Research Article

Erdal Karapinar, Farshid Khojasteh, Zoran D. Mitrović*, and Vladimir Rakočević

On surrounding quasi-contractions on non-triangular metric spaces

https://doi.org/10.1515/math-2020-0083
received March 28, 2020; accepted September 10, 2020

Abstract

The aim of this paper is to establish some fixed point results for surrounding quasi-contractions in non-triangular metric spaces. Also, we prove the Banach principle of contraction in non-triangular metric spaces. As applications of our theorems, we deduce certain well-known results in b-metric spaces as corollaries.

Keywords: non-triangular metric spaces, quasi-contraction, b-metric spaces
MSC 2020: 47H10, 54H25

1 Introduction and preliminaries

In this paper [1], Banach opened up a new way in non-linear analysis, upon which various applications in a variety of sciences have appeared. After this interesting principle, several authors generalized this principle by introducing the various contractions on metric spaces (see [2-8]). In 2014, the notion of manageable function was introduced by Du and Khojasteh $[9,10$] to generalize and unify the several existing fixed point results in the literature. After that, Jleli and Samet [11] introduced a generalization of metric spaces that recovers a large class of topological spaces including standard metric spaces, b-metric spaces, dislocated metric spaces and modular spaces called $J S$-metric spaces. In this paper, we establish some fixed point theorems for surrounding quasi-contractions in non-triangular metric spaces. Also, we prove the Banach principle of contraction in non-triangular metric spaces. As applications of our theorems, we deduce certain well-known results in b-metric spaces as corollaries.

Here, we preliminarily provide some auxiliary facts which will be needed later.
The concept of b-metric space was introduced by Bakhtin [12] and Czerwik [13], which is an interesting generalization of usual metric space (see [14-31]). A b-metric space (see [12,13]) (X, d) is a space defined on a non-empty set X with a mapping $d: X \times X \rightarrow[0,+\infty)$ and constant $s \geq 1$ satisfying the following conditions:
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(3) $d(x, y) \leq s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$.

[^0]In this case, d is called a b-metric on X. Regarding the concept of b-convergent sequence, b-Cauchy sequence and b-completeness, the reader may refer to [19] and references therein.

Let X be a non-empty set and let $\varrho: X \times X \rightarrow[0,+\infty]$ be a given mapping. For every $x \in X$, define the sets:

$$
\mathcal{M}(\varrho, X, x)=\left\{\left\{x_{n}\right\} \subset X: \lim _{n \rightarrow \infty} \varrho\left(x_{n}, x\right)=0\right\} .
$$

Definition 1.1. [11] We say that ϱ is a JS-metric on X if it satisfies the following conditions:
$\left(\mathrm{a}_{1}\right)$ for each pair $(x, y) \in X \times X$, we have

$$
\varrho(x, y)=0 \quad \text { implies } x=y
$$

$\left(\mathrm{a}_{2}\right)$ for each pair $(x, y) \in X \times X$, we have

$$
\varrho(x, y)=\varrho(y, x)
$$

$\left(\mathrm{a}_{3}\right)$ there exists $\kappa>0$ such that for all $x, y \in X$, if $\left\{x_{n}\right\} \in \mathcal{M}(\varrho, X, x)$

$$
\varrho(x, y) \leq \kappa \limsup _{n \rightarrow \infty} \varrho\left(x_{n}, y\right)
$$

In this case, we say the pair (X, ϱ) is a JS-metric space by modulus κ.
Definition 1.2. [11] Let (X, ϱ) be a JS-metric space.
$\left(\mathrm{b}_{1}\right)$ We say that $\left\{x_{n}\right\} \varrho$-converges to x if $\left\{x_{n}\right\} \in \mathcal{M}(\varrho, X, x)$,
$\left(\mathrm{b}_{2}\right)$ if $\left\{x_{n}\right\} \varrho$-converges to x and ϱ-converges to y, then $x=y$,
$\left(\mathrm{b}_{3}\right)\left\{x_{n}\right\}$ is a ϱ-Cauchy sequence if $\lim _{m, n \rightarrow \infty} \varrho\left(x_{n}, x_{m}\right)=0$,
$\left(b_{4}\right)(X, \varrho)$ is said to be ϱ-complete if every ϱ-Cauchy sequence in X is convergent to some element in X.
Very recently, Khojasteh and Khandani [32] introduced the concept of non-triangular metric space and obtained some fixed point results which are the generalization of some new recent results in the literature.

Definition 1.3. Let X be a non-empty set and let $\rho: X \times X \rightarrow \mathbb{R}^{+}$be a mapping. We say that ρ is a nontriangular metric on X if it satisfies the following conditions:
($\left.\mathrm{c}_{1}\right) \rho(x, x)=0$ for all $x \in X$;
(c_{2}) If $\left\{x_{n}\right\} \in \mathcal{M}(\rho, X, x) \cap \mathcal{M}(\rho, X, y)$, then $x=y$ for all $x, y \in X$.

Note that if $x, y \in X$ and $\rho(x, y)=0$, then taking $x_{n}=x$ for each $n \in \mathbb{N}$ and applying conditions $\left(c_{1}\right)$ and $\left(c_{2}\right)$ it follows that $x=y$.

Definition 1.4. Let (X, ρ) be a non-triangular metric space.
$\left(\mathrm{d}_{1}\right)$ We say that $\left\{x_{n}\right\} \rho$-converges to x if $\lim _{n \rightarrow \infty} \rho\left(x_{n}, x\right)=0$,
$\left(d_{2}\right)\left\{x_{n}\right\}$ is a ρ-Cauchy sequence if $\lim \sup \left\{\rho\left(x_{n}, x_{m}\right): m \geq n\right\}=0$,
$\left(d_{3}\right)(X, \rho)$ is said to ρ-complete if every ρ-Cauchy sequence in X is ρ-convergent to some element in X.

Definition 1.5. Let (X, ρ) be a non-triangular metric space and $T: X \rightarrow X$ be a mapping. A mapping T is \mathcal{M}-continuous in $x \in X$ if

$$
\left\{x_{n}\right\} \in \mathcal{M}(\rho, X, x) \text { implies }\left\{T x_{n}\right\} \in \mathcal{M}(\rho, X, T x)
$$

Remark 1.6. Note that, if T is a contraction, i.e., there exists $k \in[0,1)$ such that

$$
\rho(T x, T y) \leq k \rho(x, y)
$$

for all $x, y \in X$, then T is \mathcal{M}-continuous at each point x in X.

The following example shows that non-triangular metric space is a real generalization of generalized metric space in sense a concept of Jleli and Samet [11].

Example 1.7. Let $X=[0,+\infty)$, define

$$
\rho(x, y)= \begin{cases}\frac{(x+y)^{2}}{(x+y)^{2}+1}, & 0 \neq x \neq y \neq 0 \\ \frac{x}{2}, & y=0 \\ \frac{y}{2}, & x=0 \\ 0, & x=y\end{cases}
$$

Condition $\left(c_{1}\right)$ is trivially satisfied. We need to verify condition (c_{2}). For this, let $x, y \in X$ and $\left\{x_{n}\right\}$ be a sequence in X such that $\rho\left(x_{n}, x\right) \rightarrow 0$ and $\rho\left(x_{n}, y\right) \rightarrow 0$ as $n \rightarrow \infty$. It implies that

$$
\lim _{n \rightarrow \infty} \frac{\left(x_{n}+x\right)^{2}}{\left(x_{n}+x\right)^{2}+1}=\lim _{n \rightarrow \infty} \frac{\left(x_{n}+y\right)^{2}}{\left(x_{n}+y\right)^{2}+1}=0
$$

and these hold if and only if $\lim x_{n}=-x=-y$ in \mathbb{R} and so $x=y$. Hence, condition $\left(c_{2}\right)$ is true. Therefore, (X, ρ) is a non-triangular metric ${ }^{\rightarrow}$ space. On the other hand, condition $\left(a_{3}\right)$ does not hold. For all $n \in \mathbb{N}$ and for each $y \in X$,

$$
\rho\left(x_{n}, y\right)= \begin{cases}\frac{\left(x_{n}+y\right)^{2}}{\left(x_{n}+y\right)^{2}+1}, & \text { if } x_{n} \neq 0 \\ \frac{y}{2}, & \text { if } x_{n}=0\end{cases}
$$

Since $\left\{x_{n}\right\}$ is a convergent sequence to zero. If there exists $C \geq 1$ such that

$$
\frac{y}{2}=\rho(0, y) \leq C \limsup _{n \rightarrow \infty} \rho\left(x_{n}, y\right)=C \limsup _{n \rightarrow \infty} \frac{\left(x_{n}+y\right)^{2}}{\left(x_{n}+y\right)^{2}+1}=C \frac{y^{2}}{y^{2}+1}
$$

we have $C \geq \frac{y^{2}+1}{2 y} \geq \frac{y}{2}$. Therefore, there is no bound for C, by which,

$$
\rho(y, 0) \leq C \limsup _{n \rightarrow \infty} \rho\left(y, x_{n}\right)
$$

2 Main results

In this section, we prove that quasi-contraction in non-triangular metric space has a fixed point.
Let (X, ϱ) be a metric space and let $T: X \rightarrow X$ be a mapping. For every $x_{0} \in X$, let

$$
\delta_{n}\left(T, x_{0}\right)=\sup \left\{\varrho\left(T^{i}\left(x_{0}\right), T^{j}\left(x_{0}\right)\right): i, j \geq n\right\}
$$

Definition 2.1. Let (X, ϱ) be a non-triangular metric space. The mapping $T: X \rightarrow X$ is said to be a surrounding quasi-contraction with respect to Θ if there exists $\alpha \in[0,1)$ such that for all $x, y \in X$,

$$
\begin{equation*}
\varrho(T x, T y) \leq \alpha M_{T, \Theta}(x, y) \tag{1}
\end{equation*}
$$

where $\Theta: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is a mapping such that $\Theta(t, s, z, w) \leq \max \{z, w\}$ and

$$
M_{T, \Theta}(x, y)=\max \{\varrho(x, y), \varrho(x, T x), \varrho(y, T y), \Theta(\varrho(x, T x), \varrho(y, T y), \varrho(x, T y), \varrho(y, T x))\}
$$

Theorem 2.2. Let (X, ϱ) be a ϱ-complete non-triangular metric space and $T: X \rightarrow X$ be a surrounding quasicontraction with respect to Θ such that $\delta_{1}\left(T, x_{0}\right)<\infty$ for some $x_{0} \in X$. Then $\left\{T^{n} x_{0}\right\} \varrho$ converges to $\omega \in X$. Moreover, if T is \mathcal{M}-continuous in ω, then ω is a fixed point of T.

Proof. Suppose that $\left\{x_{n}\right\}$ is a sequence defined by $x_{n+1}=T x_{n}, n=0,1, \ldots$. Note that $0 \leq \delta_{n+1}\left(T, x_{0}\right) \leq$ $\delta_{n}\left(T, x_{0}\right)$. Therefore, $\left\{\delta_{n}\left(T, x_{0}\right)\right\}$ is a monotone bounded sequence from below and so is convergent. Thus, there exists $\delta \geq 0$ such that $\lim _{n \rightarrow \infty} \delta_{n}\left(T, x_{0}\right)=\delta$. We shall show that $\delta=0$. If $\delta>0$, then by the definition of $\delta_{n}\left(T, x_{0}\right)$, for every $k \in \mathbb{N}$ there exists n_{k}, m_{k} such that $m_{k}>n_{k} \geq k$ and

$$
\begin{equation*}
\delta_{k}\left(T, x_{0}\right)-\frac{1}{k}<\varrho\left(T^{m_{k}}\left(x_{0}\right), T^{n_{k}}\left(x_{0}\right)\right) \leq \delta_{k}\left(T, x_{0}\right) \tag{2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \varrho\left(T^{m_{k}}\left(x_{0}\right), T^{\left.n_{k}\left(x_{0}\right)\right)}=\delta\right. \tag{3}
\end{equation*}
$$

Also, we have

$$
\begin{aligned}
\rho\left(T^{m_{k}}\left(x_{0}\right), T^{n_{k}}\left(x_{0}\right)\right) \leq & \alpha \max \left\{\varrho\left(T^{m_{k}-1}\left(x_{0}\right), T^{n_{k}-1}\left(x_{0}\right)\right), \varrho\left(T^{m_{k}}\left(x_{0}\right), T^{m_{k}-1}\left(x_{0}\right)\right), \varrho\left(T^{n_{k}}\left(x_{0}\right), T^{n_{k}-1}\left(x_{0}\right)\right),\right. \\
& \Theta\left(\varrho\left(T^{m_{k}}\left(x_{0}\right), T^{m_{k}-1}\left(x_{0}\right)\right), \varrho\left(T^{n_{k}}\left(x_{0}\right), T^{n_{k}-1}\left(x_{0}\right)\right),\right. \\
& \left.\left.\varrho\left(T^{m_{k}}\left(x_{0}\right), T^{n_{k}-1}\left(x_{0}\right)\right), \varrho\left(T^{m_{k}-1}\left(x_{0}\right), T^{n_{k}}\left(x_{0}\right)\right)\right)\right\} \\
\leq & \alpha \max \left\{\delta_{k-1}\left(T, x_{0}\right), \delta_{k}\left(T, x_{0}\right)\right\} \\
= & \alpha \delta_{k-1}\left(T, x_{0}\right) .
\end{aligned}
$$

If we let $k \rightarrow \infty$ get it $\delta \leq \alpha \delta$. Thus, $\alpha \geq 1$ and this is a contradiction. Therefore, we deduce that $\delta=0$ and so $\left\{x_{n}\right\}$ is a ϱ-Cauchy sequence. Since (X, ϱ) is ϱ-complete, there exists some $\omega \in X$ such that $\left\{x_{n}\right\}$ is ϱ-convergent to ω. Since $\left\{x_{n}\right\} \in \mathcal{M}(\varrho, X, \omega)$ and T is a \mathcal{M}-continuous we have that $\left\{T x_{n}\right\} \in \mathcal{M}(\varrho, X, T \omega)$, so we conclude that

$$
\left\{x_{n}\right\} \in \mathcal{M}(\varrho, X, \omega) \cap \mathcal{M}(\varrho, X, T \omega)
$$

From condition $\left(c_{2}\right)$, we obtain that $\omega=T \omega$, so ω is a fixed point of T. Condition (1) implies that ω is a unique fixed point.

From Theorem 2.2 and Remark 1.6 follow directly the Banach principle of contraction in non-triangular metric spaces.

Corollary 2.3. Let (X, ϱ) be a @-complete non-triangular metric space and $T: X \rightarrow X$ be a mapping. If there exists $k \in[0,1)$ such that T satisfies

$$
\varrho(T x, T y) \leq k \varrho(x, y),
$$

for all $x, y \in X$ and $\delta_{1}\left(T, x_{0}\right)<\infty$ for some $x_{0} \in X$, then T has a fixed point w in X.
Corollary 2.4. Let (X, ϱ) be a @-complete non-triangular metric space and $T: X \rightarrow X$ be a \mathcal{M}-continuous mapping. If there exists $k \in[0,1)$ such that T satisfies

$$
\varrho(T x, T y) \leq k \max \left\{\varrho(x, y), \varrho(x, T x), \varrho(y, T y), \frac{\max \{\varrho(x, T y), \varrho(y, T x)\}}{\varrho(x, T x)+\varrho(y, T y)+1}\right\}
$$

for all $x, y \in X$ and $\delta_{1}\left(T, x_{0}\right)<\infty$ for some $x_{0} \in X$, then T has a fixed point w in X.
Proof. It suffices to consider $\Theta(t, s, z, w)=\frac{\max \{z, w\}}{t+s+1}$ and apply Theorem 2.2.
Corollary 2.5. Let (X, ϱ) be a ϱ-complete non-triangular metric space and $T: X \rightarrow X$ be a \mathcal{M}-continuous mapping. If there exists $k \in[0,1)$ such that T satisfies

$$
\varrho(T x, T y) \leq k \max \left\{\varrho(x, y), \varrho(x, T x), \varrho(y, T y), \frac{\varrho(x, T y)+\varrho(y, T x)}{2}\right\}
$$

for all $x, y \in X$ and $\delta_{1}\left(T, x_{0}\right)<\infty$ for some $x_{0} \in X$, then T has a fixed point w in X.

Proof. It suffices to consider $\Theta(t, s, z, w)=\frac{z+w}{2}$ and apply Theorem 2.2.
Corollary 2.6. Let (X, ϱ) be a ϱ-complete non-triangular metric space and $T: X \rightarrow X$ be a \mathcal{M}-continuous mapping. If there exists $k \in[0,1)$ such that T satisfies

$$
\varrho(T x, T y) \leq k \max \{\varrho(x, y), \varrho(x, T x), \varrho(y, T y), \varrho(x, T y), \varrho(y, T x)\}
$$

for all $x, y \in X$ and $\delta_{1}\left(T, x_{0}\right)<\infty$ for some $x_{0} \in X$, then T has a fixed point w in X.
Proof. It suffices to consider $\Theta(t, s, z, w)=\max \{z, w\}$ and then apply Theorem 2.2.
Example 2.7. Let $X=\left[0, \frac{1}{2}\right] \cup\left[\frac{2}{3}, 1\right]$ be endowed with the Euclidean metric. Obviously, (X, ρ) is a complete non-triangular metric space, where $\rho(x, y)=|x-y|$ for each $x, y \in X$. Let $T: X \rightarrow X$ be defined by

$$
T x= \begin{cases}0, & 0 \leq x \leq \frac{1}{2} \\ \frac{1}{4}, & \frac{2}{3} \leq x \leq 1\end{cases}
$$

Note that for each $x \in\left[0, \frac{1}{2}\right]$ and for each $y \in\left[\frac{2}{3}, 1\right]$, we have $|T x-T y|=\frac{1}{4}$. Since

$$
\frac{8}{27} \leq \frac{|x-T y|+|y-T x|}{|x-T x|+|y-T y|+1} \leq \frac{15}{17}
$$

thus, if we take $1>\alpha \geq \frac{27}{32}$ (for example, $\alpha=\frac{7}{8}$), we have

$$
|T x-T y| \leq \alpha \frac{|x-T y|+|y-T x|}{|x-T x|+|y-T y|+1} .
$$

Therefore,

$$
|T x-T y| \leq \alpha \max \left\{|x-y|,|x-T x|,|y-T y|,\left(\frac{|x-T y|+|y-T x|}{|x-T x|+|y-T y|+1}\right)\right\}
$$

Similar argument holds for the other cases with the same α. It is easy to see that T is \mathcal{M}-continuous and $\delta_{1}(T, 0)<1$. Therefore, T is satisfied in the conditions of Corollary 2.4 and so it has a fixed point in X.

Theorem 2.8. Let (X, ϱ) be a ϱ-complete non-triangular metric space and $T: X \rightarrow X$ be a mapping. Let there exists $\alpha \in\left[0, \frac{1}{2}\right)$ such that

$$
\begin{equation*}
\varrho(T x, T y) \leq \alpha U_{T, \Theta}(x, y) \tag{4}
\end{equation*}
$$

for all $x, y \in X$, where $\Theta: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is a mapping such that $\Theta(t, s, z, w) \leq \max \{z, w\}$ and

$$
U_{T, \Theta}(x, y)=\max \{\varrho(x, y), \varrho(x, T x)+\varrho(y, T y), \Theta(\varrho(x, T x), \varrho(y, T y), \varrho(x, T y), \varrho(y, T x))\}
$$

If $\delta_{1}\left(T, x_{0}\right)<\infty$ for some $x_{0} \in X$, then $\left\{T^{n} x_{0}\right\}$ converges to some $\omega \in X$. Also, if $T \mathcal{M}$-continuous in ω, then ω is a fixed point of T.

Proof. We will use the same technique as the proof of Theorem 2.2. Let $\left\{x_{n}\right\}$ be the Picard sequence based at x_{0}. We show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Note that $0 \leq \delta_{n+1}\left(T, x_{0}\right) \leq \delta_{n}\left(T, x_{0}\right)$. Therefore, $\left\{\delta_{n}\left(T, x_{0}\right)\right\}$ is a monotone bounded sequence and so is convergent. Thus, there exists $\delta \geq 0$ such that $\lim _{n \rightarrow \infty} \delta_{n}\left(T, x_{0}\right)=\delta$. We shall show that $\delta=0$. If $\delta>0$, then by the definition of $\delta_{n}\left(T, x_{0}\right)$ for every $k \in \mathbb{N}$ there exist n_{k}, m_{k} such that $m_{k}>n_{k} \geq k$ and

$$
\begin{equation*}
\delta_{k}\left(T, x_{0}\right)-\frac{1}{k}<\rho\left(T^{m_{k}}\left(x_{0}\right), T^{n_{k}}\left(x_{0}\right)\right) \leq \delta_{k}\left(T, x_{0}\right) \tag{5}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \rho\left(T^{m_{k}}\left(x_{0}\right), T^{n_{k}}\left(x_{0}\right)\right)=\delta \tag{6}
\end{equation*}
$$

Also, we have

$$
\begin{aligned}
\varrho\left(T^{m_{k}}\left(x_{0}\right), T^{n_{k}}\left(x_{0}\right)\right) \leq & \alpha \max \left\{\varrho\left(T^{m_{k}-1}\left(x_{0}\right), T^{n_{k}-1}\left(x_{0}\right)\right), \varrho\left(T^{m_{k}}\left(x_{0}\right),\right.\right. \\
& \left.T^{m_{k}-1}\left(x_{0}\right)\right)+\varrho\left(T^{n_{k}}\left(x_{0}\right), T^{n_{k}-1}\left(x_{0}\right)\right), \\
& \Theta\left(\varrho\left(T^{m_{k}}\left(x_{0}\right), T^{m_{k}-1}\left(x_{0}\right)\right), \varrho\left(T^{n_{k}}\left(x_{0}\right), T^{n_{k}-1}\left(x_{0}\right)\right),\right. \\
& \left.\left.\varrho\left(T^{m_{k}}\left(x_{0}\right), T^{n_{k}-1}\left(x_{0}\right)\right), \varrho\left(T^{m_{k}-1}\left(x_{0}\right), T^{n_{k}}\left(x_{0}\right)\right)\right)\right\} \\
\leq & \alpha \max \left\{2 \delta_{k-1}\left(T, x_{0}\right), \delta_{k}\left(T, x_{0}\right)\right\} \\
= & 2 \alpha \delta_{k-1}\left(T, x_{0}\right) .
\end{aligned}
$$

Taking limit as $k \rightarrow \infty$ we get $\delta \leq 2 \alpha \delta$. Thus, $\alpha \geq \frac{1}{2}$ and this is a contradiction. Therefore, we deduce that $\delta=0$ and so $\left\{x_{n}\right\}$ is a ϱ-Cauchy sequence. Since (X, ϱ) is ϱ-complete, there exists some $\omega \in X$ such that $\left\{x_{n}\right\}$ is ϱ-convergent to ω. Proof that ω is a unique fixed point of T is similar to that in the proof of Theorem 2.2.

From Theorem 2.8 we obtain version of Kannan's result on fixed point (see [33]).
Corollary 2.9. Let (X, ϱ) be a @-complete non-triangular metric space and $T: X \rightarrow X$ be a mapping. Let there exists $\alpha \in\left[0, \frac{1}{2}\right)$ such that

$$
\begin{equation*}
\varrho(T x, T y) \leq \alpha[\varrho(x, T x)+\varrho(y, T y)] \tag{7}
\end{equation*}
$$

for all $x, y \in X$. If $\delta_{1}\left(T, x_{0}\right)<\infty$ for some $x_{0} \in X$, then $\left\{T^{n} \chi_{0}\right\}$ converges to some $\omega \in X$. Also, if T \mathcal{M}-continuous in ω, then ω is a fixed point of T.

3 Some applications in b-metric spaces

The next theorem is known, see for example [32, Theorem 12.2]. We give another proof here.
Theorem 3.1. Let (X, d) be a complete b-metric space with coefficient s and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \lambda d(x, y) \tag{8}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq \lambda<1$. Then T has a unique fixed point x^{\star}, and for every $x_{0} \in X$, the sequence $\left\{T^{n} x_{0}\right\}$ converges to x^{\star}.

Proof. In view of Corollary 2.3 it suffices to prove that

$$
\delta_{1}\left(T, x_{0}\right)=\sup \left\{d\left(T^{i} x_{0}, T^{j} x_{0}\right): i, j \geq 1\right\}<\infty \quad \text { for some } x_{0} \in X
$$

Since for $j>i$ and for each x_{0} we have

$$
d\left(T^{i} x_{0}, T^{j} x_{0}\right) \leq \lambda^{j-i} d\left(x_{0}, T^{j-i} x_{0}\right)<d\left(x_{0}, T^{j-i} x_{0}\right)
$$

so we need to show that there is a constant $C>0$ such that $d\left(x_{0}, T^{n} x_{0}\right) \leq C$ for all $n \in \mathbb{N}$. We know that there exists $n_{0} \in \mathbb{N}$ such that $\lambda^{n_{0}}<\frac{1}{s^{2}}$. Let $x_{0} \in X$ be arbitrary. Define the sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T^{n} x_{0}$ for all $n \geq 0$. Then (8) implies that

$$
\begin{equation*}
d\left(T^{n+n_{0}} \chi_{0}, T^{n} x_{0}\right) \leq \lambda^{n} d\left(T^{n_{0}} \chi_{0}, x_{0}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(T^{n+n_{0}} \chi_{0}, T^{n_{0}} \chi_{0}\right) \leq \lambda^{n_{0}} d\left(T^{n} x_{0}, x_{0}\right) \tag{10}
\end{equation*}
$$

Applying the triangle-type inequality (3) for b-metric space to triples, we have

$$
\begin{aligned}
d\left(x_{0}, T^{n} x_{0}\right) & \leq s\left[d\left(x_{0}, T^{n_{0}} x_{0}\right)+d\left(T^{n_{0}} x_{0}, T^{n} x_{0}\right)\right] \\
& \leq \operatorname{sd}\left(x_{0}, T^{n_{0}} x_{0}\right)+s^{2}\left[d\left(T^{n_{0}} \chi_{0}, T^{n+n_{0}} x_{0}\right)+d\left(T^{n+n_{0}} x_{0}, T^{n} x_{0}\right)\right] \\
& \leq \operatorname{sd}\left(x_{0}, T^{n_{0}} x_{0}\right)+s^{2} \lambda^{n_{0}} d\left(T^{n} x_{0}, x_{0}\right)+s^{2} \lambda^{n} d\left(T^{n_{0}} x_{0}, x_{0}\right)
\end{aligned}
$$

Using (9) and (10) and the fact that $\lambda^{n}<1$, for each $n \in \mathbb{N}$, we obtain

$$
d\left(x_{0}, T^{n} \chi_{0}\right) \leq \frac{\left(s+s^{2} \lambda^{n_{0}}\right) d\left(T^{n_{0}} \chi_{0}, x_{0}\right)}{1-s^{2} \lambda^{n}}=C_{1} .
$$

Hence, we have

$$
d\left(x_{0}, T^{n} x_{0}\right) \leq C=\max \left\{d\left(x_{0}, T x_{0}\right), \ldots, d\left(x_{0}, T^{n-1} x_{0}\right), C_{1}\right\}<\infty
$$

Now, using Corollary 2.3 T has a unique fixed point in X.
From Corollary 2.9, we obtain the following result.
Theorem 3.2. Let (X, d) be a complete b-metric space with coefficient $s \geq 1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \lambda[d(x, T x)+d(y, T y)] \tag{11}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq \lambda<\frac{1}{2}$ and $s \lambda<1$. Then T has a unique fixed point x^{\star}, and for every $x_{0} \in X$, the sequence $\left\{T^{n} X_{0}\right\}$ converges to χ^{\star}.

Proof. Take $\Theta(x, y, z, w)=\frac{z+w}{2}$. Obviously, T is a surrounding quasi-contraction with respect to Θ. In view of Theorem 2.2, it suffices to prove that $\delta_{1}\left(T, x_{0}\right)<1$ for some $x_{0} \in X$. Let $x_{0} \in X$ be arbitrary. Define the sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T^{n} x_{0}$ for all $n \geq 0$. Then (11) implies that

$$
d\left(T^{n+1} x_{0}, T^{n} \chi_{0}\right) \leq \lambda\left[d\left(T^{n} \chi_{0}, T^{n+1} x_{0}\right)+d\left(T^{n-1} x_{0}, T^{n} \chi_{0}\right)\right]
$$

and

$$
d\left(T^{n+1} x_{0}, T^{n} x_{0}\right) \leq \frac{\lambda}{1-\lambda} d\left(T^{n} x_{0}, T^{n-1} x_{0}\right)
$$

so,

$$
\begin{equation*}
d\left(T^{n+1} x_{0}, T^{n} x_{0}\right) \leq\left(\frac{\lambda}{1-\lambda}\right)^{n} d\left(T x_{0}, x_{0}\right) \tag{12}
\end{equation*}
$$

Applying the triangle-type inequality for b-metric space, and from (11) and (12), we have

$$
\begin{aligned}
d\left(x_{0}, T^{n} x_{0}\right) & \leq s\left[d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{n} x_{0}\right)\right] \\
& \leq s\left[d\left(x_{0}, T x_{0}\right)+\lambda\left(d\left(x_{0}, T x_{0}\right)+d\left(T^{n-1} x_{0}, T^{n} x_{0}\right)\right)\right] \\
& \leq s\left[d\left(x_{0}, T x_{0}\right)+\lambda\left(d\left(x_{0}, T x_{0}\right)+\left(\frac{\lambda}{1-\lambda}\right)^{n-1} d\left(x_{0}, T x_{0}\right)\right)\right] \\
& \leq 3 s d\left(x_{0}, T x_{0}\right) .
\end{aligned}
$$

So, we can put

$$
C=3 s d\left(x_{0}, T x_{0}\right)
$$

Now we obtain that χ^{\star} is the unique fixed point of T. Let $n \in \mathbb{N}$ be arbitrary, we have

$$
\begin{aligned}
d\left(x^{\star}, T x^{\star}\right) & \leq s\left[d\left(x^{\star}, x_{n+1}\right)+d\left(x_{n+1}, T x^{\star}\right)\right] \\
& =s\left[d\left(x^{\star}, x_{n+1}\right)+d\left(T x_{n}, T x^{\star}\right)\right] \\
& \leq s\left[d\left(x^{\star}, x_{n+1}\right)+\lambda\left(d\left(x_{n}, x_{n+1}\right)+d\left(x^{\star}, T x^{\star}\right)\right)\right] .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0$ and $\lim _{n \rightarrow \infty} d\left(x^{\star}, x_{n+1}\right)=0$, we have

$$
d\left(x^{\star}, T x^{\star}\right) \leq \lambda s d\left(x^{\star}, T x^{\star}\right) .
$$

Since $\lambda s<1$, then $d\left(x^{\star}, T x^{\star}\right)=0$, i.e., $T x^{\star}=x^{\star}$.
For uniqueness, let y^{\star} be another fixed point of T. Then it follows from (11) that

$$
d\left(x^{\star}, y^{\star}\right)=d\left(T x^{\star}, T y^{\star}\right) \leq \lambda\left(d\left(x^{\star}, T x^{\star}\right)+d\left(y^{\star}, T y^{\star}\right)\right)=0 .
$$

Therefore, we must have $d\left(x^{\star}, y^{\star}\right)=0$, i.e., $x^{\star}=y^{\star}$.

Remark 3.3. Using the technique from the proofs of Theorem 3.1 and Theorem 3.2 we can also get the main result in [22], as well as the main result in [23], also in this way we can also get a whole series of known results in b-metric, rectangular metric and b-rectangular metric spaces.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.
[2] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), no. 2, 458-464, DOI: 10.2307/2035677.
[3] N. Hussain, Z. Kadelburg, S. Radenović, and F. Al-Solamy, Comparison functions and fixed point results in partial metric spaces, Abstr. Appl. Anal. 2012 (2012), 605781, DOI: 10.1155/2012/605781.
[4] N. Hussain, M. A. Kutbi, S. Khaleghizadeh, and P. Salimi, Discussions on recent results for α - ψ-contractive mappings, Abstr. Appl. Anal. 2014 (2014), 456482, DOI: 10.1155/2014/456482.
[5] F. Khojasteh, A. Razani, and S. Moradi, A fixed point of generalized T_{F}-contraction mappings in cone metric spaces, Fixed Point Theory Appl. 2011 (2011), 14, DOI: 10.1186/1687-1812-2011-14.
[6] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 177-188, DOI: 10.1016/0022-247X(89)90214-X.
[7] B. E. Rhoades, A comparison of various definitions of contractive mappings, Tran. Amer. Math. Soc. 226 (1977), $257-290$.
[8] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), no. 4, 2683-2693, DOI: 10.1016/ S0362-546X(01)00388-1.
[9] W.-Sh. Du and F. Khojasteh, New results and generalizations for approximate fixed point property and their applications, Abstr. Appl. Anal. 2014 (2014), 581267, DOI: 10.1155/2014/581267.
[10] F. Khojasteh, W.-Sh. Du, and Y. N. Chiu, Some generalizations of Mizoguchi-Takahashi's fixed point theorem with new local constraints, Fixed Point Theory Appl. 2014 (2014), 32, DOI: 10.1186/1687-1812-2014-31.
[11] M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015 (2015), 61, DOI: 10.1186/s13663-015-0312-7.
[12] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
[13] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), no. 1, 5-11.
[14] S. Aleksić, H. Huang, Z. D. Mitrović, and S. Radenović, Remarks on some fixed point results in b-metric spaces, J. Fixed Point Theory Appl. 20 (2018), 147, DOI: 10.1007/s11784-018-0626-2.
[15] M. Boriceanu, M. Bota, and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2010), 367-377, DOI: 10.2478/s11533-010-0009-4.
[16] M. Bota, A. Molnar, and C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory 12 (2011), no. 2, 21-28.
[17] N. Hussain and Z. D. Mitrović, On multi-valued weak quasi-contractions in b-metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 3815-3823, DOI: 10.22436/jnsa.010.07.35.
[18] N. Hussain, Z. D. Mitrović, and S. Radenović, A common fixed point theorem of Fisher in b-metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 949-956, DOI: 10.1007/s13398-018-0524-x.
[19] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Berlin, 2014, pp. 113-131.
[20] Z. D. Mitrović, A note on the results of Suzuki, Miculescu and Mihai, J. Fixed Point Theory Appl. 21 (2019), 24, DOI: 10.1007/s11784-019-0663-5.
[21] Z. D. Mitrović and N. Hussain, On weak quasicontractions in b-metric spaces, Publ. Math. Debrecen Ref. No. 8260, (2019), 1-10, DOI: 10.5486/PMD.2019.8260.
[22] Z. D. Mitrović and S. Radenović, The Banach and Reich contractions in $b_{v}(s)$-metric spaces, J. Fixed Point Theory Appl. 19 (2017), 3087-3095, DOI: 10.1007/s11784-017-0469-2.
[23] Z. D. Mitrović, On an open problem in rectangular b-metric space, J. Anal. 25 (2017), 135-137, DOI: 10.1007/s41478-017-0036-7.
[24] Z. D. Mitrović, A note on a Banach's fixed point theorem in b-rectangular metric space and b-metric space, Math. Slovaca 68 (2018), no. 5, 1113-1116, DOI: $10.1515 / \mathrm{ms}-2017-0172$.
[25] U. Aksoy, E. Karapinar, and I. M. Erhan, Fixed points of generalized alpha-admissible contractions on b-metric spaces with an application to boundary value problems, J. Nonlinear Convex Anal. 17 (2016), no. 6, 1095-1108.
[26] H. Alsulami, S. Gulyaz, E. Karapinar, and I. Erhan, An Ulam stability result on quasi-b-metric-like spaces, Open Math. 14 (2016), 1087-1103, DOI: 10.1515/math-2016-0097.
[27] H. Aydi, M.-F. Bota, E. Karapinar, and S. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory 13 (2012), no. 2, 337-346.
[28] M.-F. Bota, E. Karapinar, and O. Mlesnite, Ulam-Hyers stability results for fixed point problems via alpha-psi-contractive mapping in b-metric space, Abstract Appl. Anal. 2013 (2013), 825293, DOI: 10.1155/2013/825293.
[29] M.-F. Bota and E. Karapinar, A note on "Some results on multi-valued weakly Jungck mappings in b-metric space", Cent. Eur. J. Math. 11 (2013), no. 9, 1711-1712, DOI: 10.2478/s11533-013-0272-2.
[30] M. Bota, C. Chifu, and E. Karapinar, Fixed point theorems for generalized $(\alpha-\psi)$-Ćirić-type contractive multivalued operators in b-metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 1165-1177.
[31] Selma Gulyaz Ozyurt, On some alpha-admissible contraction mappings on Branciari b-metric spaces, Advances Theory Nonlinear Anal. Appl. 1 (2017), no. 1, 1-13, DOI: 10.31197.318445.
[32] F. Khojasteh and H. Khandani, Scrutiny of some fixed point results by S-operators without triangular inequality, Math. Slovaca 70 (2020), no. 2, 467-476, DOI: 10.1515/ms-2017-0364.
[33] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.

[^0]: * Corresponding author: Zoran D. Mitrović, Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000, Banja Luka, Bosnia and Herzegovina, e-mail: zoran.mitrovic@etf.unibl.org
 Erdal Karapinar: Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam; Department of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkey; Department of Medical Research, China Medical University Hospital, China Medical University, 40402, Taichung, Taiwan, e-mail: erdalkarapinar@tdmu.edu.vn, erdalkarapinar@yahoo.com
 Farshid Khojasteh: Young Researcher and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran, e-mail: fr_khojasteh@yahoo.com
 Vladimir Rakočević: Faculty of Sciences and Mathematics, Department of Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia, e-mail: vrakoc@sbb.rs

