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A B S T R A C T

Taking as start point the parabolic partial differential equation with the respective initial and bound-
ary conditions, the present research focuses onto the flow of a sample of waste-water derived from a
standard/conventional dyeing process. In terms of a highly prioritized concern, meaning environment decon-
tamination and protection, in order to remove the dyes from the waste waters, photocatalyses like ZnO or
TiO2 nanoparticles were formulated, due to their high surface energy which makes them extremely reactive
and attractive. According to the basics of ideal fluid, the key point is the gas flow through an ideal porous
pipe consisting of nanoparticles bound one to each other, forming a porous matrix/pipe. The modeling of the
gas flow through a porous media is quite valuable because of its importance in investigating the gas-solid
processes.

The present study is a valid contribution to the existing literature, by developing a nonstandard line method
for the partial differential equation, in order to obtain a numerical solution of unsteady flow of gas through
nano porous medium. Hence, the physical problem is modeled by a highly nonlinear ordinary differential
equation detailed on a semi-finite domain and represents a guidance for several questions originating in the
gas flow theory.

The findings of this study offered a facile approach to improve an attractive issue related to materials
science/chemistry, like synthesis of ZnO or TiO2 nanoparticles forming an ideal nano porous pipe with
efficiency in industrial waste waters decontamination.
Preliminaries

Diffusion, which is the irregular movement of atoms and molecules,
is a universal phenomenon of mass transfer occurring in all states of
matter. It is of equal importance for the fundamental research and
the technological applications as well. Many challenges in performing
reliable observations of these phenomena in nano-porous materials
have been found in the literature. The transport phenomena and the
diffusion in micro-nano porous materials have attracted the attentions
for a long period of time. Some of these problems are engineered
by strongly nonlinear boundary value problems BVPs on unbounded
domains. Generally speaking, the nonlinear boundary value problems
on an infinite domain occur in numerous domains such as: thermo-
dynamics, chemical kinetics, mathematical physics, thermal behavior,
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fluid mechanics and many other topics [1,2]. The conventional ap-
proach is the substitution of the infinite domain with a truncated
finite interval considering a sufficiently large finite value, the so-called
truncated boundary, with an adequate boundaries condition. Hence,
the truncated boundary found applications in numerous areas of the
applied sciences where the mathematical modeling is mandatory. The
weakest point of this classical approach is to achieve a satisfactory
accurate truncated boundary by the trial and errors. In fact, the concept
of the adequate boundary conditions is an open problem and affect the
outcomes [3–6]. Thus, by using the strictly monotonic functions [7,8]
the entire infinite domain is considered in a mapping where the grid-
points are located at a mid-point of each sub-interval. In this way,
the difficulty caused by numerical treatment of the last infinite sub-
interval is avoided. Riccardo proposed a method effectively which is
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used to determine the numerical solution for the boundary conditions
that were exactly assigned at infinity [9]. Such an example originates
from the survey of the unsteady flow of a gas through a semi-infinite
porous medium when the medium be initially filled with the gas at
a uniform pressure P0. To date, abundant and meaningful research
achievements have been made emphasizing the accuracy and stability
of the approach, by transforming unsteady gas equation into a non-
linear ordinary differential equation ODE which quite simplified the
original problem [10].

In terms of a highly prioritized concern, meaning environment
decontamination and protection, in order to remove the dyes from
the waste waters, photocatalysts like ZnO or TiO2 nanoparticles have
been synthesized, due to their high surface energy which makes them
extremely reactive and attractive [11]. Usually, these types of nanopar-
ticles/systems undergo aggregation. Moreover, there are authors re-
porting the fluid flow through a porous medium as a completely
interconnected network, formed by the constricted channel between
each pore so that the fluid may flow [12].

According to the basics of an ideal fluid, the key point of this
endeavor is an ideal porous pipe consisting of nanoparticles bound one
to each other, forming a porous matrix.

Thus, this novel approach formulated a gas flow through a nano-
porous medium. The modeling of the gas flow through a porous media
is quite valuable because of its importance in investigating the gas–
solid processes. Although a lot of applications of porous media have
been found in several fields of applied sciences and engineering, up to
our knowledge this kind of approach has not yet been advanced.

Specifically, the present research developed a nonstandard line
method for the partial differential equation, in order to obtain a numer-
ical solution of unsteady flow of gas through a nano-porous medium.
Hence, the physical problem is modeled by a highly nonlinear ordinary
differential equation detailed on a semi-infinite domain and repre-
sents a guidance and an application for several questions originating
in the gas flow theory. In other terms, it was revealed a solution
to this problem by the reduction to a boundary value problem for
the ordinary differential equation. Having a strong non linearity, this
equation has been numerically studied by numerous authors. Until
now, only numerical or approximate solutions have been found under
appropriate boundary conditions. By employing a converted Adomian
decomposition method [13,14] or He’s homotopy/variational iteration
method [15], Riccardo found incorrect numerical results [16]. In dif-
ferent circumstances, using both spectral or finite difference methods,
more precise and consistent outcomes were obtained. Recently Parand
et al. [17], found a good approximate solution by using a method based
on rational Jacobi functions.

The present study is a valid contribution to the existing literature,
by developing a nonstandard line method for the partial differential
equation, in order to obtain a numerical solution of unsteady flow of
gas through a nano porous medium.

The findings of this study offered a facile approach to improve an
attractive issue related to materials science/chemistry, like synthesis
of ZnO or TiO2 nanoparticles forming an ideal nano porous pipe with
efficiency in industrial waste waters decontamination.

The mathematical model

The research originated from the survey of the unsteady flow of
a gas through a semi-infinite porous medium when the medium be
initially filled with the gas at a uniform pressure P0. In order to obtain
a numerical solution of unsteady flow of gas through a nano-porous
medium, we focused onto the flow of a liquid sample of waste-water
derived from a standard/conventional dyeing process. With a view to
removing the dyes from the polluted water/waste water, ZnO nanopar-
ticles were synthesized with the assistance of (monochloro-triazinyl-
cyclodextrin) by using a sol–gel method [18]. Usually, these types of
nanoparticles/systems undergo aggregation. But an ideal porous pipe
2

consisting of nanoparticles bound one to each other, forming a porous
matrix/medium was proposed, especially considering the fluid flow
through a porous medium as a completely interconnected network,
formed by the constricted channel between each pore so that the fluid
may flow [12]. The characteristics of gas behavior depend on pressure.
At the time

𝑡 = 0

the pressure at the outflow face is suddenly reduced from 𝑃0 to 𝑃1 and
s thereafter maintained at this lower pressure. The unsteady isothermal
low of gas has been described by the nonlinear partial differential
quation

2(𝑃 2) = 2𝐴𝜕𝑃
𝜕𝑡

. (1)

These nano porous media consist of voids (empty spaces) that
are naturally filled with the sample of dyed water as gas and are
characterized by its porosity whose formula is:

𝐴 =
𝜙𝜇
𝑘

,

where 𝜙 is the porosity, 𝜇 is the viscosity and 𝑘 is the permeability.
The permeability 𝑘 of a porous medium is a property based on the

pore size and the pore structure as well. The fact that the permeability
may vary from one geometry to another geometry allows the real
applicability of (1) quite restrictive. At the same time , the dimensional
analysis reveals that the permeability is just a function of the porosity
𝜀 and the particle diameter 𝑑; meaning the pore geometry and the
pore size. However, the known Carman–Kozeny relationship associates
these quantities empirically with a dimensional correctness by the
relation [19]

𝐴 =
𝜀 × 𝜇
𝑘

=
𝜀 × 𝜇 × 180(1 − 𝜀)2

𝑑2𝜀3
=

𝜇 × 180(1 − 𝜀)2

𝑑2𝜀2
.

This indeed turns out to yield:

𝐴 =
180𝜇(1 − 𝜀)2

𝑑2𝜀2
.

Since we are referring to a wastewater model, we are considering the
viscosity 𝜇 for the water. The values for the 𝜀 (𝑃 ), according to the plot
elow and the particle diameter 𝑑 are found in the table and in Fig. 1 as
elow. By substituting the values of the viscosity and the pore diameter,
e obtain all the time, the values of 𝐴 in the range of (0; 1). For

instance, we choose two different values for porosity and pore diameter
in order to determine 𝐴. Thus, for 𝜇 = 1𝑃𝑎 × 𝑠, 𝜀(𝑃 ) = 55, 𝑑 = 14 nm,

e have:

=
180 × 1 × (1 − 55)2

(14)2 × (55)2
= 0.8852.

Another situation, where 𝜇 = 1Pa × s, 𝜀(𝑃 ) = 20, 𝑑 = 121 nm we, for
, obtain:

=
180 × 1 × (1 − 20)2

(121)2 × (20)2
= 0.01109555.

As a conclusive remark, according to the scientific reports [20], the
real parameter 𝐴 should be within the range (0; 1), (0 < 𝐴 < 1). This,
indeed, gives the same results as the academic community claimed.

The pore diameters 𝑑 (nm) are determined by the BET (Brunauer,
mmett and Teller) method. The BET specific surface areas (S𝐵𝐸𝑇

(m2/g)) were obtained from the nitrogen adsorption experiments mea-
sured at −196 ◦C after degassing the samples below 10−3 Torr at 473
K for 2 h on NOVA2200e (Quantachrome Instruments, Boynton Beach,
FL, USA).

The measurement of the pore size distribution was performed from
the desorption branch of the isotherm using BJH (Barrett–Joyner–
Halenda) method. The total pore volume (𝑇𝑃𝑉 , cm3∕g) was calculated
as the amount of the nitrogen adsorbed at a relative pressure of

approximately 0.99 [21].
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Fig. 1. Deposition time/min.

Annealing
𝑇 ∕0C

𝑆𝑏𝑒𝑡 (m2∕g) Pore volume
(cm3/g)

Average pore
width (nm)

BJH pore
diameter

𝑑𝐵𝐸𝑇
(nm)

ZnO
precursor

76.32 0.2425 17.20 14.89 14

265 14.25 0.0825 31.4 39.04 43
365 11.79 0.1124 33.36 34.96 45.8
475 14.15 0.0495 23.6 37.16 60.52
500 7.67 0.016 17.6 23.57 121.4

In the one-dimensional case, the extended medium from 𝑥 = 0 to 𝑥 = ∞
suggests to have:
𝜕
𝜕𝑥

(𝑃 𝜕𝑃
𝜕𝑥

) = 𝐴𝜕𝑃
𝜕𝑡

. (2)

with boundary conditions imposed as:

𝑃 (𝑥, 0) = 𝑃0, 0 < 𝑥 < ∞, (3)
𝑃 (0, 𝑡) = 𝑃1 (< 𝑃0), 0 ≤ 𝑡 < ∞.

To acquire alike solution, Waltman [22] have introduced the new
independent variable:

𝑧 = 𝑥
√

𝑡
( 𝐴
4𝑃0

)
1
2 ,

where as the dimension-free dependent variable 𝑢 is given by:

𝑢(𝑧) = 𝐴−1(1 −
𝑃 2(𝑧)
𝑃 2
0

),

where 𝐴 is the real parameter defined as:

𝐴 = 1 −
𝑃 2
1

𝑃 2
0

. (4)

In terms of the dependent and independent variables, the problems
would take the following equation form:

𝑢
′′
(𝑧) + 2𝑧

√

1 − 𝐴𝑢(𝑧)
𝑢
′
(𝑧) = 0. (5)

The typical boundary conditions imposed by the physical properties
are:

𝑢(0) = 1, 𝑢(∞) = 0, (6)

𝐴 = 0.8852, 𝐴 = 0.01109555, (7)

where 0 < 𝐴 < 1 is the real parameter given by (4). Obviously, we
should expect 𝑢 to be a member of the interval 𝐽 = [0, 1] , in such case
3

we would have:

𝐿1(𝑧) = 2𝑧 ≤ 2𝑧

[1 − 𝐴𝑢(𝑧)]
1
2

≤ 2(1 − 𝐴)−1∕2𝑧 = 𝐿2(𝑧).

The solution 𝑢 should respect the physical requirements:

0 ≤ 𝑢(𝑧) ≤ 1. (8)

By using Theorem 7.1 and 7.5, Bailey [22] proved that the ordinary
differential equation (5) is the second order differential equation given
as

𝑢
′′
(𝑧) + 2𝑧𝑢

′
(𝑧) = 0. (9)

Main results

Analytical solution

By using the idea which is due to Shampine [23], the ordinary
differential equation (9) is approximately given as:

𝑢′′ (𝑧)
𝑢′ (𝑧)

= −2𝑧.

By integrating with respect to 𝑧, the previous differential equation
reduces to give:

ln 𝑢
′
(𝑧) = −𝑧2 + 𝛽.

Or, in a brief notation, it can consequently be formulated as:

𝑢
′
(𝑧) ∼ 𝛽𝑒−𝑧

2
.

Therefore, by integrating and imposing boundary conditions at infinity,
the above equation, indeed, reveals

𝑢(𝑧) = 𝛽 ∫

𝑧

0
𝑒−𝑡

2
𝑑𝑡 + 𝛾, 𝑢(∞) = 0.

Hence, the condition 𝑢(∞) = 0, imposed on the above integral equation,
leads to have

𝛽 ∫

∞

0
𝑒−𝑡

2
𝑑𝑡 + 𝛾 = 0.

But, by virtue of the known computation of the improper integral

∫

∞

0
𝑒−𝑡

2
𝑑𝑡 =

√

𝜋
2

,

we directly reach a value of 𝛾 given by

𝛾 = −𝛽

√

𝜋
2

.

Hence, our result can be read as

𝑢(𝑧) ∼ 𝛽 ∫

∞

𝑧
𝑒−𝑡

2
𝑑𝑡 ∼

−𝛽
√

𝜋
2

erf 𝑐 𝑢(𝑧).

Bender [20] shows that the asymptotic representation of the comple-
mentary error function is approximately given as:

erf 𝑐 𝑢(𝑧) ∼ 𝑒−𝑧2

𝑧
√

𝜋
.

Therefore, we obtain:

𝑢(𝑧) ∼ −𝛽 1
2
𝑒−𝑧2

𝑧
.

Now, to solve the ordinary differential equation (9) with the conditions
(6) we may proceed by treating 𝛽 as the unknown parameter, to have:

𝑢
′
(𝑧) = 𝛽𝑒−𝑧

2
.

Therefore, instead of having 𝑢(𝑧) = 0, the solution will be easily
obtained as follows:

𝑢(𝑧) = −
𝛽
2𝑧

𝑒−𝑧
2
.
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Fig. 2. BVP for ODE.
Fig. 3. Line method.
Numerical solution

Reduction to a BVP for ODE
In the following analysis we propose to solve the problem (9)+(6)

with the embedded methods: B-splines functions and Runge Kutta
methods [24–33] for further discussion. By making a free use of the
substitution:

𝑢(𝑧) = 𝑦(𝑧) ⋅ 𝑓 (𝑧) where 𝑓 (𝑧) = 𝑒−
𝑧2
2 ,

the ordinary differential equation (9) reveals that:

𝑢
′
(𝑧) = 𝑦

′
(𝑧)𝑒−

𝑧2
2 − 𝑧𝑒−

𝑧2
2 𝑦(𝑧). (10)

and

𝑢
′′
(𝑧) = 𝑦

′′
(𝑧)𝑒−

𝑧2
2 − 𝑧𝑦

′
(𝑧)𝑒−

𝑧2
2 − 𝑒−

𝑧2
2 𝑦(𝑧)+ 𝑧2𝑒−

𝑧2
2 𝑦(𝑧)− 𝑧𝑦

′
(𝑧)𝑒−

𝑧2
2 . (11)

Hence, by multiplying (10) by 2𝑧 and adding (11), the ordinary
differential equation (9) becomes:

𝑦
′′
(𝑧) − (𝑧2 + 1)𝑦(𝑧) = 0, (12)

whereas the boundary conditions which can be equipped with this
equation are:

𝑦(0) = 1 and 𝑦(∞) = 0. (13)

However, we split the interval [0, ∞) into two areas, namely, the
asymptotically and the transient areas [4, 𝛿) and [0, 4], respectively.
Therefore, we derive the approximation solutions of the aforemen-
tioned problem (12)+(13) as follows:

(𝑎) on [0, 4] with the B-splines functions of order 𝑘 + 1;
4

(𝑏) on [4, 𝛿) with the Runge–Kutta 𝑘−stages by MATLAB solver
ODE45 [34]. The convergence of this embedded method is therefore
given by [35, 4], whereas the results are depicted in Fig. 2.

Line method (MOL)
Here, we recall the given partial differential equation ((2) )+(3) that

describes this process and postulate a solution in the form:

𝑃 (𝑥, 𝑡) = 𝑢(𝑥) ⋅ 𝑓 (𝑡),

where 𝑓 (𝑡) = 𝑒−
𝑡2
2 and 𝑢(𝑥) is the solution of the boundary value

problem (12)+(13).
We propose to solve the problem (2) with the conditions (3) using

the MOL method [36] and the MATLAB 2013b solver PDEPE [34]. For
𝐴 = 0.0110955 and 𝐴 = 0.8852, we obtain the following results depicted
in Fig. 3

By aid of the tic-toc of the Matlab we have achieved the time
0.733778 s for the boundary value problem method and for the MOL
method we have achieved the time 0.845321 s. On top of that, the
problem (12) associated with the boundary conditions (13) has been
adequately set on an infinite interval. Therefore, the experimentation
which was very necessary to verify the sufficiently large 𝛿 has been
specified.

Conclusion and perspective research

The theory of porous media plays an essential role in various fields
of applied sciences and engineering. Taking this into account, we
studied the flow of a liquid sample of waste-water derived from a
standard/conventional dyeing process in nano-porous medium, consist-
ing of ZnO nanoparticles bound one to each other, forming a porous
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matrix/medium. In order to obtain a numerical solution of unsteady
flow of the liquid through the nano-porous medium, a well-configured
nonstandard line method for the partial differential equation was con-
sidered. By the reduction to a boundary value problem for the ordinary
differential equation, a solution to this problem was revealed.

The main attributes and outcomes of the research are summarized
as follows:

• the time of 0.733778 s was achieved for the boundary value
problem method;

• for the MOL method we have achieved the time 0.845321 s;
• the problem (12) associated with the boundary conditions (13)

has been adequately set on an infinite interval;
• the experimentation which was very necessary to verify the

sufficiently large 𝛿 has been specified.
Thus, this study is responsible for modeling the gas flow through

a nano-porous media which is very relevant in investigating the gas–
solid processes. Therefore, the physical problem is modeled by a highly
nonlinear ordinary differential equation detailed on a semi-infinite do-
main and represents a guidance and an application for several questions
originating in the gas flow theory.

Starting from the results achieved by this research, in perspective,
we have in mind the following aspects: The mathematical modeling of
catalytic photo-degradation of air contaminants; transforming unsteady
gas equation into a nonlinear ordinary differential equation which quite
simplified the original problem.
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