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1. Introduction  

The studies on the fractional calculus during the last few decades have gained importance in 

many areas [1–4]. Besides, fractional derivatives are important for the definition of recollection and 

hereditary features of different necessities and behaviour. This is the advantage of fractional 

differential equations in reappear well-known integer order problems. 

Recently, some scientists have been interested in improving new definition of fractional 
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derivative. These derivative definitions change from Riemann-Liouville derivative to the 

Caputo-Fabrizio derivative introduced by Caputo and Fabrizio [5–13]. They are claimed that the new 

derivative has interesting properties than the former derivatives. Their derivative does not run into a 

any singularity, thus a new fractional order derivative without a singular kernel can efficiently 

describe the effect of memory and also able to portray material heterogeneities and structures in 

different cases, which are physically symbolized by distinction or variation of the average. 

In this paper, we apply the LHAM to find analytical approximated solution for fractional 

Fokker-Planck equations using in case of every two fractional operators. LHAM is a combining of 

the homotopy analysis method projected by Liao and the Laplace transform [14,15]. Some writers 

have projected various systems for fractional partial differential equations with every two fractional 

operators. In [16], Dehghan practised the HAM to solve fractional partial differential equations with 

in case of Liouville-Caputo. In [17], is studied a fractional differential equation with a changeble 

coefficient. Jafari in [18] applied the HAM in order to solve the high orderly fractional differential 

equation analized by Diethelmand Ford [19]. In [20], is produced a mathematical analysis of an 

example studied the Caputo-Fabrizio fractional derivative, where analytical and calculation advances 

are finded. Morales-Delgado et al. [21] presented LHAM to supply a new solutions in case of every 

two fractional operators. 

The aim in this work is to establish approximate solutions of the fractional model of 

Fokker-Planck equations (FPEs) with space-time fractional derivatives as follows [22]: 

 1.,<0,0>,),,,(),,(=),( 2   tRxvtxDvtxDtxvD xxt  (1.1) 

with the initial state )(=,0)( xhxv . 

),,( vtx  and ),,( vtx  are drift and diffusion coefficients,   and   are parameters that 

definite the order of time-space fractional derivatives, severally. For 1= , 1= , Eq. (1.1) is a 

classical FPE. These equations are used in the pattern of divergent diffusion techniques. In [22], 

q-homotopy analysis transform method is used to obtain analytical solutions for Eqs. (1.1), stochastic 

expression and computer model of fractional FPE representing divergent diffusion is analysed in [23] 

and in [24,25] approximated solutions are obtained by using Monte Carlo technique, exact solutions 

for fractional FPE has been determined by using various methods, for example Laplace transform 

method [26], Homotopy perturbation method (HPM) [27], Homotopy perturbation transform method 

(HPTM) [28], Adomian decomposition method (ADM) [29], Finite element method [30] and 

Residual power series method [31] and more [32–34]. But fractional Fokker-Planck equation has not 

been analysed via LHAM. 

In the section 2 of this article, some basic definitions related to in case of every two fractional 

operators. In section 3, LHAM is applied to obtain the solution of the fractional FPEs and some 

tables and graphical outcomes are contained to show the reliability and efficiency of the technique. 

Finally, in section 4, consequences are introduced. 

2. Materials and method 

We first represent the main definitions and several properties of the fractional calculus theory [2] 

in this part. 

Definition 2.1. The Riemann--Liouville fractional integral operator of order 0)(   is defined as 
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Definition 2.2. The Caputo fractional derivatives of order   is defined as 
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where mD  is the classical differential operator of order m . 

For the Caputo derivative we have 
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(2.3) 

The efficacy of this definition is confined to functions v  such that )(mv ).,(1 baL  

If )(mv )(1

 RL  and if )()( tv m
 is of exponential order mv , with 0>mv , 10,1,2,...,=  nm , 

the form advised in the sources [11] as follows, 
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for ,>)( lzRe 1}.0,1,2,...,=:{max= nmvl m  

Then, 
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Therefore,in Eq. (2.2) if transformations happen as follows; 
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fractional operator is expressed by Caputo and Fabrizio [5,8]; 

Definition 2.3. Let ),(1 baHv , the new fractional Caputo derivative is defined as;  

 
 

(0,1],>

,]
1

[exp)(
1

)()(2
=)(

0

)(

0






















ab

dz
zt

zv
M

tvD

t

n

t

CF

 

(2.5) 

)(M  is a standardization function that 1=(1)=(0) MM  [5]. Then equation (2.5) does not have 

singularities at .= zt  

But, if ),(1 baHv , equation (2.5) can be rewrited as; 
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(2.6) 
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Definition 2.4. The fractional integral of order   of v  is defined by 
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(2.7) 

where 1.<<0   

Remark [6]. According to the definition 2.4, the fractional integral of Caputo type of function of 

order 1<<0   is an medial between function v  and its integral of order one. 

Thus, 
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(2.8) 

Theorem 1.(see [5,6] for proof) If the function )(zv  as 

 niavi 1,2,...,=0,=)(  

in the new fractional Caputo derivative, we write  
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Definition 2.5. After above definition (2.3), if (0,1]  and Nn , we can define the Laplace 

transform in case of C-F [5,8]: 
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(2.9) 

From equation (2.9), 
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(2.11) 

3. Laplace homotopy analysis method for fractional differential equation 
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where ],0,[0,1][),( Ttx


 ,<1 nn    
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(3.3) 

then, 
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where L[ ),,(=))](,( zxztxv   therefore 
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(3.5) 

Then, we can write, 
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where )],,([=),( txvLzx )],,([=),(~ txLzx   and  

 0.)],(=)(1,)],(=)(0, 10  ztztz   

We can obtain the solution of equation (3.6) as follows, 
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substituting (3.7) into (3.6), we obtain 
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from the coefficients of powers of p , 

 

),,()]()()([
1

=),(:

),,()]()()([
1

=),(:

),,()]()()([
1

=),(:

),(~
)](...)()([

1
=),(:

2

2

1

1

12

2

2

2

02

2

1

1

11

2

0

1

0

0

zxx
x

x
x

x
z

zxp

zxx
x

x
x

x
z

zxp

zxx
x

x
x

x
z

zxp

z

zx
xvxvzxvz

z
zxp

nn

n

n

nn

n






























































   

(3.9) 



241 

AIMS Mathematics  Volume 5, Issue 1, 236–248. 

and when 1p , equation (3.9) gives the approximate solution of (3.5) and (3.6), and as follows, 
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in case of the Caputo-Fabrizio fractional derivative, we can write 
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where ),,(=))](,([ zxztxvL   then equation (3.14), 
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Then, we can construct the following homotopy for the above equation: 

 

,),(~))(1(
)](...)()([

1

),()]()()([
))(1(

=),(

11

1

01

2

2

1

zx
z

zz
xvxvzxvz

z

zxx
x

x
x

x
z

zz
pzx

nn

nn

n

n





























 

(3.17) 
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Eq. (3.18) is the solution of eq. (3.17). 
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Substituting eq.(3.18) into (3.17), we obtain, 
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and when 1z , equation (3.19) yields the approximate solution of (3.16) and (3.17),  
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if we apply the inverse of the Laplace transform for (3.20), we find solution of Eq. (3.12), 
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4. Examples 

In this part, some examples are solved using every two fractional operators in order to 

demonstrate the effectiveness of the LHAM, in addition the convergence and stability of the method 

are discussed. 

Case 1. 

We think that the linear time-fractional FPE in the Liouville-Caputo sense as follows: 
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The exact solution for (4.1) for 1=  is 
txetxv =),(  [22]. 

Now, using the LHAM, we have 
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the approximate solution is 
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and, when n , 
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For 1,=  

 .=),( txetxv  

This solution is the same as exact solution for (4.1) equation. 
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Case 2. 

We think that the linear time-fractional FPE in case of the Caputo-Fabrizio as follows: 
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by the initial condition 

 .=,0)( xxv  (4.8) 
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and, when n , 
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For 1,=  
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Figure 1. 3D and 2D graphics for Eq. (4.1) (a) ),( txvLHAM
 approximate solution in case 

of the Liouville-Caputo (b) Exact solution, (c) Absolute error 10).=(n  

  

Figure 2. 3D and 2D graphics for Eq. (4.7) (a) ),( txvLHAM
 approximate solution in case 

of the Caputo-Fabrizio (b) Exact solution, (c) Absolute error 10).=(n  

In Figures 1 and 2, we drawn 3D and 2D graphics of exact solution, absolute error and 

approximate solution for .1=  ),( txvLHAM
 approximate solution obtained in ten iterations. We 

consider that better results can be achieved if the number of iterations is increased. 

Table 1. Comparison among approximate solutions ,LHAMv ,RPSMv ,HATMqv  ,HPTMv Exactv  

( 0.01=t ) for Eq. (4.7) in case of the Caputo-Fabrizio. 

  α = 1    

x vLHAM vRPSM vq-HATM vHPTM vExact 

0.25 0.250013 0.2525125417 0.2525125417 0.2525125417 0.2525125418 

0.5 0.500025 0.5050250833 0.5050250833 0.5050250833 0.5050250835 

0.75 0.750038 0.7575376250 0.7575376250 0.7575376250 0.7575376252 

1 1.00005 1.010050167 1.010050167 1.010050167 1.010050167 

 

a b c

-4
10

-2

5 10

0

10
11

u
n
(x

,t
)

5

t

2

0

x

0
-5

-5
-10 -10

-5 0 5

t

0

5

10

u
n
(x

,t
)

10
6

-4
10

-2

5 10
u

(x
,t

)

10
5

0

5

t

0

x

2

0
-5

-5
-10 -10

-5 0 5

t

0

10

20

u
(x

,t
)

0
10

1

5 10

10
11

E
rr

o
r 2

5

t

0

3

x

0
-5

-5
-10 -10

-5 0 5

t

0

5

10

E
rr

o
r

10
6

a b c

-2

10

-1

5 10

u
n
(x

,t
)

10
36

0

5

t

0

x

1

0
-5 -5

-10 -10

-5 0 5

t

0

5

10

u
n
(x

,t
)

10
27

-2

10

-1

5 10

u
(x

,t
)

105

0

5

t

0

x

1

0
-5

-5
-10 -10

-5 0 5

t

0

5

10

u
(x

,t
)

0

10

2

4

5 10

E
rr

o
r

10
35

6

5

t

8

0

x

10

0
-5

-5
-10 -10

-5 0 5

t

0

5

10

E
rr

o
r

1027



246 

AIMS Mathematics  Volume 5, Issue 1, 236–248. 

In Table 1, we organize table of series solutions ),( txvk  for 10.=k  Comparison among 

numerical solutions with admitted consequences is made.These results found by using Laplace 

homotopy analysis method, residual power series method [31], q-homotopy analysis transform 

method [22] and homotopy perturbation transform method [28]. 

Table 2. Comparison between approximate solution 
LHAMv  and exact solution for 

Eq.(4.7) ) in case of the Caputo-Fabrizio ( 0.05=x ). 

  α = 1  

t vLHAM vExact |vExact–vLHAM| 

0.01 0.0500025 0.0505025 4.9502 × 10–3 

0.05 0.0500625 0.0525636 2.5011 × 10–3 

0.1 0.0502502 0.0552585 5.0083 × 10–3 

0.15 0.0505636 0.0580917 7.5281 × 10–3 

0.2 0.0510033 0.0610701 1.0066 × 10–3 

In Table 2, we made comparison among exact and series solutions ),( txvk  for 10.=k  We 

obtained approximate solution 
LHAMv  in case of the Caputo-Fabrizio. 

5. Conclusion 

In this study the LHAM has utilized in order to find approximate analytical solution of 

time-fractional Fokker-Planck equation in case of the Liouville-Caputo and the Caputo-Fabrizio. We 

have compared the approximate solutions received in the sight of LHAM with those outcomes 

received from the exact analytical solutions. This operation indicates an accurate understanding 

between the LHAM and exact outcomes. It is clear that the LHAM gives correct and convergent 

series solutions applying only a few iterates in every two fractional derivative. Because the Laplace 

transform permits one in many positions to get over the deficiency chiefly produced by unsatisfied 

boundary or initial conditions, the LHAM is a strong method that requires inferior calculation time 

and this method is much useful than the HPM. 
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