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Abstract
In this paper, a novel coronavirus (2019-nCov) mathematical model with modified
parameters is presented. This model consists of six nonlinear fractional order
differential equations. Optimal control of the suggested model is the main objective
of this work. Two control variables are presented in this model to minimize the
population number of infected and asymptotically infected people. Necessary
optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted
average finite difference method is constructed for simulating the proposed optimal
control system. The stability of the proposed method is proved. In order to validate
the theoretical results, numerical simulations and comparative studies are given.
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1 Introduction
The well-known coronavirus disease (COVID-19) pandemic can be consider as one of
the serious pandemic diseases all over the world, for more details, see [1, 2]. The spread
of this disease has serious impact on human society and health. The modeling study of
infectious diseases is very useful in making strategies to control this disease. Recently,
many interesting papers on modeling the coronavirus have appeared, see for example
[3–7].

In general, mathematical models involving the known ordinary differentiation could be
used to capture dynamical systems of infectious disease, when only initial conditions are
used to predict future behaviors of the spread. However, when the situation is unpre-
dictable, which is the case of COVID-19, due to uncertainties associated with the pan-
demic, ordinal derivatives and their associated integral operators show deficiency. The
fractional order differential equation (FODE) models seem more consistent with the real
phenomena than the integer order models [8–13].

Moreover, one of the new topics in mathematics is the fractional optimal control (FOC).
FOC can be defined using a variety of fractional derivative definitions. Riemann–Liouville
and Caputo fractional derivatives [14–18] can be considered the most important fractional
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derivative definitions. Sweilam and Al-Mekhlafi introduced some numerical studies for
FOC, for more details, see [19–21].

The main contribution of this work is to develop a numerical scheme to provide ap-
proximate solutions for the fractional optimal control problems (FOCPs). We consider
the mathematical model in [4] with modified parameters. The fractional order derivatives
are defined here in the Caputo sense. Moreover, we introduce two control variables, up(t)
and uap(t), in order to minimize the number of the infected and the asymptotically in-
fected. The Grünwald–Letnikov nonstandard weighted average finite difference method
(GL-NWAFDM) is established to simulate the obtained fractional order system.

To the best of our knowledge, the fractional optimal control for coronavirus (2019-
nCoV) mathematical model with GL-NWAFDM has never been explored.

This paper is organized as follows: The basic mathematical formulas are introduced in
Sect. 2. The proposed model with FO and two controls is presented in Sect. 3. In Sect. 4,
the formulation of the optimal control problem and the necessary optimality conditions
are derived. In Sect. 5, the new numerical method GL-NWAFDM and the stability analysis
are introduced. Numerical simulations are discussed in Sect. 6. Finally, the conclusions are
presented in Sect. 7.

2 Preliminaries and notations
In this section, we recall some important definitions of fractional calculus used throughout
the remaining sections of this paper. The fractional order derivative in the Caputo sense
can be defined as follows [22]:

c
aDα

t f (t) =
1

�(n – α)

∫ t

a
(t – τ )n–α–1f (n) dτ ,

where � is the Euler gamma function and 0 < α < 1.
The discretization fractional derivative is given by the Grünwald–Letnikov approach

[23]:

C
a Dα

t y(t) |t=tn =
1

�tα

(
yn+1 –

n+1∑
i=1

μiyn+1–i – qn+1y0

)
, (1)

where Nn is a natural number and the coordinate of each mesh point is tn = n�t, n =
1, 2, . . . , Nn, �t = Tf

Nn
, μi = (–1)i–1( α

i
)
, μ1 = α, qi = iα

�(1–α) , and i = 1, 2, . . . , n + 1. Additionally,
let us assume that [24]

0 < μi+1 < μi < · · · < μ1 = α < 1,

0 < qi+1 < qi < · · · < q1 =
1

�(1 – α)
.

3 Fractional order model of coronavirus with control
Herein, we consider the new mathematical model of coronavirus given in [4] with modi-
fied parameters. Two controls, up, uap, are added to health care such as isolating patients
in private health rooms and providing respirators and giving them treatments soothing
regularly. This model consists of six nonlinear ordinary differential equations. Moreover,



Sweilam et al. Advances in Difference Equations        (2020) 2020:528 Page 3 of 13

Table 1 The variables of system (2) [4]

Variable Description

Sp Susceptible humans
Ep Exposed humans
Ip Infectious humans
Ap Asymptotically infected
Rp Recovered humans
M The reservoir or the seafood place or market
Np The total population

Np = Sp + Ep + Ip + Rp

Table 2 The parameter values for COVID model [4]

Parameter Description Value (per dayα )

πα
p Birth rate (μp × Np(0))α

μα
p Natural mortality rate ( 1

76.79×365 )
α

ηα
p Contact rate (0.05)α

ψα Transmissibility multiple (0.02)α

ηα
w Disease transmission coefficient (0.000001231)α

θα
p The proportion of asymptomatic infection (0.1243)α

wα
p Incubation period (0.00047876)α

ρα
p Incubation period (0.005)α

τα
p Recovery rate of Ip (0.09871)α

τα
ap Recovery rate of Ap (0.854302)α


α M-virus contribution by Ip (0.000398)α

�α
p M-virus contribution by Ap (0.001)α

πα Virus removing rate fromM (0.01)α

Table 1 describes the state variables and Table 2 describes the parameters. It is important
to notice that the parameters depend on the fractional order α. To make the system con-
sistent in the physical sense and more consistent with the reality, we must make sure that
the right-hand sides of these equations have the same dimensions, for more details, see
[15]. Let us assume that Np is a constant. The modified model is then represented by a
system of fractional order differential equations:

C
a Dα

t Sp = πα
p – μα

p Sp –
ηα

p (Ip + ψαAp)
Np

– ηα
wSpM,

C
a Dα

t Ep =
ηα

p (Ip + ψαAp)
Np

+ ηα
wSpM – (1 – θp)wα

p Ep – θα
p ρα

p Ep,

C
a Dα

t Ip =
(
1 – θα

p
)
wα

p Ep –
(
τα

p + ε1up + μα
p
)
Ip,

C
a Dα

t Ap = θα
p ρα

p Ep –
(
τα

ap + ε2uap + μα
p
)
Ap,

C
a Dα

t Rp = τα
p Ip + ε1upIp + τα

apAp + ε2uapAp – μα
p Rp,

C
a Dα

t M = 
α
p Ip + �α

p Ap – παM. (2)

The existence and uniqueness of the solutions of (2) follow from the results given in [25].
The feasible region for model (2) is given by

 =
{

Sp, Ip, Ep, Rp, Ap ∈R
5 : Np(t) ≤ πα

p

μα
p

, M ∈ R
+
}

.
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The basic reproduction number of the proposed model (2) is given as follows [4]:

R0 = R1 + R2, (3)

where

R1 =
θα

p ρα
p (πα�α

p ηα
p μα

p + πα
p ψα

p ηα
w)

παμα
p (τα

ap + μα
p )(θα

p ρα
p + (1 – θα

p )wα
p + μα

p )
,

R2 =
(1 – θα

p )wα
p (παηα

p μα
p + πα

p 
α
p ηα

w)
παμp(τα

ap + μα
p )(θα

p ρα
p + (1 – θp)wα

p + μα
p )

.

The endemic threshold is given at R0 = 1, the disease will die out when R0 < 1, and the
endemic case when R0 < 1, for more details, see [26]. In this work we consider R0 > 1.

4 The FOCPs
Consider system (2) in R

6, let

U =
{(

up(·), uap(·)) | up, uap are Lebsegue measurable on [0, 1],

0 ≤ up(·), uap(·) ≤ 1,∀t ∈ [0, Tf ]
}

be the admissible control set. We define the objective functional as follows:

J(up, uap) =
∫ Tf

0

(
Ip(t) + Ap(t) +

B1

2
up(t) +

B2

2
uap(t)

)
dt. (4)

Now, the goal is to evaluate up, uap such that the following functional

J(up, uap) =
∫ Tf

0
η(Sp, Ep, Ip, Ap, Rp, M, up, uap, t) dt (5)

is minimum, subject to the constraints

C
a Dα

t �j = ξi, (6)

where

ξi = ξi(Sp, Ep, Ip, Ap, Rp, M, up, uap, t), i = 1, . . . , 6,

�j = {Sp, Ep, Ip, Ap, Rp, M j = 1, . . . , 6},

and satisfying the initial conditions

�1(0) = Sp0, �2(0) = Ep0, �3(0) = Ip0,

�4(0) = Ap0, �5(0) = Rp0, �6(0) = M0.

We use a kind of Pontryagin maximum principle in the fractional order case, this idea
in fraction is given by Agrawal in [18].
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Consider a modified cost functional as follows [19]:

J̃ =
∫ Tf

0

[
H(Sp, Ep, Ip, Ap, Rp, M, up, uap, t)

–
6∑

i=1

λiξi(Sp, Ep, Ip, Ap, Rp, M, up, uap, t)

]
dt. (7)

The Hamiltonian is defined as follows:

H(Sp, Ep, Ip, Ap, Rp, M, up, uap, t)

= η(Sp, Ep, Ip, Ap, Rp, M, up, uap,λi, t)

+
6∑

i=1

λiξi(Sp, Ep, Ip, Ap, Rp, M, up, uap, t). (8)

From (7) and (8), we have the FOPC necessary conditions:

C
t Dα

tf
λι =

∂H
∂ϑι

, ι = 1, . . . , 6, (9)

where

ϑι = {Sp, Ep, Ip, Ap, Rp, M, up, uap, t, ι = 1, . . . , 6},

0 =
∂H
∂uk

, k = p, ap, (10)

C
0 Dα

t ϑι =
∂H
∂λκ

, ι = 1, . . . , 6. (11)

Moreover,

λι(Tf ) = 0, ι = 1, 2, 3, . . . , 6. (12)

Remark 1 Under some additional assumptions on the objective functional J and the right-
hand side of equation (6) must be added, for example, the convexity of J and the linearity
of ξ in �j and up, uap, then the necessary conditions of optimality are also sufficient, for
more details, see [27].

Theorem 4.1 There exist optimal control variables u∗
p, u∗

ap with the corresponding solu-
tions S∗

p , E∗
p , I∗

p , A∗
p, R∗

p, M∗ that minimize J(up, uap) over . Furthermore, there exist adjoint
variables λi, i = 1, 2, 3, . . . , 6, satisfy the following:

(i) Adjoint equations:

C
t Dα

tf
λ1 =

(
–μα

p –
ηα

p I∗
p

Np
– ηα

wM
)

λ1 +
(

ηα
p I∗

p

Np
+ ηα

wM∗
)

λ2,

C
t Dα

tf
λ2 = –

((
1 – θα

p
)
wα

p + θα
p ρα

p – μα
p
)
λ2 +

((
1 – θα

p
)
wα

p
)
λ3 + θα

p ρα
p λ4,

C
t Dα

tf
λ3 = 1 –

ηα
p S∗

p

Np
λ1 + λ2

ηα
p S∗

p

Np
– λ3

(
τα

p + μα
p + ε1u∗

p
)

+ λ5
(
τα

p + ε1u∗
p
)

+ λ6

α
p ,
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C
t Dα

tf
λ4 = 1 –

ηpψ
αS∗

p

Np
λ2 – λ4

(
τα

p + μα
p + ε2u∗

ap
)

+ λ5
(
τα

ap + ε2u∗
ap

)
+ λ6


α
p ,

C
t Dα

tf
λ5 = –μα

p R∗λ5,

C
t Dα

tf
λ6 = –ηα

wS∗
pλ1 + λ2ηα

wS∗
p – παλ6. (13)

(ii) The transversality conditions:

λι(Tf ) = 0, ι = 1, 2, . . . , 6. (14)

(iii) Optimality conditions:

H(Sp, Ep, Ip, Ap, Rp, M, up, uap,λ, t)

= min
0≤up ,uap≤1

H(Sp, Ep, Ip, Ap, Rp, M, up, uap,λ, t). (15)

Moreover,

u∗
p = min

{
1, max

{
0,

ε1I∗
p (λ3 – λ5)

B1

}}
, (16)

u∗
ap = min

{
1, max

{
0,

ε2A∗
p(λ4 – λ5)

B2

}}
. (17)

Proof Equations (13) can be obtained from (9), where

H∗ = λC
1 aDα

t S∗
p + λC

2 aDα
t E∗

p + λC
3 aDα

t I∗
p

+ λC
4 aDα

t A∗
p + λC

5 aDα
t R∗

p + λC
6 aDα

t M∗

+ I∗
p (t) + A∗

p(t) +
B1

2
u∗

p(t) +
B2

2
u∗

ap(t) (18)

is the Hamiltonian. The transversality conditions λκ (Tf ) = 0, κ = 1, . . . , 6, hold. Using (15),
we can claim Equations (16)–(17).

Now, the state system can be claimed:

C
a Dα

t S∗
p = πα

p – μα
p S∗

p –
ηα

p (I∗
p + ψαA∗

p)
Np

– ηα
wS∗

pM∗,

C
a Dα

t E∗
p =

ηα
p (I∗

p + ψαA∗
p)

Np
+ ηα

wS∗
pM∗ –

(
1 – θα

p
)
wpE∗

p – θα
p ρα

p E∗
p ,

C
a Dα

t I∗
p =

(
1 – θα

p
)
wα

p E∗
p –

(
τα

p + ε1u∗
p + μα

p
)
I∗

p ,

C
a Dα

t A∗
p = θα

p ρα
p E∗

p –
(
τα

ap + ε2u∗
ap + μα

p
)
A∗

p,

C
a Dα

t R∗
p = τα

p I∗
p + ε1u∗

pI∗
p + τα

apA∗
p + ε2u∗

apA∗
p – μα

p R∗
p,

C
a Dα

t M∗ = 
α
p I∗

p + �α
p A∗

p – παM∗. (19)
�
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5 Numerical methods for solving FOCPs
5.1 GL-NWAFDM
In this section, we construct a novel numerical method called GL-NWAFDM as an ex-
tension to the method given in [24, 28]. This method can be an explicit method (easy for
coding) or an implicit method (more stable and efficient), depending on the weight fac-
tor � ∈ [0, 1]. To approximate the solutions of system (19) using GL-NWAFDM, we first
discretize the Caputo fractional operator (1) with replacing �(t) by ϕ(�t), where

ϕ(�t) = �(t) + O
(�(t)2), 0 < ϕ(�t) < 1,�(t) −→ 0.

Then the discretization for system (19), where n = 0, 1, 2, 3, . . . , N , using GL-NWAFDM
can be written as follows:

Sn+1
p

∗ –
n+1∑
i=1

μiSn+1–i
p

∗ – qn+1S0
p
∗

= �ϕ(�t)α
(

πα
p – μα

p Sn+1
p

∗ –
ηα

p (In+1
p

∗ + ψαAn+1
p

∗)
Np

– ηα
wSn+1

p
∗Mn+1∗

)

+ (1 – �)ϕ(�t)α
(

πα
p – μα

p Sn
p
∗ –

ηα
p (Ixn

p
∗ + ψαAn

p
∗)

Np
– ηα

wSn
p
∗Mn∗

)
,

En+1
p

∗ –
n+1∑
i=1

μiEn+1–i
p

∗ – qn+1E0
p
∗

= �ϕ(�t)α
(

ηα
p (In+1

p
∗ + ψαAn+1

p
∗)

Np
+ ηα

wSn+1
p

∗Mn+1∗

–
(
1 – θα

p
)
wα

p En+1
p

∗ – θα
p ρα

p En+1
p

∗
)

+ (1 – �)ϕ(�t)α
(

ηα
p (In

p
∗ + ψαAn

p
∗)

Np
+ ηα

wSn
p
∗Mn∗ – (1 – θp)wα

p En
p
∗ – θα

p ρα
p En

p
∗
)

,

In+1
p

∗ –
n+1∑
i=1

μiIn+1–i
p

∗ – qn+1I0
p
∗

= �ϕ(�t)α
((

1 – θα
p
)
wα

p En+1
p

∗ –
(
τα

p + ε1un+1
p

∗ + μα
p
)
In+1

p
∗)

+ (1 – �)ϕ(�t)α
((

1 – θα
p
)
wα

p En
p
∗ –

(
τα

p + ε1un
p
∗ + μα

p
)
In

p
∗),

An+1
p

∗ –
n+1∑
i=1

μiAn+1–i
p

∗ – qn+1A0
p
∗

= �ϕ(�t)α
(

ηα
p (In+1

p
∗ + ψαAn+1

p
∗)

Np
+ ηα

wSn+1
p

∗Mn+1∗

–
(
1 – θα

p
)
wα

p En+1
p

∗ – θα
p ρα

p En+1
p

∗
)

+ (1 – �)ϕ(�t)α
(

ηα
p (In

p
∗ + ψαAn

p
∗)

Np
+ ηwSn

p
∗Mn∗ – (1 – θp)wα

p En
p
∗ – θpρ

α
p En

p
∗
)

,

Rn+1
p

∗ –
n+1∑
i=1

μiRn+1–i
p

∗ – qn+1R0
p
∗

= �ϕ(�t)α
(
τα

p In+1
p

∗ + ε1un+1
p

∗In+1
p

∗ + τα
apAn+1

p
∗ + ε2un+1

ap
∗An+1

p
∗ – μα

p Rn+1
p

∗)
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+ (1 – �)ϕ(�t)α
(
τα

p In
p

∗ + ε1un
p
∗In

p
∗ + τα

apAn
p
∗ + ε2un

ap
∗An

p
∗ – μα

p Rn
p
∗),

Mn+1∗ –
n+1∑
i=1

μiMn+1–i∗ – qn+1M0∗ = �ϕ(�t)α
(

α

p In+1
p

∗ + �α
p An+1

p
∗ – παMn+∗)

+ (1 – �)ϕ(�t)α
(

α

p In+1
p

∗ + �α
p An

p
∗ – πα

)
. (20)

This system is a nonlinear algebraic system of (6N + 6) equation of (6N + 6) unknown
(S∗

p, E∗
p , I∗

p , A∗
p, R∗

p, M∗), that can be solved using an appropriate iterative method depend-
ing on the supposed initial conditions. We notice that this scheme is explicit for � = 0,
partially implicit for 0 < � < 1, and fully implicit when � = 1.

5.2 Stability of GL-NWAFDM
In the following we show that the GL-NWAFDM in case 0 < � ≤ 1 (implicit case) is un-
conditionally stable. In order to investigate the stability of the proposed method when
(� �= 0), consider the model test problem of linear fractional differential equation

(c
aDα

t
)
f (t) = Af(t), t > 0, 0 < α ≤ 1, A < 0. (21)

Let f (tn) = fn = ζn be the approximate solution of this equation, then using GL-NWAFDM
with (1) we rewrite equation (21) in the following form:

ζ n+1 –
n+1∑
i=1

μiζ
n+1–i – qn+1ζ

0 = ϕ(�t)α
(
�Aζ n+1 + (1 – �)Aζ n).

Then we have

ζ n+1 =
1

(1 – ϕ(�t)α�A)

( n+1∑
i=1

μiζ
n+1–i + qn+1ζ

0 + (1 – �)ϕ(�t)αAζ n

)
, n ≥ 1,

we have 1
(1–ϕ(�t)α�A) < 1, hence

ζ 1 ≤ ζ 0,

ζ n+1 ≤ ζ n ≤ ζ n–1 · · · ζ 1 ≤ ζ 0.

So the proposed implicit scheme is stable.

6 Numerical simulations
In this section, numerical simulations of the proposed model (19) and (13) with and with-
out optimal control are presented. Gl-NWAFDM is given to obtain the numerical results
of the state equations (19) with the following initial conditions [4]: Sp(0) = 8,065,518,
Ep(0) = 200,000, Ip(0) = 282, Ap(0) = 200, Rp(0) = 0, M(0) = 50,000, and we consider
Np = 8,266,000. Then, by using the implicit finite difference method [21], we solve (13) with
(14) by using different values of 0 < α ≤ 1 with B1 = B2 = 500, ε1 = ε2 = 10, and 0 < � ≤ 1.
In the numerical simulations the time level is chosen in days, it is up to 10,000. The graph-
ical results obtained through these figures demonstrate that in the case without control,
the number of the infected and the asymptotically infected population is increasing, while
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the number of the population is decreasing in the controlled case as we can see in Fig. 1.
This figure demonstrates the effectiveness of two control cases for the proposed model.
Moreover, Table 3 reports the values of the objective functional obtained by the proposed
method with and without controls and � = 1, 0.5. We note that the results obtained in
the case of fully implicit at (� = 1) are better than the results in the case � = 0.5. Also,
the best result of the control case is given at α = 0.8. Figure 2 shows how the behavior of
the solutions in the control case is changing by using different values of α and Tf = 150.
Figure 3 shows the evolution of the approximate solutions for the control variables using
different α. It is noted that the range of the solution remains between zero and one. The
approximate solutions for Sp and M with control case and different values of α are given
in Fig. 4. Figure 5 illustrates the behavior of the approximate solutions of Ep, Ip, Ap, Rp

at different values of α at big time, and it is demonstrated that the proposed method is
unconditionally stable at � = 1. The results are given by using MATLAB (R2015a).

Figure 1 Numerical simulations of Ip , Ap , and Rp at α = 0.98, � = 1 with and without controls

Table 3 GL-NWAFDM results of cost functional without and with controls, Tf = 120 and
φ(�t) = (1 – e–�t) and different �, α

α J(u∗
p ,u

∗
ap) without control J with 2 controls J with 2 controls

� = 1 � = 0.5

1 2.3111× 106 3.3868× 103 3.6001× 103

0.97 2.5948× 106 3.2618× 103 3.6290× 103

0.8 5.4554× 106 2.9671× 103 3.5030× 103

0.7 8.9249× 106 3.3427× 103 5.9119× 103

0.6 2.5717× 107 3.6939× 103 5.0904× 103

0.5 2.1879× 107 3.2873× 103 4.7705× 103
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Figure 2 Numerical simulations at different α , � = 1, B1 = B2 = 500, and ε1 = ε2 = 10 with two controls

Figure 3 Numerical simulations of up , uap at different α , � = 1
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Figure 4 Numerical simulations of Sp , M at different α , � = 1

Figure 5 Numerical simulations of Ep , Ip , Ap , and Rp at different α , � = 1, Tf = 3000, 10,000 with controls

7 Conclusions
In the present work, the optimal control of coronavirus model with fractional operator
is presented. Also, the combination of fractional order derivative and optimal control in
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the model improves the dynamics and increases the complexity of the model. Two control
variables, up(t) and uap(t), are added to health care such as isolating patients in private
health rooms and providing respirators and giving them treatments soothing regularly.
These have been implemented to minimize the number of the infected and the asymptot-
ically infected as we can see in Fig. 1. Necessary optimality conditions are derived. GL-
NWAFDM is constructed to study the behavior of the proposed problem. This method
depends on the values of the factor �. It can be explicit or implicit with large stability re-
gions as we can see in our results. Moreover, the stability analysis of the proposed method
is studied. It was shown that this method has good stability properties in the implicit case.
Some simulations are presented to support our theoretical findings. It is concluded that
GL-NWAFDM can be applied to solve such fractional optimality systems simply and ef-
fectively.
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