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Abstract
The primary objective of this present paper is to establish certain new weighted
fractional Pólya–Szegö and Chebyshev type integral inequalities by employing the
generalized weighted fractional integral involving another function � in the kernel.
The inequalities presented in this paper cover some new inequalities involving all
other type weighted fractional integrals by applying certain conditions on ω(θ ) and
�(θ ). Also, the Pólya–Szegö and Chebyshev type integral inequalities for all other
type fractional integrals, such as the Katugampola fractional integrals, generalized
Riemann–Liouville fractional integral, conformable fractional integral, and Hadamard
fractional integral, are the special cases of our main results with certain choices of
ω(θ ) and �(θ ). Additionally, examples of constructing bounded functions are also
presented in the paper.
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1 Introduction
The field of integral inequalities plays an essential role in the diverse domain. The math-
ematicians have investigated that it is mainly a powerful tool for the improvement of
both applied and pure mathematics. In [8], the authors established Grüss type integral
inequalities by employing the classical fractional integrals. Certain new integral inequali-
ties for the Riemann–Liouville (R-L) fractional integrals can be found in the work of Dah-
mani [6]. The inequalities involving an extension of the gamma function and confluent
k-hypergeometric function were found in the work of Nisar et al. [26]. Nisar et al. [27] per-
formed Gronwall inequalities with applications. Rahman et al. [42] gave certain inequali-
ties for (k,ρ)-fractional integrals. Ostrowski type inequalities connecting local fractional
integrals were found in [50]. Sarikaya et al. [51] developed generalized (k, s)-fractional inte-
grals with applications. In [52], Set et al. introduced Grüss type inequalities by employing
generalized k-fractional integrals. Recently, Nisar et al. [29] gave some new generalized
fractional integral inequalities.
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Very recently, the fractional conformable and proportional fractional integral operators
have been given in [13, 15]. Later on, Huang et al. [12] gave Hermite–Hadamard type
inequalities by using fractional conformable integrals (FCI). Qi et al. [33] investigated
Čebyšev type inequalities involving FCI. The Chebyshev type inequalities and certain
Minkowski type inequalities are found in [25, 30, 43]. Nisar et al. [28] investigated some
new inequalities for a class of n (n ∈ N) positive, continuous, and decreasing functions
by employing FCI. Rahman et al. [41] introduced Grüss type inequalities for k-fractional
conformable integrals. Some significant inequalities are given in [35–37, 39, 40, 46]. Very
recently, Rahman et al. [38, 44] presented fractional integral inequalities involving tem-
pered fractional integrals. In [2], Abdeljawad et al. presented some new local fractional
inequalities associated with generalized (s, m)-convex functions and applications. Qi et
al. [34] proposed fractional integral versions of Hermite–Hadamard type inequality for
generalized exponential convexity. In [3], Abdeljawad et al. presented new fractional in-
tegral inequalities for p-convexity within interval-valued functions. Zhou et al. [55] in-
vestigated some new inequalities by considering the generalized proportional Hadamard
fractional integral operators. Rashid et al. [48] proposed some inequalities via general-
ized proportional fractional integrals. In [47], the authors presented reverse Minkowski’s
inequalities via generalized proportional fractional integrals. In [21], Mohammed and Ab-
deljawad proposed some modifications of fractional integral inequalities for convex func-
tions. Abdeljawad et al. [1] presented modified conformable fractional integral inequal-
ities of Hermite–Hadamard type with applications. Mohammed and Brevik [23] inves-
tigated a new version of Hermite–Hadamard for Riemann–Liouville fractional integrals.
Mohammed and Abdeljawad [22] studied integral inequalities for generalized fractional
integral with nonsingular kernels. Mohammed and Srikaya [24] proposed generalized
fractional integral inequalities for twice differentiable functions.

In [5], the well-known Chebyshev functional for two integrable functions �1 and �2 on
[x1, x2] is given by

T (�1,�2) =
1

x2 – x1

∫ x2

x1

�1(θ )�2(θ ) dθ

–
1

x2 – x1

(∫ x2

x1

�1(θ ) dθ

)
1

x2 – x1

(∫ x2

x1

�2(θ ) dθ

)
. (1.1)

The functional T (�1,�2) ≥ 0 for the two synchronous functions �1 and �2 on [x1, x2], i.e.,

(
�1(ϑ) – �1(ζ )

)(
�2(ϑ) – �2(ζ )

) ≥ 0

for any ϑ , ζ ∈ [x1, x2].
In [4, 7, 9, 17], the researchers studied functional (1.1) and introduced a large number

of interesting integral inequalities. Very recently, Rahman et al. and Tassaddiq et al. [45,
53] studied functional (1.1) and investigated some new inequalities involving fractionally
conformable.

The well-known Grüss [11] inequality for two integrable functions �1 and �2 on [x1, x2]
is given by

∣∣T (�1,�2)
∣∣ ≤ (P1 – p1)(Q1 – q1)

4
,
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such that �1 and �2 fulfill the inequalities p1 ≤ �1(ϑ) ≤ P1 and q1 ≤ �2(ζ ) ≤ Q1 for all
ϑ , ζ ∈ [x1, x2] and for some constant p1, q1, P1, Q1 ∈ R.

Pólya and Szegö [32] gave the following inequality:

∫ x2
x1

�
2
1(θ ) dθ

∫ x2
x1

�
2
2(θ ) dθ

(
∫ x2

x1
�1(θ )�2(θ ) dθ )2

≤ 1
4

(√
P1Q1

p1q1
+

√
p1q1

P1Q1

)2

.

Dragomir and Diamond [10] gave the following inequality with the help of Pólya–Szegö
inequality:

∣∣T (�1,�2)
∣∣ ≤ (P1 – p1)(Q1 – q1)

4(x2 – x1)2√p1P1q1Q1

∫ x2

x1

�1(θ ) dθ

∫ x2

x1

�2(θ ) dθ ,

where the functions �1 and �2 are positive and integrable on [x1, x2] such that �1 and �2

satisfy the inequalities p1 ≤ �1(ϑ) ≤ P1 and q1 ≤ �2(ζ ) ≤ Q1 for all ϑ , ζ ∈ [x1, x2] and for
some constant p1, q1, P1, Q1 ∈R.

In [31], Ntouyas et al. investigated some new Pólya–Szegö and Chebyshev type inequal-
ities by considering the R-L fractional integrals.

This paper is composed as follows:
In Sect. 2, we mention some basic definitions. Certain new Pólya–Szegö type inequalities

for the weighted fractional integrals concerning another function are presented in Sect. 3.
In Sect. 4, we present some new generalized Chebyshev type inequalities for the weighted
fractional integrals concerning another function. In Sect. 5, certain new particular cases in
terms of weighted fractional integrals are discussed. An example of constructing bounding
functions is considered in Sect. 6. The concluding remarks are presented in Sect. 7.

2 Auxiliary results
In this section, we present some basic definitions and mathematical preliminaries.

Lemma 2.1 ([11]) Assume that the functions �1,�2 : [x1, x1] → R are positive with p1 ≤
�1(ϑ) ≤ P1 and q1 ≤ �2(ϑ) ≤ Q1 for all ϑ ∈ [x1, x1], then the following inequality holds:

∣∣∣∣ 1
x2 – x1

∫ x2

x1

�1(ϑ)�2(ϑ) dϑ –
1

x2 – x1

∫ x2

x1

�1(ϑ) dϑ
1

x2 – x1

∫ x2

x1

�2(ϑ) dϑ

∣∣∣∣
≤ 1

4
(P1 – p1)(Q1 – q1), (2.1)

where the constants P1, p1, q1, Q1 ∈R and 1
4 is the sharp of inequality 2.1.

Definition 2.1 ([18, 54]) The function �1 is said to be in the space Lp,r[0,∞[ if

Lp,r[0,∞[ =
{
�1 : ‖�1‖Lp,r[0,∞[ =

(∫ s

r

∣∣�1(ϑ)
∣∣p

ϑ r dϑ

) 1
p

< ∞, 1 ≤ p < ∞, r ≥ 0
}

. (2.2)

Applying r = 0 on (2.2) gives

Lp[0,∞[ =
{
�1 : ‖�1‖Lp[0,∞[ =

(∫ s

r

∣∣�1(ϑ)
∣∣p dϑ

) 1
p

< ∞, 1 ≤ p < ∞
}

.
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Definition 2.2 ([16]) Let the function �1 ∈ L1[0,∞[ and suppose that � is monotone,
increasing, and positive on [0,∞[ and having continuous derivative � ′ on [0,∞[ with
�(0) = 0. Then �1 (the Lebesgue real-valued measurable function) defined on [0,∞[ is in
the space Xp

� (0,∞), (1 ≤ p < ∞) if

‖�1‖Xp
�

=
(∫ s

r

∣∣�1(ϑ)
∣∣p

� ′(ϑ) dϑ

) 1
p

< ∞, 1 ≤ p < ∞.

When p → ∞, then

‖�1‖X∞
�

= ess sup
0≤ϑ<∞

[
� ′(ϑ)�1(�)

]
.

Clearly, the space Xp
� (0,∞) matches with the space Lp[0,∞[ if �(ϑ) = ϑ for 1 ≤ p < ∞

and in a similar way with the space Lp,r[1,∞[ if �(ϑ) = lnϑ for 1 ≤ p < ∞.

Definition 2.3 ([20, 49]) The classical left- and right-sided R-L fractional integrals of or-
der κ > 0 are respectively defined by

(
x1Rκ

�1
)
(θ ) =

1

(κ)

∫ θ

x1

(θ – ϑ)κ–1
�1(ϑ) dϑ , x1 < θ , (2.3)

and

(
x1Rκ

�1
)
(θ ) =

1

(κ)

∫ θ

x1

(ϑ – θ )κ–1
�1(ϑ) dϑ , x2 > θ , (2.4)

where the gamma function is defined by 
(κ) =
∫ ∞

0 τ κ–1e–τ dτ , τ ∈C, and 
(τ ) > 0.

Definition 2.4 ([20, 49]) The one-sided R-L fractional integral of order κ > 0 is defined
by

(
Rκ ,τ

0 �1
)
(θ ) =

(
Rκ ,τ

�1
)
(θ ) =

1

(κ)

∫ θ

0
(θ – ϑ)κ–1

�1(ϑ) dϑ . (2.5)

Definition 2.5 ([20, 49]) Let the function �1 : [x1, x2] →R be an integrable function, and
assume that the function � is increasing and positive monotone on (x1, x2] and having
continuous derivative on (x1, x2). Then the left- and right-sided generalized Riemann–
Liouville fractional integrals of a function �1 concerning another function � are respec-
tively defined by

(
�
x1R

κ
�1

)
(θ ) =

1

(τ )

∫ θ

x1

(
�(θ ) – �(ϑ)

)κ–1
� ′(ϑ)�1(ϑ) dϑ , x1 < θ , (2.6)

and

(
�Rκ

x2�1
)
(θ ) =

1

(τ )

∫ x2

θ

(
�(ϑ) – �(θ )

)κ–1
� ′(ϑ)�(ϑ) dϑ , θ < x2, (2.7)

where κ ∈C with 
(κ) > 0.
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Definition 2.6 ([14]) Let the function �1 be integrable Xp
� (0,∞), and suppose that the

function � is increasing positive and monotone on [0,∞[ and having continuous deriva-
tive on [0,∞[ with �(0) = 0. Then the generalized weighted (left-sided) R-L fractional
integral of the function �1 concerning another function � in the kernel is

(
�
x1R

κ
ω�1

)
(θ ) =

ω–1(θ )

(κ)

∫ θ

x1

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)�1(ϑ) dϑ , x1 < θ , (2.8)

where κ ,∈C with 
(κ) > 0.

Remark 2.1 The following new weighted fractional integrals can be easily obtained:
i. Applying Definition 2.8 for �(θ ) = θ , we get the following weighted R-L fractional

integral:

(
x1Rκ

ω�1
)
(θ ) =

ω–1(θ )

(κ)

∫ θ

x1

(θ – ϑ)κ–1ω(ϑ)�1(ϑ) dϑ , x1 < θ .

ii. Applying Definition 2.8 for �(θ ) = θ , we get the following weighted Hadamard
fractional integral operator:

(
x1Rκ

ω�1
)
(θ ) =

ω–1(θ )

(κ)

∫ θ

x1

(ln θ – lnϑ)κ–1ω(ϑ)�1(ϑ)
dϑ

ϑ
, x1 < θ .

iii. Applying Definition 2.8 for �(θ ) = θη

η
, η > 0, we obtain the following weighted

Katugampola fractional integral:

(
x1Rκ ,η

ω �1
)
(θ ) =

ω–1(θ )

(κ)

∫ θ

x1

(
θη – ϑη

η

)κ–1

ω(ϑ)�1(ϑ)
dϑ

ϑ1–η
, x1 < θ .

Similarly, we can obtain another type of weighted fractional integrals.

Remark 2.2 The following new weighted fractional integrals can be easily obtained:
i. Applying Definition 2.8 for ω(θ ) = 1 and �(θ ) = θ , we get (2.4);

ii. Applying Definition 2.8 for �(θ ) = θ , it will reduce to the left-sided generalized
Riemann–Liouville fractional integral operator (2.6);

iii. Applying Definition 2.8 for ω(θ ) = θu and �(θ ) = ln θ , it will reduce to the left-sided
Hadamard integral operator [20, 49];

iv. Applying Definition 2.8 for �(θ ) = θη

η
, η > 0, and ω(θ ) = 1, it will reduce to the

left-sided Katugampola [18] fractional integral;
v. Applying Definition 2.8 for ω(θ ) = 1 and �(θ ) = θα+s

α+s (where α ∈ (0, 1], s ∈R, and
α + s �= 0), it reduces to the left-sided generalized FCI given by [19];

vi. Applying Definition 2.8 for ω(θ ) = 1 and �(θ ) = (θ–x1)α
α

, α > 0, it reduces to the
fractional conformable integral defined by Jarad et al. [15].

In this paper, we analyze the subsequent one-sided generalized weighted fractional in-
tegral.

Definition 2.7 Let the function �1 be integrable in the space Xp
� (0,∞), and suppose that

the function � is increasing, positive, and monotone on [0,∞[ and having continuous
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derivative on [0,∞[ with �(0) = 0. Then the one-sided generalized weighted fractional
integral of the function �1 with respect to another function � in the kernel is given by

(
�
ωRκ

0�1
)
(θ ) =

ω–1(θ )

(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)�1(ϑ) dϑ . (2.9)

Definition 2.8 For 0 = τ0 < τ1 < · · · < τp < τp+1 = τ , we define the following sub-integrals
for generalized weighted integral:

(
�
ωRκ

τi ,τi+1
�1

)
(τ ) =

ω–1(θ )

(κ)

∫ τi+1

τi

(
�(τ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)�1(ϑ) dϑ . (2.10)

Note that

(
�
ωRκ

0�1
)
(τ ) =

p∑
i=0

�
ωRκ

τi ,τi+1
(�1)(τ )

=
ω–1(θ )

(κ)

∫ τ1

0

(
�(τ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)�1(ϑ) dϑ

+
ω–1(θ )

(κ)

∫ τ2

τ1

(
�(τ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)�1(ϑ) dϑ + · · ·

+
ω–1(θ )

(κ)

∫ τ

τp

(
�(X) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)�1(ϑ) dϑ .

Remark 2.3 If we set �(τ ) = τ and ω(θ ) = 1, then (2.10) will reduce to the sub-integrals of
R-L fractional integral defined by [31].

3 Some weighted fractional Pólya–Szegö type integral inequalities
In this section, we present some new weighted fractional Pólya–Szegö type integral in-
equalities for positive and integrable functions by utilizing generalized weighted fractional
integral (2.9) containing other function � in the kernel.

Lemma 3.1 Let the functions �1 and �2 be positive and integrable on [0,∞), and assume
that the function � is increasing, positive, and monotone on [0,∞[ and having continuous
derivative on [0,∞[ with �(0) = 0. Suppose that f1, f2, g1, and g2 are four positive and
integrable functions on [0,∞) such that

(H1) 0 < f1(ϑ) ≤ �1(ϑ) ≤ f2(ϑ),

0 < g1(ϑ) ≤ �2(ϑ) ≤ g2(ϑ), ϑ ∈ [0, θ ], θ > 0.
(3.1)

Then, for κ > 0 and θ > 0, the following weighted fractional integral inequality holds:

�
ωRκ

0 (g1g2�
2
1)(θ )�ωRκ

0 (f1f2�
2
2)(θ )

(�ωRκ
0{(f1g1 + f2g2)�1�2}(θ ))2 ≤ 1

4
. (3.2)

Proof Utilizing the given hypothesis, we have

(
f2(ϑ)
g1(ϑ)

–
�1(ϑ)
�2(ϑ)

)
≥ 0. (3.3)



Nisar et al. Advances in Difference Equations        (2020) 2020:623 Page 7 of 18

Similarly, we have

(
�1(ϑ)
�2(ϑ)

–
f1(ϑ)
g2(ϑ)

)
≥ 0. (3.4)

The product of (3.3) and (3.4) yields

(
f2(ϑ)
g1(ϑ)

–
�1(ϑ)
�2(ϑ)

)(
�1(ϑ)
�2(ϑ)

–
f1(ϑ)
g2(ϑ)

)
≥ 0. (3.5)

From (3.5), it follows that

(
f1(ϑ)g1(ϑ) + f2(ϑ)g2(ϑ)

)
�1�2(ϑ) ≥ g1(ϑ)g2(ϑ)�2

1(ϑ) + f1(ϑ)f2(ϑ)�2
2(ϑ). (3.6)

Now, multiplying (3.6) by (�(θ )–�(ϑ))κ–1ω(ϑ)� ′(ϑ)

(κ) and integrating the resultant identity with

respect to ϑ over (0, θ ), we have

1

(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)

(
f1(ϑ)g1(ϑ) + f2(ϑ)g2(ϑ)

)
�1�2(ϑ) dϑ

≥ 1

(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)g1(ϑ)g2(ϑ)�2

1(ϑ) dϑ

+
1


(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)f1(ϑ)f2(ϑ)�2

2(ϑ) dϑ .

Multiplying both sides of the above equation by ω–1(θ ) and using Definition (2.9), we ob-
tain

�
ωRκ

0
[
(f1g1 + f2g2)�1�2

]
(θ ) ≥ �

ωRκ
0
(
g1g2�

2
1
)
(θ ) + �

ωRκ
0
(
f1f2�

2
2
)
(θ ).

Now, using the AM-GM inequality, i.e., p1 + p2 ≥ 2√p1p2, p1, p2R
+, we get

�
ωRκ

0
[
(f1g1 + f2g2)�1�2

]
(θ ) ≥ 2

√
�
ωRκ

0
(
g1g2�

2
1
)
(θ )�ωRκ

0
(
f1f2�

2
2
)
(θ ).

It follows that

�
ωRκ

0
(
g1g2�

2
1
)
(θ )�ωRκ

0
(
f1f2�

2
2
)
(θ ) ≤ 1

4
(
�
ωRκ

0
[
(f1g1 + f2g2)�1�2

]
(θ )

)2,

which gives the required result (3.2). �

Corollary 3.1 Let the functions �1 and �2 be positive and integrable on [0,∞), and assume
that the function � is increasing, positive, and monotone on [0,∞[ and having continuous
derivative on [0,∞[ with �(0) = 0. Suppose that f1, f2, g1, and f2 are four positive and inte-
grable functions on [0,∞) such that

(H2) 0 < p1 ≤ �1(ϑ) ≤ P1 < ∞,

0 < q1 ≤ �2(ϑ) ≤ Q1 < ∞, ϑ ∈ [0, θ ], θ > 0.
(3.7)
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Then, for κ > 0 and θ > 0, the following weighted fractional integral inequality holds:

�
ωRκ

0 (�2
1)(θ )�ωRκ

0 (�2
2)(θ )

(�ωRκ
0{�1�2}(θ ))2 ≤ 1

4

(√
p1q1

P1Q1
+

√
P1Q1

p1q1

)2

.

Lemma 3.2 Let all the conditions of Lemma 3.1 be satisfied. Then, for κ ,λ > 0 and θ > 0,
the following weighted fractional integral inequality holds:

�
ωRκ

0 (�2
1)(θ )�ωRλ

0(�2
2)(θ )�ωRκ

0 (f1f2)(θ )�ωRλ
0(g1g2)(θ )

(�ωRκ
0 (f1�1)(θ )�ωRλ

0(g1�2)(θ ) + �
ωRκ

0 (f2�1)(θ )�ωRλ
0(g2�2)(θ ))2 ≤ 1

4
. (3.8)

Proof By using hypothesis (H1) given by (3.1), we have

(
f2(ϑ)
g1(ζ )

–
�1(ϑ)
�2(ζ )

)
≥ 0

and
(
�1(ϑ)
�2(ζ )

–
f1(ϑ)
g2(ζ )

)
≥ 0.

It gives

(
f1(ϑ)
g2(ζ )

+
f2(ϑ)
g1(ζ )

)
�1(ϑ)
�2(ζ )

≥ �
2
1(ϑ)
�

2
2(ζ )

+
f1(ϑ)f2(ϑ)
f1(ζ )f2(ζ )

. (3.9)

Multiplying (3.9) by g1(ζ )g2(ζ )�2
2(ζ ), we have

f1(ϑ)�1(ϑ)g1(ζ )�2(ζ ) + f2(ϑ)�1(ϑ)g2(ζ )�2(ζ )

≥ g1(ζ )g2(ζ )�2
1(ϑ) + f1(ϑ)f2(ϑ)�2

2(ζ ). (3.10)

Taking product of (3.10) with (�(θ )–�(ϑ))κ–1ω(ϑ)� ′(ϑ)

(κ) and integrating the resultant inequality

with respect to ϑ over (0, θ ), we have

g1(ζ )�2(ζ )
1


(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)f1(ϑ)�1(ϑ) dϑ

+ g2(ζ )�2(ζ )
1


(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)f2(ϑ)�1(ϑ) dϑ

≥ g1(ζ )g2(ζ )
1


(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)�2

1(ϑ) dϑ

+ �
2
2(ζ )

1

(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)f1(ϑ)f2(ϑ) dϑ .

Multiplying the above inequality by ω–1(θ ) and applying (2.9), we get

g1(ζ )�2(ζ )�ωRκ
0 (f1�1)(θ ) + g2(ζ )�2(ζ )�ωRκ

0 (f2�1)(θ )

≥ g1(ζ )g2(ζ )�ωRκ
0
(
�

2
1
)
(θ ) + �

2
2(ζ )�ωRκ

0 (f1f2)(θ ). (3.11)
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Again, taking product (3.11) with ω(θ )(�(θ )–�(ζ ))λ–1ω(ζ )� ′(ζ )

(λ) and integrating the resultant in-

equality with respect to ζ over (0, θ ) and then applying (2.9), we get

�
ωRλ

0(g1�2)(θ )�ωRκ
0 (f1�1)(θ ) + �

ωRλ
0(g2�2)(θ )�ωRκ

0 (f2�1)(θ )

≥ �
ωRλ

0(g1g2)(θ )�ωRκ
0
(
�

2
1
)
(θ ) + �

ωRλ
0
(
�

2
2
)
(θ )�ωRκ

0 (f1f2)(θ ).

By using the AM-GM inequality, we get

�
ωRλ

0(g1�2)(θ )�ωRκ
0 (f1�1)(θ ) + �

ωRλ
0(g2�2)(θ )�ωRκ

0 (f2�1)(θ )

≥ 2
√

�
ωRλ

0(g1g2)(θ )�ωRκ
0
(
�

2
1
)
(θ )�ωRλ

0
(
�

2
2
)
(θ )�ωRκ

0 (f1f2)(θ ).

It follows that

�
ωRλ

0(g1g2)(θ )�ωRκ
0
(
�

2
1
)
(θ )�ωRλ

0
(
�

2
2
)
(θ )�ωRκ

0 (f1f2)(θ )

≤ 1
4
(
�
ωRλ

0(g1�2)(θ )�ωRκ
0 (f1�1)(θ ) + �

ωRλ
0(g2�2)(θ )�ωRκ

0 (f2�1)(θ )
)2,

which completes the desired assertion (3.8). �

Corollary 3.2 Let the functions �1 and �2 be positive and integrable on [0,∞) satisfying
hypothesis (H2) defined by (3.7), and assume that the function � is increasing, positive, and
monotone on [0,∞[ and having continuous derivative on [0,∞[ with �(0) = 0. Then, for
κ ,λ > 0 and θ > 0, the following weighted fractional integral inequality holds:

ω–2(θ )�Rκ
0 (ω)(θ )�Rλ

0(ω)(θ )�ωRκ
0(�2

1)(θ )�ωRλ
0(�2

2)(θ )
(�ωRκ

0 (�1)(θ )�ωRλ
0(�2)(θ ))2 ≤ 1

4

(√
p1q1

P1Q1
+

√
P1Q1

p1q1

)2

,

where

�Rκ
0 (ω)(θ ) =

1

(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
� ′(ϑ)ω(ϑ) dϑ . (3.12)

Lemma 3.3 Suppose that all the conditions of Lemma 3.1 hold, and assume that the func-
tion � is increasing, positive, and monotone on [0,∞[ and having continuous derivative on
[0,∞[ with �(0) = 0. Then, for κ ,λ > 0 and θ > 0, the following weighted fractional integral
inequality holds:

�
ωRκ

0
(
�

2
1
)
(θ )�ωRλ

0
(
�

2
2
)
(θ ) ≤ �

ωRκ
0

(
f2�1�2

g1

)
(θ )�ωRλ

0

(
g2�1�2

f1

)
(θ ). (3.13)

Proof From the hypothesis given by (3.1), we have

ω–1(θ )

(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)�2

1(ϑ) dϑ

≤ ω–1(θ )

(κ)

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1
ω(ϑ)� ′(ϑ)

f2(ϑ)
g1(ϑ)

�1(ϑ)�2(ϑ) dϑ ,
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which in view of (2.9) yields

�
ωRκ

0
(
�

2
1
)
(θ ) ≤ �

ωRκ
0

(
f2�1�2

g1

)
(θ ). (3.14)

Similarly, one can obtain

�
ωRλ

0
(
�

2
2
)
(θ ) ≤ �

ωRλ
0

(
g2�1�2

f1

)
(θ ). (3.15)

Hence, the product of (3.14) and (3.15) gives the desired assertion (3.13). �

Corollary 3.3 Let the functions �1 and �2 be positive and integrable on [0,∞) satisfying
hypothesis (H2) defined by (3.7), and assume that the function � is increasing, positive, and
monotone on [0,∞[ and its derivative � ′ is continuous on [0,∞[ with �(0) = 0. Then, for
κ ,λ > 0 and θ > 0, the following weighted fractional integral inequality holds:

�
ωRκ

0 (�2
1)(θ )�ωRλ

0(�2
2)(θ )

�
ωRκ

0 (�1�2)(θ )�ωRλ
0(�1�2)(θ )

≤ P1Q1

p1q1
.

4 Chebyshev type weighted fractional integral inequalities
In this section, we present Chebyshev type weighted fractional integral inequalities by us-
ing the Pólya–Szegö integral inequality given by Lemma 3.1 by employing weighted frac-
tional integral (2.9).

Theorem 4.1 Let the functions �1 and �2 be positive and integrable on [0,∞), and assume
that the function � is increasing, positive, and monotone on [0,∞[ and � ′ is continuous
on [0,∞[ with �(0) = 0. Suppose that f1, f2, g1, and f2 are four positive and integrable func-
tions on [0,∞) satisfying hypothesis (H1) defined by (3.1). Then, for κ ,λ > 0 and θ > 0, the
following weighted fractional integral inequality holds:

∣∣ω–1(θ )�Rκ
0 (ω)(θ )�ωRκ

0 (�1�2)(θ ) + ω–1(θ )�Rλ
0(ω)(θ )�ωRλ

0(�1�2)(θ )

– �
ωRκ

0 (�1)(θ )�ωRλ
0(�2)(θ ) – �

ωRκ
0 (�2)(θ )�ωRλ

0(�1)(θ )
∣∣

≤ ∣∣F1(�1, f1, f2)(θ ) + F2(�1, f1, f2)(θ )
∣∣ 1

2

× ∣∣F1(�2, g1, g2)(θ ) + F2(�1, g1, g2)(θ )
∣∣ 1

2 , (4.1)

where

F1(�1, f1, f2)(θ ) =
ω–1(θ )�Rλ

0(ω)(θ )(�ωRκ
0{(f1 + f2)�1})2

4�
ωRκ

0 (f1f2)(θ )
– �

ωRκ
0 (�1)(θ )�ωRλ

0(�1)(θ )

and

F2(�1, f1, f2)(θ ) =
ω–1(θ )�Rκ

0 (ω)(θ )(�ωRλ
0{(f1 + f2)�1})2

4�
ωRλ

0(f1f2)(θ )
– �

ωRκ
0 (�1)(θ )�ωRλ

0(�1)(θ ).
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Proof By the given hypothesis both the functions �1 and �2 are positive and integrable
functions on [0,∞). Therefore, for ϑ , ζ ∈ (0, θ ) with θ > 0, we define A(ϑ , ζ ) by

A(ϑ , ζ ) =
(
�1(ϑ) – �1(ζ )

)(
�2(ϑ) – �2(ζ )

)

= �1(ϑ)�2(ϑ) + �1(ζ )�2(ζ ) – �1(ϑ)�2(ζ ) – �1(ζ )�2(ϑ). (4.2)

Multiplying (4.2) by ω–2(θ )

(κ)
(λ) (�(θ ) – �(ϑ))κ–1(�(θ ) – �(ζ ))λ–1ω(ϑ)ω(ζ )� ′(ϑ)� ′(ζ ) and

double integrating the resultant identity with respect to ϑ and ζ over (0, θ ), and then using
(2.9), we obtain

ω–2(θ )

(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1

× ω(ϑ)ω(ζ )� ′(ϑ)� ′(ζ )A(ϑ , ζ ) dϑ dζ

= ω–1(θ )�Rκ
0 (ω)(θ )�ωRκ

0 (�1�2)(θ ) + ω–1(θ )�Rλ
0(ω)(θ )�ωRκ

0 (�1�2)(θ )

– �
ωRκ

0 (�1)(θ )�ωRλ
0(�2)(θ ) – �

ωRλ
0(�1)(θ )�ωRκ

0 (�2)(θ ). (4.3)

By applying the Cauchy–Schwarz inequality for double integrals, we have

∣∣∣∣ ω–2(θ )

(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1
ω(ϑ)ω(ζ )

× � ′(ϑ)� ′(ζ )A(ϑ , ζ ) dϑ dζ

∣∣∣∣

≤
[

ω–2(θ )

(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1
ω(ϑ)ω(ζ )

× � ′(ϑ)� ′(ζ )�2
1(ϑ) dϑ dζ

+
ω–2(θ )


(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1
ω(ϑ)ω(ζ )

× � ′(ϑ)� ′(ζ )�2
1(ζ ) dϑdζ

– 2
ω–2(θ )


(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1
ω(ϑ)ω(ζ )

× � ′(ϑ)� ′(ζ )�1(ϑ)�1(ζ ) dϑ dζ

] 1
2

×
[

ω–2(θ )

(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1
ω(ϑ)ω(ζ )

× � ′(ϑ)� ′(ζ )�2
2(ϑ) dϑ dζ

+
ω–2(θ )


(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1
ω(ϑ)ω(ζ )

× � ′(ϑ)� ′(ζ )�2
2(ζ ) dϑdζ

– 2
ω–2(θ )


(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1
ω(ϑ)ω(ζ )

× � ′(ϑ)� ′(ζ )�2(ϑ)�2(ζ ) dϑ dζ

] 1
2

.
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In view of (2.9) and (3.12), we get

∣∣∣∣ ω–2(θ )

(κ)
(λ)

∫ θ

0

∫ θ

0

(
�(θ ) – �(ϑ)

)κ–1(
�(θ ) – �(ζ )

)λ–1
ω(ϑ)ω(ζ )

× � ′(ϑ)� ′(ζ )A(ϑ , ζ ) dϑ dζ

∣∣∣∣
≤ [

ω–1(θ )�Rκ
0 (ω)(θ )�ωRλ

0
(
�

2
1
)
(θ ) + ω–1(θ )�Rλ

0(ω)(θ )�ωRκ
0
(
�

2
1
)
(θ )

– 2�
ωRκ

0 (�1)(θ )�ωRλ
0(�1)(θ )

] 1
2

× [
ω–1(θ )�Rκ

0 (ω)(θ )�ωRλ
0
(
�

2
2
)
(θ ) + ω–1(θ )�Rλ

0(ω)(θ )�ωRκ
0
(
�

2
2
)
(θ )

– 2�
ωRκ

0 (�2)(θ )�ωRλ
0(�2)(θ )

] 1
2 . (4.4)

By applying Lemma 3.1 for g1(θ ) = g2(θ ) = �2(θ ) = 1, we get

ω–1(θ )�Rλ
0(ω)(θ )�ωRκ

0
(
�

2
1
)
(θ ) ≤ ω–1(θ )�Rλ

0(ω)(θ )(�ωRκ
0{(f1 + f2)�1})2

4�
ωRκ

0 (f1f2)(θ )
.

It follows that

ω–1(θ )�Rλ
0(ω)(θ )�ωRκ

0
(
�

2
1
)
(θ ) – �

ωRκ
0 (�1)(θ )�ωRλ

0(�1)(θ )

≤ ω–1(θ )�Rλ
0(ω)(θ )

4
(�ωRκ

0{(f1 + f2)�1})2

�
ωRκ

0(f1f2)(θ )
– �

ωRκ
0 (�1)(θ )�ωRλ

0(�1)(θ )

= F1(�1, f1, f2)(θ ). (4.5)

Similarly, one can get

ω–1(θ )�Rκ
0 (ω)(θ )�ωRλ

0
(
�

2
1
)
(θ ) – �

ωRκ
0 (�1)(θ )�ωRλ

0(�1)(θ )

≤ ω–1(θ )�Rκ
0 (ω)(θ )

4
(�ωRκ

0{(f1 + f2)�1})2

�
ωRλ

0(f1f2)(θ )
– �

ωRκ
0 (�1)(θ )�ωRλ

0(�1)(θ )

= F2(�1, f1, f2)(θ ). (4.6)

Again applying Lemma 3.1 for f1(θ ) = f2(θ ) = �1(θ ) = 1, we get

ω–1(θ )�Rλ
0(ω)(θ )�ωRκ

0
(
�

2
2
)
(θ ) – �

ωRκ
0 (�2)(θ )�ωRλ

0(�2)(θ )

≤ ω–1(θ )�Rλ
0(ω)(θ )

4
(�ωRκ

0{(g1 + g2)�2})2

�
ωRκ

0(g1g2)(θ )
– �

ωRκ
0 (�2)(θ )�ωRλ

0(�2)(θ )

= F1(�2, f1, f2)(θ ) (4.7)

and

ω–1(θ )�Rκ
0 (ω)(θ )�ωRλ

0
(
�

2
2
)
(θ ) – �

ωRκ
0 (�2)(θ )�ωRλ

0(�2)(θ )

≤ ω–1(θ )�Rκ
0 (ω)(θ )

4
(�ωRκ

0{(g1 + g2)�2})2

�
ωRλ

0(g1g2)(θ )
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– �
ωRκ

0 (�2)(θ )�ωRλ
0(�2)(θ )

= F2(�2, f1, f2)(θ ). (4.8)

Thus, by considering (4.3) to (4.8), we arrive at the desired assertion (4.1) of Theo-
rem 4.1. �

Theorem 4.2 Suppose that all the conditions of Theorem 4.1 are satisfied. Then, for κ > 0
and θ > 0, the following weighted fractional integral inequality holds:

∣∣ω–1(θ )�Rκ
0 (ω)(θ )�ωRκ

0 (�1�2)(θ ) – �
ωRκ

0(�1)(θ )�ωRκ
0 (�2)(θ )

∣∣
≤ ∣∣F(�1, f1, f2)(θ )F(�2, g1, g2)(θ )

∣∣ 1
2 , (4.9)

where

F(�1, f1, f2)(θ ) =
ω–1(θ )�Rκ

0 (ω)(θ )
4

(�ωRκ
0{(f1 + f2)�1})2

�
ωRκ

0 (f1f2)(θ )
–

(
�
ωRκ

0 (�1)(θ )
)2.

Proof Applying Theorem 4.1 for κ = λ, we get the desired assertion (4.9) of Theorem 4.2.�

Remark 4.1 If we take f1 = p1, f2 = P1, g1 = q1, and g2 = Q1, then we have

F(�1, p1, P1)(θ ) =
(P1 – p1)2

4P1p1

(�Rκ ,τ
0 (�1)(θ )

)2

and

F(�2, q1, Q1)(θ ) =
(Q1 – q1)2

4Q1q1

(�Rκ ,τ
0 (�2)(θ )

)2.

Corollary 4.1 Let the functions �1 and �2 be positive and integrable on [0,∞) and satisfy
hypothesis (H2) given by (3.7). Then, for κ > 0 and θ > 0, the following tempered fractional
integral inequality holds:

∣∣ω–1(θ )�Rκ
0 (ω)(θ )�ωRκ

0 (�1�2)(θ ) – �
ωRκ

0(�1)(θ )�ωRκ
0 (�2)(θ )

∣∣

≤ (P1 – p1)(Q1 – q1)
4
√

p1P1q1Q1

�
ωRκ

0 (�1)(θ )�ωRκ
0 (�2)(θ ).

5 Special cases
The following new Pólya–Szegö and Chebyshev type inequalities for one-sided weighted
Riemann–Liouville fractional integral (2.5) can be easily derived.

Lemma 5.1 Let the functions �1 and �2 be positive and integrable on [0,∞). Suppose that
f1, f2, g1, and f2 are four positive and integrable functions on [0,∞) satisfying hypothesis
(H1) defined by (3.1). Then, for κ > 0 and θ > 0, the following weighted fractional integral
inequality holds:

ωRκ
0 (g1g2�

2
1)(θ )ωRκ

0 (f1f2�
2
2)(θ )

(ωRκ
0{(f1g1 + f2g2)�1�2}(θ ))2 ≤ 1

4
.
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Proof Applying Lemma 3.1 for �(θ ) = θ , we get Lemma 5.1. �

Lemma 5.2 Let all the conditions of Lemma 5.1 be satisfied. Then, for κ ,λ > 0 and θ > 0,
the following weighted fractional integral inequality holds:

ωRκ
0 (�2

1)(θ )ωRλ
0(�2

2)(θ )ωRκ
0(f1f2)(θ )ωRλ

0(g1g2)(θ )
(ωRκ

0 (f1�1)(θ )ωRλ
0(g1�2)(θ ) +ω Rκ

0 (f2�1)(θ )ωRλ
0(g2�2)(θ ))2 ≤ 1

4
.

Proof Applying Lemma 3.2 for �(θ ) = θ , we get Lemma 5.2. �

Similarly, one can derive the special case of Lemma 3.3. The following theorem repre-
sents the special case of Theorem 4.1 in terms of weighted classical fractional integral.

Theorem 5.1 Let the functions �1 and �2 be positive and integrable on [0,∞). Suppose that
f1, f2, g1, and f2 are four positive and integrable functions on [0,∞) satisfying hypothesis
(H1) defined by (3.1). Then, for κ ,λ > 0 and θ > 0, the following weighted fractional integral
inequality holds:

∣∣ω–1(θ )Rκ
0 (ω)(θ )ωRκ

0 (�1�2)(θ ) + ω–1(θ )Rλ
0(ω)(θ )ωRλ

0(�1�2)(θ )

– ωRκ
0 (�1)(θ )ωRλ

0(�2)(θ ) –ω Rκ
0 (�2)(θ )ωRλ

0(�1)(θ )
∣∣

≤ ∣∣F1(�1, f1, f2)(θ ) + F2(�1, f1, f2)(θ )
∣∣ 1

2 × ∣∣F1(�2, g1, g2)(θ ) + F2(�1, g1, g2)(θ )
∣∣ 1

2 ,

where

F1(�1, f1, f2)(θ ) =
ω–1(θ )Rλ

0(ω)(θ )
4

(ωRκ
0{(f1 + f2)�1})2

ωRκ
0 (f1f2)(θ )

–ω Rκ
0 (�1)(θ )ωRλ

0(�1)(θ )

and

F2(�1, f1, f2)(θ ) =
ω–1(θ )Rκ

0 (ω)(θ )
4

(ωRλ
0{(f1 + f2)�1})2

ωRλ
0(f1f2)(θ )

–ω Rκ
0 (�1)(θ )ωRλ

0(�1)(θ ).

Proof By employing Theorem 4.1 for �(θ ) = θ , we get the desired Theorem 5.1. �

By applying different choices given in Remark 2.1, some new inequalities can be obtained
easily. Also, we can derive the particular cases of the main result by employing Remark 2.2.

6 Applications
Here, we define a way for constructing four bounded functions and then utilize them to
present certain estimates of Chebyshev type weighted fractional integral inequalities of
two unknown functions.

Suppose that �(θ ) is the unit function defined by

�(θ ) =

⎧⎨
⎩

1, θ > 0,

0, θ ≤ 0,
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and let �a(θ ) be the Heaviside unit step function defined by

�a(θ ) =

⎧⎨
⎩

1, θ > a,

0, θ ≤ a.

Suppose that the function f1 is a piecewise continuous function on [0, X] defined by

f1(x) = p11

(
�0(x) – �x1 (x)

)
+ p12

(
�x1 (x) – �x2 (x)

)
+ · · · + p1m+1�xm (x)

= p11�0(x) + (p12 – p11 )�x1 (x) + (p13 – p12 )�x2 (x) + · · · + (p1m+1 – p1m )�xm (x)

=
m∑

i=0

(p1i+1 – p1i )�xi (x), (6.1)

where p10 = 0 and 0 = x0 < x1 < x2 < · · · < xp < xp+1 = X. Similarly, we define

f2(x) =
m∑

i=0

(P1i+1 – P1i )�xi (x), (6.2)

g1(x) =
m∑

i=0

(q1i+1 – q1i )�xi (x), (6.3)

and

g2(x) =
m∑

i=0

(Q1i+1 – Q1i )�xi (x), (6.4)

where q10 = Q10 = P10 = 0. If there exists an integrable function �1 on [0, X] satisfying
hypothesis (H1), then we have p1i+1 ≤ �1(x) ≤ P1i+1 for each x ∈ (xi, xi+1], i = 0, 1, 2, . . . , m.

Proposition 6.1 Let the functions �1 and �2 be positive and integrable on [0, X]. Assume
that the functions f1, f2, g1, and g2 are defined by (6.1), (6.2), (6.3), and (6.4) respectively
and satisfy hypothesis (H1) defined by (3.7). Then, for κ > 0, the following inequality for
weighted fractional integral holds:

( m∑
i=0

q1i+1 Q1i+1
�
ωRκ

xi ,xi+1

(
�

2
1
)
(X)

)2( m∑
i=0

p1i+1 P1i+1
�
ωRκ

xi ,xi+1

(
�

2
2
)
(X)

)2

≤ 1
4

p∑
i=0

(q1i+1 Q1i+1 + p1i+1 P1i+1 )�ωRκ
xi ,xi+1

(�1�2)(X). (6.5)

Proof By applying Definition (2.10), we have

�
ωRκ

0,X
(
g1g2�

2
1
)
(X) =

m∑
i=0

q1i+1 Q1i+1
�
ωRκ

xi ,xi+1

(
�

2
1
)
(X),

�
ωRκ

0,X
(
f1f2�

2
2
)
(X) =

m∑
i=0

p1i+1 P1i+1
�
ωRκ

xi ,xi+1

(
�

2
2
)
(X),
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and

�
ωRκ

0,X
{

(f1g1 + f2g2)�1�2
}

(X) =
m∑

i=0

(p1i+1 q1i+1 + P1i+1 Q1i+1 )�ωRκ
xi ,xi+1

(�1�2)(X).

Hence, by applying Lemma 3.1, we get the desired assertion (6.5). �

Proposition 6.2 Applying Proposition 6.1 for �(θ ) = θ , we get the following result in terms
of weighted R-L fractional integral:

( m∑
i=0

q1i+1 Q1i+1 ωRκ
xi ,xi+1

(
�

2
1
)
(X)

)2( m∑
i=0

p1i+1 P1i+1 ωRκ
xi ,xi+1

(
�

2
2
)
(X)

)2

≤ 1
4

m∑
i=0

(q1i+1 Q1i+1 + p1i+1 P1i+1 )ωRκ
xi ,xi+1

(�1�2)(X).

Proposition 6.3 Let the functions �1 and �2 be positive and integrable on [0, X]. Assume
that the functions f1, f2, g1, and g2 are defined by (6.1), (6.2), (6.3), and (6.4) respectively
and satisfy hypothesis (H1) defined by (3.7). Then, for κ > 0, the following inequality for
generalized fractional integral holds:

( m∑
i=0

q1i+1 Q�
1i+1

Rκ
xi ,xi+1

(
�

2
1
)
(X)

)2( m∑
i=0

p1i+1 P�
1i+1

Rκ
xi ,xi+1

(
�

2
2
)
(X)

)2

≤ 1
4

p∑
i=0

(q1i+1 Q1i+1 + p1i+1 P1i+1 )�Rκ
xi ,xi+1

(�1�2)(X).

Remark 6.1 By setting �(θ ) = θ and ω(θ ) = 1 throughout the paper, we obtain the work of
Ntouyas et al. [31].

7 Concluding remarks
In this present investigation, we presented some new weighted fractional Pólya–Szegö and
Chebyshev type integral inequalities by employing weighted fractional integral recently
proposed by Jarad et al. [14]. It is worth mentioning that these inequalities cover the inte-
gral inequalities for the well-known fractional integral operators discussed in Remark 2.2.
In particular, if we take �(θ ) = θ and ω(θ ) = 1, then the obtained inequalities reduce to the
inequalities involving the R-L fractional integral established by Ntouyas et al. [31]. One can
easily obtain Pólya–Szegö and Chebyshev type Hadamard fractional integral inequalities
by applying �(θ ) = ln θ and ω(θ ) = θu. Also, one can easily derive the said Pólya–Szegö
and Chebyshev type inequalities for other types of weighted fractional integrals such as
Katugampola, generalized R-L, classical R-L, generalized conformable, and conformable
fractional integrals by applying certain conditions on the function � given in Remark 2.1.
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