|(Re(λi))|, i = 1, 2, ..., n
min|(Re(λi))|, i = 1, 2, ..., n

>> 1

Remarks:

1. The stiff differential equations are numerically known to be unstable unless the step size is
extremely very very small.

2. Stiff differential equations are also characterized as one for which exact solution possessed to
have a term of the form e−kt, where k is a large positive constant.

3. Large derivatives of e−kt always give error terms and that will always dominate the solutions.

2.2. Fuzzy differential equations

We are interested to study the model in fuzzy differential equations because, it only studies the
system completely as non-member, partial members and full member. If y0 is a fuzzy number found
with α-level of intervals [y0]α = [yα, yα], 0 ≤ α ≤ 1. The extension principle of Zadeh leads us to the
following definition of f̃ (t, y(t)) when y is a fuzzy number.

It follows that

f̃ (t, y(t)) =

 min f (t, u) : u(yα
t
, yαt ), u ∈ E

max f (t, u) : u(yα
t
, yαt ),

(2.1)

for y ∈ E with α- level sets [y]α = [yα
t
, yαt ], 0 ≤ α ≤ 1

since the fuzzy derivative y′(t) of a fuzzy process, y : R+ → E is defined by
[y′(t)]α = [(yα)′(t), (yα)′(t)], 0 ≤ α ≤ 1.

We call y : R+ → E a fuzzy solution of (2.1) on the interval I = [0, t] if (yα)′(t) = min{ f (t, u) : u ∈ [yα
t
, yαt ], y(t0) = y

0
}

(yα)′(t) = max{ f (t, u) : u ∈ [yα
t
, yαt ], y(t0) = y0}

(2.2)

for t ∈ I and 0 ≤ α ≤ 1. Thus for fixed α we have an initial value problem in R2. If we can solve it, we
have only to verify that intervals [yαt , y

α
t ], 0 ≤ α ≤ 1, define a fuzzy number y(t) ∈ E.
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3. Model formulation

As COVID-19 is pandemic and spreads in several countries of the world very quickly, we are unable
to know the exact count of susceptible population. The infected, recovered and dead populations were
taken from various online resources like [43]. In order to frame the model, we have taken the data from
March 10 to March 23, 2020. All the existing mathematical models deals with growth of the disease
day by day and there is no model yet without susceptible population, also they require the susceptible
population to calculate the basic reproduction number. Here we take 14 days data of the whole world’s
COVID-19 cases and take their average as the initial population. The worlds population is very high
and the disease is spreading in a very fast manner. so the population of infected, recovered and dead
was also increasing day by day. We have to keep in mind that the worlds total population cannot
be taken as susceptible. Anyone with common symptoms of the disease but not yet infected is what
exactly susceptible population mean. Due to lack of awareness about the symptoms no one can visit
the hospital. In such situation its not possible to record the exact population of susceptible cases as
recording the exact population of infected, recovered and dead. So we are interested to create a model
called IRD-Infected, Recovered and Dead. Since the disease has an average life of 14 days we are also
interested to study the average cases of IRD population over 14 days mean. It is quite interesting to
study such new way of modeling. In future many researchers may interested to study the model like
this. The main advantage of studying this average transmission model is one can easily estimate the
average change in population for any years. But the average number should be the life of virus. Before
presenting the model, the data from March 10 to March 23, 2020 are presented.

Let β, µ, γ and ζ be the rate of infected I(t), recovered R(t), Death D(t) and the total cases T (t)
respectively. We know that the rate of total case is always 100. i.e., ζ = 100.

Table 1. COVID-19, 14 days population and rates [43].

Date(t) I(t) β R(t) µ D(t) γ T(t)
Mar23 260277 68.70 102069 26.94 16514 4.36 378860
Mar22 224221 66.44 98627 29.22 14641 4.34 337489
Mar21 196523 64.43 95500 31.31 13013 4.26 305036
Mar20 172637 62.64 91573 33.23 11387 4.13 275597
Mar19 146740 59.91 88162 35.99 10031 4.10 244933
Mar18 124538 56.91 85333 39.00 8951 4.09 218822
Mar17 107637 54.30 82623 41.68 7978 4.02 198238
Mar16 95701 52.44 79628 43.64 7161 3.92 182490
Mar15 85622 50.49 77452 45.67 6519 3.84 169593
Mar14 74888 47.81 75932 48.47 5833 3.72 156653
Mar13 67447 46.36 72607 49.91 5429 3.73 145483
Mar12 592212 44.00 70383 52.30 4981 3.70 134576
Mar11 53279 42.21 68307 54.12 4628 3.67 126214
Mar10 48031 40.38 66621 56.01 4296 3.61 118948
Sum 1616753 757.02 1154817 587.49 121362 55.49 2892932
Average 115482.36 54.07 82486.93 41.97 8668.71 3.96 206638
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From the above table it was found that I(t), R(t) and D(t) increases rapidly and also it is clear that
I(t) > R(t) > D(t) and obviously β > µ > γ. But without considering from the table we shall calculate
β, µ and γ using separate forumalae later. So the COVID-19 model is the exponentially growing model.
Since the spread of this pandemic disease is not coming to an end or any proper medicine was not yet
found it is not a right way to go for the logistic growth model. If so, what will be the carrying capacity,
as total population and susceptible population are not clearly known? Biologist and Doctors says the
average life of this COVID-19 is 14 days. At least we can check whether its average population model
is growing exponentially or not. If this is not growing exponentially then we can suggest doctors to
maintain this average initial populations as threshold numbers. Exceeding this may lead to loss the
control of infections and deaths. Through out the paper, ∆ represents rate of change in population of
Infected, Recovered and Dead cases with respect to time t and D represents death population. With
these ideas the following model is made.

COVID-19

Figure 1. Model formulation.

∆I(t) = (βI(t) − µI(t)R(t) − γI(t)D(t)
∆R(t) = (µI(t)R(t) − βI(t)R(t) − γR(t)D(t))
∆D(t) = (γD(t) − µR(t)D(t))

(3.1)

3.1. Description of the model

As already discussed, β, µ and γ be the rate of healthy become infected (I(t)), infected become
recovered (R(t)), infected become death (D(t)) respectively. Mathematically death is similar to
recovered because both are infection free. The average rate of infectious become death are given by
γI(t)D(t). The average rate of infectious become recovered and recovered become infectious are
given by µI(t)R(t) and βI(t)R(t). The average rate of recovered become death are represented in two
ways as γR(t)D(t) to study death during infection or partial recovery and µR(t)D(t) to study death
after being recovered, i.e., natural death.

The exact solutions of (3.1) is found to be

I(t) = ce
∫ tn

t0
β−µR(t)−γD(t)dt

.

R(t) = ce
∫ tn

t0
µI(t)−βI(t)−γD(t)dt

.
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D(t) = ce
∫ tn

t0
γ−µR(t)dt

.

For any value t0 ≤ t ≤ tn, β − µR(t) − γD(t) < 0, µI(t) − βI(t) − γD(t) < 0, γ − µR(t) < 0 which
produces ce(−ve) values as the solutions of (3.1). Thus we call the model (3.1) as system of stiff
differential equations. We shall present the test later to confirm it. Now fuzzy system of stiff
differential equation are given in (3.2).

∆Ĩ(t) = (βĨ(t) − µĨ(t)R̃(t) − γĨ(t)D̃(t))
∆R̃(t) = (µĨ(t)R̃(t) − βĨ(t)R̃(t) − γR̃(t)D̃(t))
∆D̃(t) = (γD̃(t) − µR̃(t)D̃(t))

(3.2)

where, f̃ (t) = (0.75 + 0.25r, 1.125 − 0.125r) f (t) is the fuzzy number with r ∈ [0, 1].

The initial conditions are the average populations, we presented in Table 1. Since the population
cannot be a fractional number we take

I(t0) = I0 = m1 = 115482, t = t0,

R(t0) = R0 = m2 = 82487, t = t0,

D(t0) = D0 = m3 = 8669, t = t0.

The rate of infection, recovered and death are also found by average of ratios of 14 days. Instead
of taking β, µ and γ from the Table 1, we are calculating them using more appropriate formulae given
below.
β→the rate of infection=Infected case×ζ / total case
µ→ the rate of recovery=Recovered case×ζ/ total case
γ → the rate of death=death case×ζ/total case
ζ → the rate of total case.
The total case T (t)=Infected case I(t)+Recovered case R(t)+Death case D(t)=206638 at t = t0

T ′(t) = I′(t) + R′(t) + D′(t)
Now we consider the average of those 14 days rate as the required rate.
We found that β = 56, µ = 40, γ = 4 and ζ = 100.

4. Stability analysis and stiff system test

4.1. Equilibrium points

The equilibrium points are found by setting ∆Ĩ(t) = 0, ∆R̃(t) = 0 and ∆D̃(t) = 0. The disease free
equilibrium points are (0, 0, 0) and the disease depending equilibrium points are given by (γ−β

µ−β
, γ
µ
, 1− β

γ
)

thus the values of disease depending equilibrium points are (3.25, 0.1,−13).

4.2. Average transmission number: N0

The average transmission number is the number telling the average spread of disease from one to
others. Though it is similar to basic reproduction number R0, we are not using susceptible population
here. That’s why we are calling it by a different name “average transmission number N0”. The
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calculation of basic reproduction number requires the population of susceptible case. Since we are not
aware of susceptible population, we are introducing this new method for calculating this new number
called average transmission number. It is a two step method.

• Calculate N∗ from setting ∆D̃(t) = 0, which implies N∗ = R = γ/µ

• Assuming no one are newly infected, few are recovered and few are dead. We have to keep in mind
only infected people will infect others and not the dead or recovered people. Also if recovered
become infect again they will also spread the disease. The outcome of any epidemic/pandemic
disease is the sum of the death case and recovered case. (total case-outcome) = (infected case).
But we consider (rate of infected case-rate of outcome) and (rate of total case-sum of rates of
infected and death). Multiplying these numbers with N∗ will constitute the left and right limits
of N0. We use their rates in the form of following formula to calculate the average transmission
number N0.

(β − µ − γ)N∗ ≤ N0 ≤ (ζ − β − γ)N∗ (4.1)

By our calculation,
[56 − (40 + 4)]

γ

µ
≤ N0 ≤ [100 − (56 + 4)]

γ

µ

1.2 ≤ N0 ≤ 4.0

From the above average transmission number, we can easily assert that this 14 day average pandemic
COVID-19 is spreading from infected one to at least 1 person or to at most 4 persons. This number
N0 found from this new method matches with universally accepted basic reproduction number R0 of
COVID-19.

4.3. Stability analysis using eigen values

Theorem 4.1. When all the eigen values of linearized form of (3.2) are < 0. Then the model considered
is asymptotically stable.

Proof. Let us first linearize the model (3.2) in the form of Jacobian matrix and name it as A

A =


(β − µR̃(t) − γD̃(t)) −µĨ(t) γĨ(t)
µR̃(t) − βR̃(t) (µĨ(t) − βĨ(t) − γD̃(t)) −γR̃(t)

0 −µD̃(t) γ − µR̃(t)

 (4.2)

On substituting the values of all the parameters and solving (4.2), the characteristic polynomial was
found to be λ3 + 8515964λ2 + 17276845232848λ + 422461568851044800 = 0
The corresponding eigen values are given by

λ1 = (−24753.6 + i(1.5522 × 10−10)),

λ2 = (−5.22464 × 106) + i(1.16415 × 10−10),

λ3 = (−3.26657 × 106) − i(4.65661 × 10−10).

Since all the eigen values have the negative real parts, the system we considered is asymptotically
stable. �
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4.4. Stiff system of fuzzy differential equation-test

Theorem 4.2. Stiffness test by eigen values
By the definiton 2.1, a linear fuzzy system or a linearized form of a non linear fuzzy system posses
negative real parts in all its eigen values and satisfying

q =
max|(Re(λi))|, i = 1, 2, ..., n
min|(Re(λi))|, i = 1, 2, ..., n

>> 1

is called stiff system of fuzzy differential equation.

Proof. Let us take (4.2), which is the linerized form of (3.2). We found the eigen values as

λ1 = (−24753.6 + i(1.5522 × 10−10)),

λ2 = (−5.22464 × 106) + i(1.16415 × 10−10),

λ3 = (−3.26657 × 106) − i(4.65661 × 10−10).

All are complex numbers whose real part is negative,
Now, calculating the value of q,

q =
max|(Re(λi))|, i = 1, 2, ..., n
min|(Re(λi))|, i = 1, 2, ..., n

>> 1,

q =
24753.6
3.26657

≈ 7577.8569 >> 1.

The (4.2) satisfied the theorem and hence our model (3.2) is the stiff system of fuzzy differential
equations which obviously establishes that (3.1) is the stiff system of differential equations. �

5. Numerical simulations

Since the model we considered is a stiff system of differential equations, we do not prefer to use
Runge-Kutta methods or any other numerical methods. As already discussed the exact solutions of
Ĩ(t), R̃(t), D̃(t) are in the form e(−ve)value. Also those negative values are high requiring very precise
small step size which will lead to more number of iterations. So it was found that numerical methods
like Runge-Kutta methods are not stable to study any stiff differential equations like (3.1).

So going for software is the better option. Software like Mathematica, Matlab, Maple etc., having
build in functions are effective to provide best approximate solutions. We obtain the numerical
solutions of both ordinary and fuzzy valued model by using the NDSolve technique of Mathematica
software to solve differential equations.

The following plots will be useful to check the average of 14 days pandemic transmission. The
plots for March 10 to March 23 are not provided since seeing the table itself we can understand that
all the cases like susceptible, infected and recovered are increasing like exponential growth. Without
any logistic term to control the growth, the average population itself is giving the stable graphs, which
means they are our threshold populations. The graphical representations are given for very minimum
time span i.e., 0.00001 days or 0.864 seconds in order to zoom and show how the spread of diseases
and each population changes are decreased. Also the main idea is to set a threshold population up to
which the spread is under control and possible to completely remove the infection from the globe.
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I(t) for t ∈ [0, 0.00001] and r = 1
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Figure 2. Infected case for every 0.864 seconds (0.00001 days).
R(t) for t ∈ [0, 0.00001] and r = 1

Recovered Cases

2. ´ 10-6 4. ´ 10-6 6. ´ 10-6 8. ´ 10-6 0.00001
Days

40 000

50 000

60 000

70 000

80 000

Population

Figure 3. Recovered case for every 0.864 seconds (0.00001 days).
D(t) for t ∈ [0, 0.00001] and r = 1
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Figure 4. Death case for every 0.864 seconds (0.00001 days).
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Ĩ(t) for t ∈ [0, 1] and r ∈ [0, 1]
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Figure 5. Infected case for every 86400 seconds (1 day).
R̃(t) for t ∈ [0, 1] and r ∈ [0, 1]
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Figure 6. Recovered case for every 86400 seconds (1 day).
D̃(t) for t ∈ [0, 1] and r ∈ [0, 1]
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Figure 7. Dead case for every 86400 seconds (1 day).
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6. Concluding remarks

Without susceptible population a new model, say IRD-Infection-Recovered and Death model of 14
day average transmission of COVID 19 pandemic system was formulated. It was reformulated as
fuzzy system of differential equations. The equilibrium points have been found and stability analysis
was done by studying the eigen values. We have given the new method for calculating the new
number called average transmission number N0 which matches with existing result of basic
reproduction number R0. Also we proved that the system considered was stiff system of differential
equations as well as stiff system of fuzzy differential equations. From the Table 1, we can see the
system is exponentially growing day by day. As a sample, we took the data from March 10, 2020 to
March 23, 2020. Since Ĩ(t), R̃(t) and D̃(t) are growing exponentially, we took the average of those 14
days as our initial populations, say Ĩ(t0), R̃(t0) and D̃(t0). Also their respective rates are found. From
the plots Figures 2–4, we have shown in 0.00001 days (0.864 seconds) in average of 14 days, the
cases approaching zero. This means for these initial populations the system produces a stable graph
and approaches to zero in every 0.864 seconds per day of 14 day average is clearly noticed in plots.
This study makes us to suggest the medical world to fix the threshold population of infectious,
recovered and death cases under I(t) = 115482, R(t) = 82487 and D(t) = 8669 and their rates under
β = 56, µ = 40 and γ = 4. So that, the whole world will easily overcome this deadly disease
COVID-19. If the next 14 day average exceeds this threshold population, then it will make the disease
to quickly spread and infect everyone in the globe. The respective fuzzy plots were given in Figures
5–7 for 86400 seconds. i.e., for a day.

In this work, instead of prediction we had founded the threshold numbers maintaining under which
will reduce the spread of disease and the number of deaths due to it. But as a future work we are going
to predict and compare the growth of new daily cases using commonly used metrics for comparison
like mean average precision error, regularized R squared values. This stiff fuzzy model is used here
to bound the unbound disease growth by setting 0 ≤ α ≤ 1 depending on which the stiff model will
actively work with the boundary framed by 0 ≤ α ≤ 1. This is not the predictive analysis or comparison
tool with daily cases data. This stiff fuzzy model is used to analyze the present spread of disease as
three cases such as inactive hosts, partially active hosts and completely active hosts. It will be thus
useful to confidently propose the threshold number from which medical world and government will
get benefited by setting the every 14 day average IRD populations under this threshold number to
control the disease and the deaths due to this pandemic disease COVID-19.
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